高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

20世纪90年代以后华北初春低温增强和北大西洋海温关系

徐玮平 张杰 刘晨 孟祥新

徐玮平, 张杰, 刘晨, 等. 2020. 20世纪90年代以后华北初春低温增强和北大西洋海温关系[J]. 大气科学, 44(6): 1167−1187 doi:  10.3878/j.issn.1006-9895.1912.19127
引用本文: 徐玮平, 张杰, 刘晨, 等. 2020. 20世纪90年代以后华北初春低温增强和北大西洋海温关系[J]. 大气科学, 44(6): 1167−1187 doi:  10.3878/j.issn.1006-9895.1912.19127
XU Weiping, ZHANG Jie, LIU Chen, et al. 2020. Relationship between the Early-Spring Low-Temperature Enhancement in North China and Sea Surface Temperature in the North Atlantic since the 1990s [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(6): 1167−1187 doi:  10.3878/j.issn.1006-9895.1912.19127
Citation: XU Weiping, ZHANG Jie, LIU Chen, et al. 2020. Relationship between the Early-Spring Low-Temperature Enhancement in North China and Sea Surface Temperature in the North Atlantic since the 1990s [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(6): 1167−1187 doi:  10.3878/j.issn.1006-9895.1912.19127

20世纪90年代以后华北初春低温增强和北大西洋海温关系

doi: 10.3878/j.issn.1006-9895.1912.19127
基金项目: 国家自然科学基金项目41975083、41630426,中国气象局预报员专项CMAYBY2019-066
详细信息
    作者简介:

    徐玮平,男,1990年出生,硕士研究生,研究方向为极端气候与数值模拟。E-mail: 245332105@qq.com

    通讯作者:

    张杰,E-mail: zhangj@nuist.edu.cn

  • 中图分类号: P467

Relationship between the Early-Spring Low-Temperature Enhancement in North China and Sea Surface Temperature in the North Atlantic since the 1990s

Funds: National Natural Science Foundation of China (Grants 41975083, 41630426), Special Forecast for China Meteorological Administration (Grant CMAYBY2019-066)
  • 摘要: 本文利用ECMWF再分析资料及Hadley中心提供的海温数据分析了20世纪90年代以后华北地区初春低温增强的原因,并通过数值模拟结果予以验证。结果表明,北大西洋“马蹄型”海温模态与影响我国华北地区的欧亚波列存在显著的相关关系。同时该海温模态与1997年以后北大西洋关键区垂直波作用通量有着较密切的相关关系,1997年以后北大西洋地区的500 hPa环流模态,整体呈现出东移南撤的趋势。1997年以后格陵兰岛东侧表面温度受异常热力强迫导致正值区增多,同时此处西风急流加大,有利于Rossby波向下游传播,导致其下游欧洲大陆地区形成暖脊。通过局地多尺度能量涡度分析法(Localized Multiscale Energy and Vorticity Analysis,简称MS-EVA)证明格陵兰岛东侧关键区表面温度的异常热力强迫作用与气压梯度力在对流层整层做正功,导致高层动能的增加并向外辐散,使得脊加强向北伸展。通过欧亚波列致使下游华北地区上空气旋式异常加强,促使亚洲极涡加强和稳定维持,华北地区温度下降剧烈,极端低温事件增多。最后通过CAM5.1模式模拟研究了北大西洋“马蹄型”海温模态对大气环流异常及华北地区极端低温的影响。模拟结果很好地验证了观测结果,进一步表明该海温模态可以通过激发出欧亚波列,影响欧亚大陆大气环流异常,进而导致我国华北地区气旋性加强和经向环流加大,极端低温事件增多。
  • 图  1  1961~2015年华北地区初春(3月)极端冷偏差发生频率

    Figure  1.  Frequency of extreme cold bias in early spring (March) in North China from 1961 to 2015

    图  2  (a)20世纪80年代前、后和(b)21世纪初合成的500 hPa位势高度距平场(阴影,单位:10−1 m2 s2)和位势高度气候平均场(等值线,单位:10−4 m2 s2)。打点区域为通过90%显著性检验的区域,方框为122°E以东的我国华北地区,黑色等直线从北往南分别为Z=510 dagpm,Z=530 dagpm,Z=550 dagpm,Z=570 dagpm

    Figure  2.  Distribution of geopotential height anomaly fields (shaded areas, units: 10−1m2 s−2) and geopotential height climatic fields (contours, units: 10−4 m2 s−2) at 500 hPa in (a) the 1980s (1979–1982) and (b) 21st century (2004, 2007 and 2015). The dotted areas indicate significance at the 90% confidence level, the rectangle indicates North China east of 122°E. the black contours are Z=510 dagpm, Z=530 dagpm, Z=550 dagpm, Z=570 dagpm

    图  3  1979~2015年3月200 hPa经向风场EOF展开的前两个特征向量的(a,c)空间分布及其(b,d)时间系数

    Figure  3.  (a, c) First and second EOF modes and (b, d) their time coefficients of 200-hPa meridional wind field in March during the 1979–2015 period

    图  4  初春(3月)北大西洋气候态海温EOF分解前(a,c,e)三个模态的空间分布及(b,d,f)相对应的标准化时间系数(红色实线为北大西洋海温变化趋势)

    Figure  4.  (a, c, e) Spatial distributions and (b, d, f) its corresponding normalized time coefficients of the first to third EOF modes of the North Atlantic climatic SST in early spring (March). The red line indicates the trend of the North Atlantic SST

    图  5  1997年(a,b)前、(c,d)后北大西洋地区与欧亚大陆3月(a,c)300 hPa波作用通量(箭头,单位:m2 s−2)与通量水平散度(阴影,单位: 10−5 m s−2)及(b,d)500 hPa波作用通量垂直分量的合成(阴影,单位:m2 s−2)。细线方框为112°E以东的我国华北地区,粗线方框为关键区

