高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

绿洲灌溉对垂直湍流热通量影响的大涡模拟研究

曹帮军 吕世华 张宇 李彦霖

曹帮军, 吕世华, 张宇, 等. 2020. 绿洲灌溉对垂直湍流热通量影响的大涡模拟研究[J]. 大气科学, 44(6): 1188−1202 doi:  10.3878/j.issn.1006-9895.1912.19163
引用本文: 曹帮军, 吕世华, 张宇, 等. 2020. 绿洲灌溉对垂直湍流热通量影响的大涡模拟研究[J]. 大气科学, 44(6): 1188−1202 doi:  10.3878/j.issn.1006-9895.1912.19163
CAO Bangjun, LÜ Shihua, ZHANG Yu, et al. 2020. Impact of Irrigation in the Oasis in Northwestern China on Vertical Turbulent Heat Flux Using Large-Eddy Simulation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(6): 1188−1202 doi:  10.3878/j.issn.1006-9895.1912.19163
Citation: CAO Bangjun, LÜ Shihua, ZHANG Yu, et al. 2020. Impact of Irrigation in the Oasis in Northwestern China on Vertical Turbulent Heat Flux Using Large-Eddy Simulation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(6): 1188−1202 doi:  10.3878/j.issn.1006-9895.1912.19163

绿洲灌溉对垂直湍流热通量影响的大涡模拟研究

doi: 10.3878/j.issn.1006-9895.1912.19163
基金项目: 国家重点研发计划项目2018YFC1505702,四川省科技厅应用基础研究自由探索项目2019YJ0408,中国气象局沙漠气象科学研究基金项目Sqj2018006,成都信息工程大学引进人才启动基金项目KYTZ201810
详细信息
    作者简介:

    曹帮军,男,1989年出生,博士,讲师,主要从事陆面过程和大气边界层研究。E-mail: caobj1989@163.com

  • 中图分类号: P404

Impact of Irrigation in the Oasis in Northwestern China on Vertical Turbulent Heat Flux Using Large-Eddy Simulation

Funds: National Key Basic Research and Development Program of China (Grant 2018YFC1505702), Applied Basic Research Foundation of Sichuan Province, China (Grant 2019YJ0408), Desert Meteorological Science Research Fund of China (Grant Sqj2018006), Scientific Research Starting Foundation of Talent Introduction of Chengdu University of Information Technology (Grant KYTZ201810)
  • 摘要: 为了研究湍涡对中尺度绿洲灌溉的响应,利用WRF模式大涡模拟模块(WRF-LES)在西北半干旱区绿洲区开展灌溉前和灌溉后两个大涡模拟试验(分别简称为BI和AI),其中灌溉可能会改变绿洲非均匀强度。利用面积平均的办法计算湍流热通量并利用小波分析将湍流热通量模态分解到不同的尺度。结果表明灌溉增加了土壤湿度,引起绿洲内部非均匀强度增加,灌溉对垂直热通量以及通量频散都有较大影响。AI中的湍涡为网状,与BI中一致。AI与BI中的感热通量的频散高度都随着感热通量的减小而减小。AI与BI中感热通量小波能量谱尺度一致,但是BI中强度比AI小。潜热通量的频散高度依赖于感热通量,且潜热通量能量谱随高度减小。空间滞后相关系数的结果表明由于灌溉前地表加热较强,感热通量对地表热通量的响应高度在灌溉之前(BI)比灌溉后(AI)更高。灌溉后的通量模态的飘移距离小于灌溉前的。
  • 图  1  观测场(a)所在位置、(b)土地利用模态以及(c)小波能量谱分解非均匀地表为不同尺度的结果。(c)中横坐标k表示波数,单位:m−1

    Figure  1.  (a) Location of the observation site, (b) land use patterns, and (c) heterogeneous landscape decompositions on different scales by wavelet energy spectra analysis. The k in (c) means wave number, units: m−1

    图  2  灌溉前和灌溉后试验(分别简称为BI和AI)中12:00(a)初始位温、(b)水汽混合比和(c)风速廓线

    Figure  2.  (a) Initial potential temperature, (b) water vapor mixing ratio, and (c) wind speed profiles at 1200 LT (Local time) in AI (after irrigation) and BI (before irrigation) experiments

    图  3  灌溉后试验(AI)的土壤湿度模态

    Figure  3.  Soil moisture pattern in the experiment after irrigation (AI)

    图  4  2012年8月24日14:00AI中二维平面垂直速度(填色,单位:m s−1)的(a)瞬时值以及(b‒i)在Haar小波变换后的结果:小波能量谱(b)ln=1∆x;(c)ln=1.5∆x;(d)ln=3∆x;(e)ln=6∆x;(f)ln=12.5∆x;(g)ln=25∆x;(h)ln=50∆x;(i)ln=100∆x

    Figure  4.  (a) Instantaneous two-dimensional vertical speed (shaded, units: m s−1) estimated by the Haar wavelet transform at 1400 LT on 24 August, 2012 in AI with the wavelet energy components of ln = (b) 1∆x, (c) 1.5∆x, (d) 3∆x, (e) 6∆x, (f) 12.5∆x, (g) 25∆x, (h) 50∆x, and (i) 100∆x