    Figure  5.  Compositions of (a, c) wave activity fluxes (vectors, units: m2 s−2) and flux horizontal divergences (shaded areas, units: 10−5 m s−2) at 300 hPa and (b, d) the vertical components of wave activity fluxes (shaded areas, units: m2 s−2) at 500 hPa in the North Atlantic and Eurasia in March (a, b) before and (c, d) after 1997. The small rectangle indicates North China east of 112°E and the large rectangle is the key area

    图  6  1997年(a)前、(b)后关键区500 hPa垂直波作用通量序列回归同期的海温距平场(阴影)。打点区域为通过90%信度检验的显著区域,红色方框为关键区,蓝色和红色等值线分别为516位势什米气候态环流场和异常环流场(均经过标准化处理)

    Figure  6.  Simultaneous regressions of the SST anomaly field regressed onto the time series of the 500 hPa vertical components of wave activity fluxes (a) before and (b) after 1997. The dotted areas indicate the 90% level of confidence, the red box indicates the key area, the blue and red contour line shows the 516 geopotential climatic circulation field and abnormal circulation field. All data have been standardized

    图  7  1997年(a,b)前、(c,d)后每年3月北大西洋(a,c)地表2 m高度的温度与(b,d)同期300 hPa纬向风(U)的SVD第一模态异性相关系数。黑色虚线标记的区域为通过90%信度检验的显著区域,红色方框为关键区,黑色等值线分别为U=14 m s−1, U=16 m s−1, U=18 m s−1

    Figure  7.  Singular Value Decomposition (SVD) first-mode heterosexual correlation coefficient of (a, c) 2-m height surface temperature and the 300-hPa zonal wind in the North Atlantic in March (b, d) before (a, b) and after (c, d) 1997. The areas marked by the black dotted line indicate the 90% level of confidence, the red box indicates the key area, the black contours are U=14 m s−1, U=16 m s−1, and U=18 m s−1

    图  8  1997年(a)前、(b)后3月北大西洋地表2 m温度与同期300 hPa纬向风SVD时间序列。黑色实线为该时间段内北大西洋地表2 m温度增加趋势

    Figure  8.  SVD time series of North Atlantic 2-m height surface temperature in March (a) before and (b) after 1997 and simultaneous 300-hPa zonal wind. The black line indicates the trend of the North Atlantic 2-m height surface temperature

    图  9  1997年(a)前、(b)后地表2 m高度的温度回归同期的500 hPa位势高度距平场(阴影)。打点区域为通过90%信度检验的显著区域,方框为112°E以东的我国华北地区

    Figure  9.  Simultaneous regression of the 500-hPa geopotential height anomaly fields on the 2-m height surface temperature (a) before and (b) after 1997. The dotted areas meet the 90% level of confidence. The rectangle indicates North China east of 112°E

    图  10  1997年以后格陵兰岛以东关键区在华北极端低温年(a)高层(500~300 hPa)、(b)中层(800~500 hPa)和(c)低层(1000~800 hPa)动能收支各项的合成(均经过标准化处理)

    Figure  10.  Composition of Kinetic energy budget terms (KEBTs) in the (a) upper (500–300 hPa), (b) middle (800–500 hPa), and (c) lower (1000–800 hPa) levels of the key area east of Greenland in atypical years of extremely low temperatures in North China since 1997. All data have been standardized

    图  11  1997年以后合成的格陵兰岛以东关键区沿60°N~70°N平均的垂直速度ω(阴影,单位:Pa s−1)的垂直剖面. 粉色线表示垂直环流

    Figure  11.  Composition of the vertical section of average vertical velocity (shading, units: Pa s−1) along 60°N–70°N in key area east of Greenland since 1997 The pink line indicates vertical circulation

    图  12  模式模拟3月气候态500 hPa位势高度场及其差值分布(单位:gpm):(a)控制试验;(b)敏感性试验;(c)差值场(敏感性试验减去控制试验)

    Figure  12.  Simulation of 500-hPa geopotential height climatic fields and their differences distribution in March from 1979 to 2015 (units: gpm): (a) Model control experiment; (b) model sensitive experiment; (c) their differences (results of sensitive experiment minus results of control experiment)

    图  13  模式模拟的北大西洋地区与欧亚大陆3月气候态(a)300 hPa波作用通量(箭头,单位:m2 s−2)与通量水平散度(阴影,单位:10−5 m s−2)及(b)500 hPa波作用通量垂直分量的合成(阴影,单位:m2 s−2)。细线方框为112°E以东的我国华北地区,粗线方框为关键区

    Figure  13.  Compositions of (a) climatic wave activity fluxes (vectors, units: m2 s−2) and horizontal flux divergence (shaded areas, units: 10−5 m s−2) at 300 hPa and (b) vertical components (shaded areas, units: m2 s−2) at 500 hPa in the North Atlantic and Eurasia in March simulated in numerical experiments. The small rectangle indicates North China east of 112°E and the large rectangle is the key area

    图  14  模式模拟北大西洋与欧亚大陆地区表面温度气候异常场(单位:K)。细线方框为112°E以东的我国华北地区,粗线方框为关键区

    Figure  14.  Simulation of climatic surface temperature anomaly field in the North Atlantic and Eurasia (units: K). The small rectangle indicates North China (east of 112°E) and the large rectangle is the key area

    图  15  华北地区极端低温与对流层中层(500 hPa)欧亚波列(绿色箭头)的遥相关关系。A、C分别代表反气旋和气旋

    Figure  15.  Teleconnection of Eurasia wave train (green arrow) in the mid-troposphere (500 hPa) and extreme low temperatures in North China (ELTNC). The letters A and C indicate anticyclone and cyclone, respectively

  • [1] Brabson B B, Palutikof J P. 2002. The evolution of extreme temperatures in the central England temperature record [J]. Geophys. Res. Lett., 29(24): 16-1−16-4. doi: 10.1029/2002GL015964
    [2] Bretherton C S, Smith C, Wallace J M. 1992. An intercomparison of methods for finding coupled patterns in climate data [J]. Journal of Climate, 5(6): 541−560. doi:10.1175/1520-0442(1992)005<0541:aiomff>2.0.co;2
    [3] 陈少勇, 王劲松, 任燕, 等. 2011. 近49年中国西北地区极端低温事件的演变特征 [J]. 高原气象, 30(5): 1266−1273.