    图  5  2012年8月20日和2012年8月24日庄稼地Noah-LSM(虚线)和Noah-MP(实线)模拟的(a)感热通量(H)、(b)潜热通量(λE)与观测值(空心圆心,Obs)的比较

    Figure  5.  Comparison between the values simulated by Noah-LSM (dashed line) and by Noah-MP (solid line) and the observed values (circles, Obs) of (a) sensible heat fluxes (H) and (b) latent heat fluxes (λE) for the cropland on 20 and 24 August, 2012

    图  6  图5,但为农村区域

    Figure  6.  Same as Fig. 5, but for the rural area

    图  7  2012年8月20日和2012年8月24日Noah-LSM(虚线)和Noah-MP(实线)估计的(a)净辐射、(b)土壤热通量、(c)10 cm深土壤温度和(d)5 cm土壤湿度与观测值(空心圆)的比较

    Figure  7.  (a) Net radiation, (b) soil heat flux, (c) soil temperature at 10-cm depth, and (d) soil moisture at 5-cm depth estimated by Noah-LSM (dash-line) and Noah-MP (solid-line) compared with the measured values (circles) on 20 and 24 August 2012

    图  8  2012年8月24日AI和2012年8月20日BI中14:00~14:30 30分钟平均(a)位温和(b)水汽混合比廓线

    Figure  8.  (a) Potential temperature and (b) water vapor mixing profiles averaged over 30 min between 1400 LT‒1430 LT in AI and BI on 20 and 24 August, 2012.

    图  9  2012年8月24日AI和2012年8月20日BI庄稼地中14:00~14:30时间平均的(a)垂直感热通量和(b)垂直潜热通量廓线

    Figure  9.  Profile of (a) vertical sensible heat flux and (b) vertical latent heat fluxtime averaged between 1400 LT‒1430 LT in AI on 24 August 2012 and BI on 20 August 2012 over the cropland.

    图  10  2012年8月24日AI(左列)和2012年8月20日BI(中间列)中10 m(第四行)、100 m(第三行)、200 m(第二行)和500 m(第一行)高度14:00~14:30 30分钟平均感热通量模态(填色)及其对应的小波能量谱(右列)

    Figure  10.  Patterns of sensible heat flux averaged (shaded) over 30 min between 1400 LT‒1430 LT in AI (left column) on 24 August 2012 and BI (middle column) on 20 August 2012 at 10 m (bottom line), 100 m (third line), 200 m (second line), and 500 m (top line), corresponding wavelet energy spectra (right column)

    图  11  图10,但为潜热通量

    Figure  11.  Same as for Fig. 10, but for the latent heat flux

    图  12  2012年8月(a、b、e)24日AI和(c、d、f)20日BI中瞬时垂直速度及其14:00~14:30期间(b、d)30分钟平均的垂直速度,以及(e、f)它们的小波能量谱分析

    Figure  12.  Instantaneous vertical velocity (a, b, e) AI on 24 August and (c, d, f) BI on 20 August 2012 and (b, d) 30-min average vertical velocity AI and BI between 1400 LT and 1430 LT, and (e, f) their wavelet spectrum analysis, respectively

    图  13  (a)2012年8月24日AI和(b)2012年8月20日BI 中感热通量空间滞后相关系数随高度的变化

    Figure  13.  Correlation coefficients of sensible heat flux spatial lag for (a) AI on 24 August 2012 and (b) BI on 20 August 2012 depending on the height

    图  14  图13,但是为潜热通量

    Figure  14.  Same as for Fig. 13, but for the latent heat flux

    表  1  AI和BI个例的初始土壤湿度值

    Table  1.   Initial soil moisture value of AI and BI

    土壤层初始土壤湿度值/cm3 cm−3
    AIBI
    C/GC/WU/BC/GC/WU/B
    0.1 m0.380.290.150.270.210.15
    0.3 m0.390.270.150.270.210.15
    0.6 m0.410.260.090.350.220.09
    1 m0.420.230.050.390.220.05
    注:C/G代表庄稼地/草地,C/W代表庄稼地/林地,U/B代表城市/建筑用地,下同
    下载: 导出CSV

    表  2  AI和BI个例的初始土壤温度值

    Table  2.   Initial soil temperature value of AI and BI

    土壤层初始土壤温度值/K
    AIBI
    C/GC/WU/BC/GC/WU/B
    0.1 m292.1293.7296.6292.3294.3296.8
    0.3 m292.1294.5297.4292.8295.3297.2
    0.6 m291.9293.6296.7292.4293.8296.4
    1 m291.6293.3295.2292.3293.2295.5
    下载: 导出CSV

    表  3  AI和BI中Noah-LSM和Noah-MP估计的感热通量和潜热通量与观测值的RMSE

    Table  3.   Comparison of RMSE of sensible heat flux and latent heat flux estimated by Noah-LSM and Noah-MP with observations in AI and BI

    RMSE(AI)/W m−2 RMSE(BI)/W m−2
    CLRLCLRL
    Noah-LSMH62.367.965.663.6
    λE113.633.8122.432.4
    Noah-MPH13.432.414.836.9
    λE41.825.143.921.8
    注:CL代表庄稼地,RL代表村庄地,下同
    下载: 导出CSV