    Chen Shaoyong, Wang Jinsong, Ren Yan, et al. 2011. Evaluative characteristic of extreme minimum temperature of Northwest China in recent 49 years [J]. Plateau Meteorology (in Chinese), 30(5): 1266−1273.
    [4] Chen G S, Huang R H, Zhou L T. 2013. Baroclinic instability of the Silk Road pattern induced by thermal damping [J]. Journal of the Atmospheric Sciences, 70(9): 2875−2893. doi: 10.1175/jas-d-12-0326.1
    [5] Cholaw B, Fu X Y, Xie Z W. 2011. Large-scale circulation features typical of wintertime extensive and persistent low temperature events in China [J]. Atmospheric and Oceanic Science Letters, 4(4): 235−241. doi: 10.1080/16742834.2011.11446935
    [6] 丁一汇, 王遵娅, 宋亚芳, 等. 2008. 中国南方2008年1月罕见低温雨雪冰冻灾害发生的原因及其与气候变暖的关系 [J]. 气象学报, 66(5): 808−825. doi:  10.3321/j.issn:0577-6619.2008.05.014

    Ding Y H, Wang Z Y, Song Y F, et al. 2008. Causes of the unprecedented freezing disaster in January 2008 and its possible association with the global warming [J]. Acta Meteor. Sinica (in Chinese), 66(5): 808−825. doi: 10.3321/j.issn:0577-6619.2008.05.014
    [7] Donat M G, Alexander L V, Yang H, et al. 2013. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset [J]. Journal of Geophysical Research: Atmospheres, 118(5): 2098−2118. doi: 10.1002/jgrd.50150
    [8] 付冬雪, 孙照渤, 李忠贤, 等. 2011. 1955-2006冬半年中国极端低温的时空变化特征 [J]. 气象科学, 31(3): 274−281. doi:  10.3969/j.issn.1009-0827.2011.03.005

    Fu Dongxue, Sun Zhaobo, Li Zhongxian, et al. 2011. Spatial and temporal features of China extreme minimum temperature in winter half year during 1955-2016 [J]. Journal of the Meteorological Sciences (in Chinese), 31(3): 274−281. doi: 10.3969/j.issn.1009-0827.2011.03.005
    [9] 龚道溢, 王绍武. 2003. 近百年北极涛动对中国冬季气候的影响 [J]. 地理学报, 58(4): 559−568. doi:  10.3321/j.issn:0375-5444.2003.04.010

    Gong Daoyi, Wang Shaowu. 2003. Influence of Arctic Oscillation on winter climate over China [J]. Acta Geographica Sinica (in Chinese), 58(4): 559−568. doi: 10.3321/j.issn:0375-5444.2003.04.010
    [10] 韩方红, 陈海山, 马鹤翟. 2018. 冬季北大西洋涛动与中国北方极端低温相关性的年代际变化 [J]. 大气科学, 42(2): 239−250. doi:  10.3878/j.issn.1006-9895.1705.17101

    Han Fanghong, Chen Haishan, Ma Hedi. 2018. Interdecadal variation in the relationship between North Atlantic Oscillation and extreme low temperature over northern China in winter [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(2): 239−250. doi: 10.3878/j.issn.1006-9895.1705.17101
    [11] 何春, 何金海. 2003. 冬季北极涛动和华北冬季气温变化关系研究 [J]. 南京气象学院学报, 26(1): 1−7. doi:  10.3969/j.issn.1674-7097.2003.01.001

    He Chun, He Jinghai. 2003. Relation between Arctic Oscillation and North China air temperature in winter [J]. Journal of Nanjing Institute of Meteorology (in Chinese), 26(1): 1−7. doi: 10.3969/j.issn.1674-7097.2003.01.001
    [12] 贺海晏, 漆小平, 罗会邦. 1992. 华南春季强对流天气过程的动能收支(二): 辐散风和旋转风动能的收支和转换 [J]. 热带气象, 8(2): 125−133. doi:  10.16032/j.issn.1004-4965.1992.02.004

    He Haiyan, Qi Xiaoping, Luo Huibang. 1992. Kinetic energy budgets of an intense convection event during spring over South China. Part Ⅱ: Budgets and conversion of divergent and rotational kinetic energy [J]. Journal of Tropical Meteorology (in Chinese), 8(2): 125−133. doi: 10.16032/j.issn.1004-4965.1992.02.004
    [13] Hoskins B J, James I N, White G H. 1983. The shape, propagation and mean–flow interaction of large-scale weather systems [J]. Journal of the Atmospheric Sciences, 40(7): 1595−1612. doi:10.1175/1520-0469(1983)040<1595:tspamf>2.0.co;2
    [14] Hsu P C, Tsou C H, Hsu H H, et al. 2009. Eddy energy along the tropical storm track in association with ENSO [J]. Journal of the Meteorological Society of Japan. Ser. II, 87(4): 687−704. doi: 10.2151/jmsj.87.687
    [15] Hsu P C, Li T, Tsou C H. 2011. Interactions between boreal summer intraseasonal oscillations and synoptic–scale disturbances over the western North Pacific. Part I: Energetics diagnosis [J]. Journal of Climate, 24(3): 927−941. doi: 10.1175/2010jcli3833.1
    [16] Hu Q, Tawaye Y, Feng S. 2004. Variations of the Northern Hemisphere atmospheric energetics: 1948-2000 [J]. Journal of Climate, 17(10): 1975−1986. doi:10.1175/1520-0442(2004)017<1975:votnha>2.0.co;2
    [17] Huang R H, Sun F Y. 1992. Impacts of the tropical western Pacific on the East Asian summer monsoon [J]. Journal of the Meteorological Society of Japan. Ser. II, 70(1B): 243−256. doi: 10.2151/jmsj1965.70.1b_243
    [18] 黄晓璐, 徐海明, 邓洁淳. 2015. 冬季中国近海海表温度的长期升高及其对中国降水的影响 [J]. 气象学报, 73(3): 505−514. doi:  10.11676/qxxb2015.038

    Huang Xiaolu, Xu Haiming, Deng Jiechun. 2015. Long-term rising of SST over the marginal seas of China in winter and its impact on precipitation in China [J]. Acta Meteorologica Sinica (in Chinese), 73(3): 505−514. doi: 10.11676/qxxb2015.038
    [19] 琚建华, 任菊章, 吕俊梅. 2004. 北极涛动年代际变化对东亚北部冬季气温增暖的影响 [J]. 高原气象, 23(4): 429−434. doi:  10.3321/j.issn:1000-0534.2004.04.002

    Ju Jianhua, Ren Juzhang, Lv Junmei. 2004. Effect of interdecadal variation of Arctic Oscillation on temperature increasing in north of East Asian winter [J]. Plateau Meteorology (in Chinese), 23(4): 429−434. doi: 10.3321/j.issn:1000-0534.2004.04.002
    [20] Lau K H, Lau N C. 1992. The energetics and propagation dynamics of tropical summertime synoptic-scale disturbances [J]. Monthly Weather Review, 120(11): 2523−2539. doi:10.1175/1520-0493(1992)120<2523:teapdo>2.0.co;2
    [21] 李崇银. 1995. 气候动力学引论 [M]. 北京: 气象出版社. 290−296.

    Li Chongyin. 1995. Introduction to Climate Dynamics (in Chinese) [M]. Beijing: China Meteorological Press. 290-296
    [22] Li S L. 2004. Impact of Northwest Atlantic SST anomalies on the circulation over the Ural Mountains during early winter [J]. Journal of the Meteorological Society of Japan. Ser. II, 82(4): 971−988. doi: 10.2151/jmsj.2004.971
    [23] 李春, 方之芳. 2005. 北极涛动与东北冬季温度的联系 [J]. 高原气象, 24(6): 927−934. doi:  10.3321/j.issn:1000-0534.2005.06.012

    Li Chun, Fang Zhifang. 2005. Linkage of arctic oscillation and winter temperature in Northeast China [J]. Plateau Meteorology (in Chinese), 24(6): 927−934. doi: 10.3321/j.issn:1000-0534.2005.06.012
    [24] 李崇银, 杨辉, 顾薇. 2008. 中国南方雨雪冰冻异常天气原因的分析 [J]. 气候与环境研究, 13(2): 113−122.

    Li C Y, Yang H, Gu W. 2008. Cause of severe weather with cold air, freezing rain and snow over South China in January 2008 [J]. Clim. Environ. Res. (in Chinese), 13(2): 113−122.
    [25] 李维京, 李怡, 陈丽娟, 等. 2013. 我国冬季气温与影响因子关系的年代际变化 [J]. 应用气象学报, 24(4): 385−396. doi:  10.3969/j.issn.1001-7313.2013.04.001

    Li Weijing, Li Yi, Chen Lijuan, et al. 2013. Inter-decadal variability of the relationship between winter temperature in China and its impact factors [J]. Journal of Applied Meteorological Science (in Chinese), 24(4): 385−396. doi: 10.3969/j.issn.1001-7313.2013.04.001
    [26] 李艳, 张金玉, 李旭, 等. 2018. 两次典型极端低温过程低频特征分析 [J]. 高原气象, 37(5): 1341−1352. doi:  10.7522/j.issn.1000-0534.2018.00035

    Li Yan, Zhang Jinyu, Li Xu, et al. 2018. Low–frequency features during the two typical extreme cold events in China [J]. Plateau Meteorology (in Chinese), 37(5): 1341−1352. doi: 10.7522/j.issn.1000-0534.2018.00035
    [27] Liang X S. 2016. Canonical transfer and multiscale energetics for primitive and quasigeostrophic atmospheres [J]. Journal of the Atmospheric Sciences, 73(11): 4439−4468. doi: 10.1175/jas-d-16-0131.1
    [28] Liang X S, Robinson A R. 2005. Localized multiscale energy and vorticity analysis: I. Fundamentals [J]. Dynamics of Atmospheres and Oceans, 38(3-4): 195−230. doi: 10.1016/j.dynatmoce.2004.12.004
    [29] Liang X S, Anderson D G M. 2007. Multiscale window transform [J]. Multiscale Modeling & Simulation, 6(2): 437−467. doi: 10.1137/06066895X
    [30] Liu C H, Zhou B T. 2018. Influences of the 11-yr sunspot cycle and polar vortex oscillation on observed winter temperature variations in China [J]. Journal of Meteorological Research, 32(3): 367−379. doi: 10.1007/s13351-018-7101-2
    [31] 刘樱, 郭品文, 冯涛. 2016. 华北地区冬季持续性异常低温事件与大气低频振荡活动的关系 [J]. 大气科学学报, 39(3): 370−380. doi:  10.13878/j.cnki.dqkxxb.20150314053

    Liu Ying, Guo Pinwen, Feng Tao. 2016. The relationship between winter persistent abnormal low temperature in North China and atmospheric low-frequency oscillation activities [J]. Trans. Atmos. Sci. (in Chinese), 39(3): 370−380. doi: 10.13878/j.cnki.dqkxxb.20150314053
    [32] 卢楚翰, 管兆勇, 李永华, 等. 2013. 太平洋年代际振荡与南北半球际大气质量振荡及东亚季风的联系 [J]. 地球物理学报, 56(4): 1084−1094. doi:  10.6038/cjg20130404

    Lu Chuhan, Guan Zhaoyong, Li Yonghua, et al. 2013. Interdecadal linkages between Pacific decadal oscillation and interhemispheric air mass oscillation and their possible connections with East Asian Monsoon [J]. Chinese J. Geophys. (in Chinese), 56(4): 1084−1094. doi: 10.6038/cjg20130404
    [33] 卢慧超, 梁湘三, 容逸能. 2017. 基于局地多尺度能量涡度分析法(MS-EVA)的北半球夏季西太平洋MJO动能分析 [J]. 大气科学学报, 40(2): 224−232. doi:  10.13878/j.cnki.dqkxxb.20151214002

    Lu Huichao, Liang Xiangsan, Rong Yineng. 2017. An energetic study of the boreal summer western Pacific MJO with the localized multi-scale energy and vorticity analysis (MS-EVA) [J]. Trans. Atmos. Sci. (in Chinese), 40(2): 224−232. doi: 10.13878/j.cnki.dqkxxb.20151214002
    [34] Maloney E D, Dickinson M J. 2003. The intraseasonal oscillation and the energetics of summertime tropical western North Pacific synoptic-scale disturbances [J]. Journal of the Atmospheric Sciences, 60(17): 2153−2168. doi:10.1175/1520-0469(2003)060<2153:TIOATE>2.0.CO;2
    [35] 梅笑冬. 2015. 北大西洋海温对NAO型大气环流异常的影响研究 [D]. 中国海洋大学博士学位论文.

    Mei Xiaodong. 2015. An impact study of North Atlantic SST on NAO-like circulation [D]. Ph. D. dissertation (in Chinese), Ocean University of China.
    [36] Neale R B, Chen C C, Gettelman A, et al. 2010. Description of the NCAR community atmosphere model (CAM 5.0) [R]. NCAR Technical Note NCAR/TN-486+STR: 7–8.
    [37] New M, Hewitson B, Stephenson D B, et al. 2006. Evidence of trends in daily climate extremes over southern and West Africa [J]. J. Geophys. Res. Atmos., 111(D14): D14102. doi: 10.1029/2005jd006289
    [38] 秦大河. 2004. 进入21世纪的气候变化科学——气候变化的事实、影响与对策 [J]. 科技导报(7): 4−7. doi:  10.3321/j.issn:1000-7857.2004.07.002

    Qin Dahe. 2004. Climate change sciences into the 21st century: Facts, impact and strategies addressing climate change [J]. Science & Technology Review(7): 4−7. doi: 10.3321/j.issn:1000-7857.2004.07.002
    [39] 秦玉琳. 2012. 中国东北夏季极端气温变化特征及其与大气环流的关系 [D]. 南京信息工程大学硕士学位论文.

    Qin Yulin. 2012. Variation of extreme temperature in Northeast China and its relations with atmospheric circulation during summertime [D]. M. S. thesis (in Chinese), Nanjing University of Information Science & Technology.
    [40] 曲金华, 江志红, 谭桂容, 等. 2006. 冬季北大西洋海温年际、年代际变化与中国气温的关系 [J]. 地理科学, 26(5): 557−563. doi:  10.13249/j.cnki.sgs.2006.05.007

    Qu Jinhua, Jiang Zhihong, Tan Guirong, et al. 2006. Relation between interannual, interdecadal variability of SST in North Atlantic in winter and air temperature in China [J]. Scientia Geographica Sinica (in Chinese), 26(5): 557−563. doi: 10.13249/j.cnki.sgs.2006.05.007
    [41] Rayner N A, Parker D E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century [J]. J. Geophys. Res. Atmos., 108(D14): 4407. doi: 10.1029/2002jd002670
    [42] 任福民, 翟盘茂. 1998. 1951~1990年中国极端气温变化分析 [J]. 大气科学, 22(2): 217−227. doi:  10.3878/j.issn.1006-9895.1998.02.10

    Ren Fumin, Zhai Panmao. 1998. Study on changes of China’s extreme temperatures during 1951~1990 [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 22(2): 217−227. doi: 10.3878/j.issn.1006-9895.1998.02.10
    [43] 任国玉, 初子莹, 周雅清, 等. 2005. 中国气温变化研究最新进展 [J]. 气候与环境研究, 10(4): 701−716. doi:  10.3969/j.issn.1006-9585.2005.04.001

    Ren Guoyu, Chu Ziying, Zhou Yaqing, et al. 2005. Recent progresses in studies of regional temperature changes in China [J]. Climatic and Environmental Research (in Chinese), 10(4): 701−716. doi: 10.3969/j.issn.1006-9585.2005.04.001
    [44] Seneviratne S I, Nicholls N, Easterling D, et al. 2012. Changes in climate extremes and their impacts on the natural physical environment: An overview of the IPCC SREX report [J]. Geophysical Research Abstracts, 14: 12566.
    [45] 施宁, 张乐英. 2013. 冬季平流层北极涛动对江南气温的影响 [J]. 大气科学学报, 36(5): 604−610. doi:  10.3969/j.issn.1674-7097.2013.05.011

    Shi Ning, Zhang Leying. 2013. Influences of Arctic Oscillation on surface air temperature over the south Yangtze River regions [J]. Trans. Atmos. Sci. (in Chinese), 36(5): 604−610. doi: 10.3969/j.issn.1674-7097.2013.05.011
    [46] 孙照渤, 曾煜. 1995. 1月中国地温异常与北半球500 hPa高度场异常关系的合成分析 [J]. 南京气象学院学报, 18(4): 471−477. doi:  10.13878/j.cnki.dqkxxb.1995.04.002

    Sun Zhaobo, Zeng Yu. 1995. Composite analysis of relation of January surface temperature anomaly in China to northern 500 hPa height abnormality [J]. Journal of Nanjing Institute of Meteorology (in Chinese), 18(4): 471−477. doi: 10.13878/j.cnki.dqkxxb.1995.04.002
    [47] 孙诚, 李建平. 2012. 2009/2010年北半球冬季异常低温分析 [J]. 气候与环境研究, 17(3): 259−273. doi:  10.3878/j.issn.1006-9585.2011.10070

    Sun Cheng, Li Jianping. 2012. Analysis of anomalously low surface air temperature in the Northern Hemisphere during 2009/2010 winter [J]. Climatic and Environmental Research (in Chinese), 17(3): 259−273. doi: 10.3878/j.issn.1006-9585.2011.10070
    [48] 孙楠, 段昊书, 徐文彬. 2016. “超级寒潮”来了 [J]. 生命与灾害(2): 20−21.

    Su Nan, Duan Haoshu, Xu Wenbin. 2016. “Super cold wave” is coming [J]. Life & Disaster (in Chinese)(2): 20−21.
    [49] Sun B, Wang H J, Zhou B. 2019. Climatic condition and synoptic regimes of two intense snowfall events in eastern China and implications for climate variability [J]. Journal of Geophysical Research: Atmospheres, 124(2): 926−941. doi: 10.1029/2018jd029921
    [50] Takaya K, Nakamura H. 1997. A formulation of a wave‐activity flux for stationary Rossby waves on a zonally varying basic flow [J]. Geophys. Res. Lett., 24(23): 2985−2988. doi: 10.1029/97GL03094
    [51] Takaya K, Nakamura H. 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow [J]. J. Atmos. Sci., 58(6): 608−627. doi:10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2
    [52] Tsou C H, Hsu H H, Hsu P C. 2014. The role of multiscale interaction in synoptic-scale eddy kinetic energy over the western North Pacific in Autumn [J]. Journal of Climate, 27(10): 3750−3766. doi: 10.1175/jcli-d-13-00380.1
    [53] Wallace J M, Gutzler D S. 1981. Teleconnections in the geopotential height field during the Northern Hemisphere winter [J]. Mon. Wea. Rev., 109(2): 784−812. doi:10.1175/1520-0493(1981)109<0784:titghf>2.0.co;2
    [54] Wallace J M, Smith C, Bretherton C S. 1992. Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies [J]. Journal of Climate, 5(6): 561−576. doi:10.1175/1520-0442(1992)005<0561:svdows>2.0.co;2
    [55] Wang H J, He S P. 2015. The North China/Northeastern Asia severe summer drought in 2014 [J]. Journal of Climate, 28(17): 6667−6681. doi: 10.1175/jcli-d-15-0202.1
    [56] 王凌, 高歌, 张强, 等. 2008. 2008年1月我国大范围低温雨雪冰冻灾害分析Ⅰ. 气候特征与影响评估 [J]. 气象, 34(4): 95−100. doi:  10.7519/j.issn.1000-0526.2008.04.012

    Wang Ling, Gao Ge, Zhang Qiang, et al. 2008. Analysis of the severe cold surge, ice-snow and frozen disasters in South China during January 2008: I. Climatic features and its impact [J]. Meteor. Mon. (in Chinese), 34(4): 95−100. doi: 10.7519/j.issn.1000-0526.2008.04.012
    [57] 王晓娟, 龚志强, 任福民, 等. 2012. 1960~2009年中国冬季区域性极端低温事件的时空特征 [J]. 气候变化研究进展, 8(1): 8−15. doi:  10.3969/j.issn.1673-1719.2012.01.002

    Wang Xiaojuan, Gong Zhiqiang, Ren Fumin, et al. 2012. Spatial/temporal characteristics of China regional extreme low temperature events in winter during 1960-2009 [J]. Advances in Climate Change Research (in Chinese), 8(1): 8−15. doi: 10.3969/j.issn.1673-1719.2012.01.002
    [58] 王晓娟, 沈柏竹, 龚志强, 等. 2013. 中国冬季区域性极端低温事件分类及其与气候指数极端性的联系 [J]. 物理学报, 62(22): 229201. doi:  10.7498/aps.62.229201

    Wang Xiaojuan, Shen Baizhu, Gong Zhiqiang, et al. 2013. The classification of winter regional extreme low temperature events in China and their corresponding relationship to climatic indices extreme anomaly [J]. Acta Physica Sinica (in Chinese), 62(22): 229201. doi: 10.7498/aps.62.229201
    [59] Wang Y J, Zhou B T, Qin D H, et al. 2017. Changes in mean and extreme temperature and precipitation over the arid region of northwestern China: Observation and projection [J]. Advances in Atmospheric Sciences, 34(3): 289−305. doi: 10.1007/s00376-016-6160-5
    [60] Wang L, Liu Y Y, Yang Z, et al. 2019. Time-varying structure of the wintertime Eurasian pattern: Role of the North Atlantic sea surface temperature and atmospheric mean flow [J]. Climate Dynamics, 52(3-4): 2467−2479. doi: 10.1007/s00382-018-4261-9
    [61] 王岱, 游庆龙, 江志红, 等. 2016. 基于均一化资料的中国极端地面气温变化分析 [J]. 高原气象, 35(5): 1352−1363. doi:  10.7522/j.issn.1000-0534.2016.00019

    Wang Dai, You Qinglong, Jiang Zhihong, et al. 2016. Analysis of extreme temperature changes in China based on the homogeneity-adjusted data [J]. Plateau Meteorology (in Chinese), 35(5): 1352−1363. doi: 10.7522/j.issn.1000-0534.2016.00019
    [62] Wang Z Y, Yang S, Zhou B T. 2017. Preceding features and relationship with possible affecting factors of persistent and extensive icing events in China [J]. International Journal of Climatology, 37(11): 4105−4118. doi: 10.1002/joc.5026
    [63] 吴国雄, 刘辉, 陈飞, 等. 1994. 时变涡动输送和阻高形成——1980年夏中国的持续异常天气 [J]. 气象学报, 52(3): 308−320.

    Wu Guoxiong, Liu Hui, Chen Fei, et al. 1994. Transient eddy transfer and formation of blocking high—On the persistently abnormal weather in the summer of 1980 [J]. Acta Meteor. Sinica (in Chinese), 52(3): 308−320.
    [64] 肖贻青. 2017. 乌拉尔山阻塞与北大西洋涛动的关系及其对中国冬季天气的影响 [J]. 高原气象, 36(6): 1499−1511. doi:  10.7522/j.issn.1000-0534.2016.00109

    Xiao Yiqing. 2017. Relationship between Ural blocking and the North Atlantic Oscillation and their influence on winter weather over China [J]. Plateau Meteor. (in Chinese), 36(6): 1499−1511. doi: 10.7522/j.issn.1000-0534.2016.00109
    [65] 徐玮平, 张杰, 陈志恒. 2018. 两类春季极端低温的年代际特征与欧亚环流异常关系对比 [J]. 高原气象, 37(6): 1655−1670. doi:  10.7522/j.issn.1000-0534.2018.00058

    Xu Weiping, Zhang Jie, Chen Zhiheng. 2018. Comparative analysis of abnormal relationship between two types of decadal characteristics of extreme low temperature in spring and the Eurasian circulation [J]. Plateau Meteorology (in Chinese), 37(6): 1655−1670. doi: 10.7522/j.issn.1000-0534.2018.00058
    [66] 杨修群, 黄士松. 1993. 外强迫引起的夏季大气环流异常及其机制探讨 [J]. 大气科学, 17(6): 697−702. doi:  10.3878/j.issn.1006-9895.1993.06.08

    Yang Xiuqiong Huang Shisong. 1993. On the mechanism of summertime atmospheric anomalies induced by external forcing [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 17(6): 697−702. doi: 10.3878/j.issn.1006-9895.1993.06.08
    [67] 杨辉, 李崇银. 2008. 冬季北极涛动的影响分析 [J]. 气候与环境研究, 13(4): 395−404.

    Yang Hui, Li Chongyin. 2008. Influence of Arctic oscillation on temperature and precipitation in winter [J]. Climatic and Environmental Research (in Chinese), 13(4): 395−404.
    [68] 杨莲梅, 张庆云. 2008. 夏季亚洲副热带西风急流气候特征 [J]. 气候与环境研究, 13(1): 10−20.

    Yang Lianmei, Zhang Qingyun. 2008. Climate Features of summer Asia subtropical westerly jet stream [J]. Climatic and Environmental Research (in Chinese), 13(1): 10−20.
    [69] Yang S, Lau K M, Yoo S H, et al. 2004. Upstream subtropical signals preceding the Asian summer monsoon circulation [J]. Journal of Climate, 17(21): 4213−4229. doi: 10.1175/jcli3192.1
    [70] 杨金虎, 沈永平, 王鹏祥, 等. 2007. 中国西北近45a来极端低温事件及其对区域增暖的响应 [J]. 冰川冻土, 29(4): 536−542. doi:  10.3969/j.issn.1000-0240.2007.04.005

    Yang Jinhu, Shen Yongping, Wang Pengxiang, et al. 2007. Extreme low temperature events in Northwest China and their response to regional warming in the recent 45 years [J]. Journal of Glaciology and Geocryology (in Chinese), 29(4): 536−542. doi: 10.3969/j.issn.1000-0240.2007.04.005
    [71] 翟盘茂, 潘晓华. 2003. 中国北方近50年温度和降水极端事件变化 [J]. 地理学报, 58(S1): 1−10. doi:  10.3321/j.issn:0375-5444.2003.z1.001

    Zhai Panmao, Pan Xiaohua. 2003. Change in extreme temperature and precipitation over northern China during the second half of the 20th century [J]. Acta Geographica Sinica (in Chinese), 58(S1): 1−10. doi: 10.3321/j.issn:0375-5444.2003.z1.001
    [72] 张霏燕, 徐海明. 2011. 东北春季极端低温的变化特征及其与大西洋海温的关系 [J]. 大气科学学报, 34(5): 574−582. doi:  10.3969/j.issn.1674-7097.2011.05.007

    Zhang Feiyan, Xu Haiming. 2011. Spatial/temporal variations of spring extreme low temperature in Northeast China and its relationship with SSTA in Atlantic Ocean [J]. Trans. Atmos. Sci. (in Chinese), 34(5): 574−582. doi: 10.3969/j.issn.1674-7097.2011.05.007
    [73] 张庆云, 宣守丽, 彭京备. 2008. La Niña年冬季亚洲中高纬环流与我国南方降雪异常关系 [J]. 气候与环境研究, 13(4): 385−394.

    Zhang Q Y, Xuan S L, Peng J B. 2008. Relationship between Asian circulation in the middle–high latitude and snowfall over South China during La Niña events [J]. Clim. Environ. Res. (in Chinese), 13(4): 385−394.
    [74] Zhang J, Chen H S, Zhang Q. 2019. Extreme drought in the recent two decades in northern China resulting from Eurasian warming [J]. Climate Dynamics, 52(5-6): 2885−2902. doi: 10.1007/s00382-018-4312-2
    [75] Zhou B T, Wang H J. 2008. Interdecadal change in the connection between Hadley circulation and winter temperature in East Asia [J]. Advances in Atmospheric Sciences, 25(1): 24−30. doi: 10.1007/s00376-008-0024-6
    [76] Zhou B T, Xu Y, Wu J, et al. 2016. Changes in temperature and precipitation extreme indices over China: Analysis of a high-resolution grid dataset [J]. Int. J. Climatol., 36(3): 1051−1066. doi: 10.1002/joc.4400
    [77] Zhou B T, Wang Z Y, Shi Y, et al. 2018. Historical and future changes of snowfall events in China under a warming background [J]. Journal of Climate, 31(15): 5873−5889. doi: 10.1175/jcli-d-17-0428.1
    [78] 朱艳峰, 谭桂容, 王永光, 等. 2007. 中国冬季气温变化的空间模态及其与大尺度环流异常的联系 [J]. 气候变化研究进展, 3(5): 266−270. doi:  10.3969/j.issn.1673-1719.2007.05.004

    Zhu Yanfeng, Tan Guirong, Wang Yonguang, et al. 2007. Variation of spatial mode for winter temperature in China and its relationship with the large scale atmospheric circulation [J]. Advances in Climate Change Research (in Chinese), 3(5): 266−270. doi: 10.3969/j.issn.1673-1719.2007.05.004
  • [1] 艾雅雯, 孙建奇, 韩双泽, 张梦琪, 华维.  1961~2016年中国春季极端低温事件的时空特征分析, 大气科学. doi: 10.3878/j.issn.1006-9895.1912.19223
    [2] 刘晨, 张杰, 徐玮平.  春季欧亚大陆积雪主模态及其与北大西洋海温的关系, 大气科学. doi: 10.3878/j.issn.1006-9895.1911.19140
    [3] 梅一清, 陈海山, 刘鹏, 李笛.  夏季亚洲高空急流纬向非对称变异与北大西洋海温和欧亚陆面热力异常的可能联系, 大气科学. doi: 10.3878/j.issn.1006-9895.1804.18112
    [4] 李尚锋, 姜大膀, 廉毅, 尹路婷.  冬季中国东北极端低温事件环流背景特征分析, 大气科学. doi: 10.3878/j.issn.1006-9895.1710.17119
    [5] 韩方红, 陈海山, 马鹤翟.  冬季北大西洋涛动与中国北方极端低温相关性的年代际变化, 大气科学. doi: 10.3878/j.issn.1006-9895.1705.17101
    [6] 王超, 孙照渤, 王娜.  冬季北太平洋风暴轴垂直结构的变化特征及其与我国极端低温事件的关系, 大气科学. doi: 10.3878/j.issn.1006-9895.1505.14345
    [7] 苗青, 巩远发, 邓锐捷, 魏挪巍.  北半球中高纬度低频振荡对2012/2013年冬季中国东北极端低温事件的影响, 大气科学. doi: 10.3878/j.issn.1006-9895.1508.15189
    [8] 周星妍, 朱伟军, 顾聪.  冬季北大西洋风暴轴异常对我国寒潮活动的可能影响, 大气科学. doi: 10.3878/j.issn.1006-9895.1501.14259
    [9] 董元昌, 李国平.  大气能量学揭示的高原低涡个例结构及降水特征, 大气科学. doi: 10.3878/j.issn.1006-9895.1502.14263
    [10] 李忠燕, 罗德海.  北大西洋涛动位相转换的数值研究, 大气科学. doi: 10.3878/j.issn.1006-9895.2011.11055
    [11] 张冬斌, 金飞飞, 李建平, 等.  瞬变天气涡旋对北大西洋涛动的增强效应, 大气科学. doi: 10.3878/j.issn.1006-9895.2011.05.12
    [12] 柴晶品, 刁一娜.  北大西洋涛动指数变化与北半球冬季阻塞活动, 大气科学. doi: 10.3878/j.issn.1006-9895.2011.02.11
    [13] 谭桂容, 陈海山, 孙照渤, 等.  2008年1月中国低温与北大西洋涛动和平流层异常活动的联系, 大气科学. doi: 10.3878/j.issn.1006-9895.2010.01.16
    [14] 杨莲梅, 张庆云.  北大西洋涛动对新疆夏季降水异常的影响, 大气科学. doi: 10.3878/j.issn.1006-9895.2008.05.16
    [15] 李建, 周天军, 宇如聪.  利用大气环流模式模拟北大西洋海温异常强迫响应, 大气科学. doi: 10.3878/j.issn.1006-9895.2007.04.01
    [16] 邹捍, 李鹏, 周立波, 马舒坡, 季崇萍.  北大西洋臭氧极小值和北太平洋极大值及其相互关系, 大气科学. doi: 10.3878/j.issn.1006-9895.2006.05.19
    [17] 张苏平, 李春, 白燕, 雷小途.  一次北方台风暴雨(9406)能量特征分析, 大气科学. doi: 10.3878/j.issn.1006-9895.2006.04.10
    [18] 周立波, 邹捍, 季崇萍, 吴瑞欢.  斯堪的纳维亚上空的臭氧亏损与北大西洋海温, 大气科学. doi: 10.3878/j.issn.1006-9895.2001.02.11
    [19] 龚道溢, 王绍武.  北大西洋涛动指数的比较及其年代际变率, 大气科学. doi: 10.3878/j.issn.1006-9895.2000.02.07
    [20] 武炳义, 黄荣辉.  冬季北大西洋涛动极端异常变化与东亚冬季风, 大气科学. doi: 10.3878/j.issn.1006-9895.1999.06.01
  • 加载中
图(15)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  24
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-13
  • 网络出版日期:  2020-03-17
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回