    表  4  AI和BI中Noah-MP中感热通量和潜热通量RMSE改进百分比(PRI)

    Table  4.   Percentage RMSE improvement (PRI) estimated by Noah-MP for sensible heat flux and latent heat flux in AI and BI

    PRI(AI) PRI(BI)
    CLRLCLRL
    H78.5%52.3%50.8%42.0%
    λE63.2%25.7%64.1%32.7%
    下载: 导出CSV
  • [1] Ament F, Simmer C. 2006. Improved representation of land-surface heterogeneity in a non-hydrostatic numerical weather prediction model [J]. Bound.-Layer Meteor., 121(1): 153−174. doi: 10.1007/s10546-006-9066-4
    [2] Bertoldi G, Kustas W P, Albertson J D. 2008. Estimating spatial variability in atmospheric properties over remotely sensed land surface conditions [J]. J. Appl. Meteor. Climatol., 47(8): 2147−2165. doi: 10.1175/2007JAMC1828.1
    [3] Cao B J, Zhang S W, Li D Q, et al. 2018. Effect of mesoscale land use change on characteristics of convective boundary layer: Semi-idealized large eddy simulations over Northwest China [J]. J. Meteor. Res., 32(3): 421−432. doi: 10.1007/s13351-018-7185-8
    [4] Chen F, Janjić Z, Mitchell K. 1997. Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP Mesoscale Eta model [J]. Bound.-Layer Meteor., 85(3): 391−421. doi: 10.1023/a:1000531001463
    [5] Chu P C, Lu S H, Chen Y C. 2005. A numerical modeling study on desert oasis self-supporting mechanisms [J]. J. Hydrol., 312(1-4): 256−276. doi: 10.1016/j.jhydrol.2005.02.043
    [6] Deardorff J W. 1980. Stratocumulus-capped mixed layers derived from a three-dimensional model [J]. Bound.-Layer Meteor., 18(4): 495−527. doi: 10.1007/bf00119502
    [7] Dirmeyer P A, Wang Z Y, Mbuh M J, et al. 2014. Intensified land surface control on boundary layer growth in a changing climate [J]. Geophys. Res. Lett., 41(4): 1290−1294. doi: 10.1002/2013GL058826
    [8] Huang H Y, Margulis S A. 2009. On the impact of surface heterogeneity on a realistic convective boundary layer [J]. Water Resour. Res., 45(4): W04425. doi: 10.1029/2008WR007175
    [9] 黄倩, 王蓉, 田文寿, 等. 2014. 风切变对边界层对流影响的大涡模拟研究 [J]. 气象学报, 72(1): 100−115. doi:  10.11676/qxxb2014.007

    Huang Qian, Wang Rong, Tian Wenshou, et al. 2014. Study of the impacts of wind shear on boundary layer convection based on the large eddy simulation [J]. Acta Meteor. Sinica (in Chinese), 72(1): 100−115. doi: 10.11676/qxxb2014.007
    [10] Kang S L, Lenschow D H. 2014. Temporal evolution of low-level winds induced by two-dimensional mesoscale surface heat-flux heterogeneity [J]. Bound.-Layer Meteor., 151(3): 501−529. doi: 10.1007/s10546-014-9912-8
    [11] Kang S L, Ryu J H. 2016. Response of moist convection to multi-scale surface flux heterogeneity [J]. Quart. J. Roy. Meteor. Soc., 142(698): 2180−2193. doi: 10.1002/qj.2811
    [12] Klemp J B, Dudhia J, Hassiotis A D. 2008. An upper gravity-wave absorbing layer for NWP applications [J]. Mon. Wea. Rev., 136(10): 3987−4004. doi: 10.1175/2008MWR2596.1
    [13] LeMone M A, Chen F, Alfieri J G, et al. 2007. Influence of Land Cover and Soil Moisture on the Horizontal Distribution of Sensible and Latent Heat Fluxes in Southeast Kansas during IHOP_2002 and CASES-97 [J]. J. Hydrometeor., 8(1): 68−87. doi: 10.1175/JHM554.1
    [14] Li X, Cheng G D, Liu S M, et al. 2013. Heihe watershed allied telemetry experimental research (HiWATER): Scientific objectives and experimental design [J]. Bull. Amer. Meteor. Soc., 94(8): 1145−1160. doi: 10.1175/bams-d-12-00154.1
    [15] Liu S F, Shao Y P, Kunoth A, et al. 2017. Impact of surface-heterogeneity on atmosphere and land-surface interactions [J]. Environ. Modell. Softw., 88: 35−47. doi: 10.1016/j.envsoft.2016.11.006
    [16] Liu S M, Xu Z W, Wang W Z, et al. 2011. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem [J]. Hydrol. Earth Syst. Sci., 15(4): 1291−1306. doi: 10.5194/hess-15-1291-2011
    [17] Lohou F, Druilhet A, Campistron B. 1998. Spatial and temporal characteristics of horizontal rolls and cells in the atmospheric boundary layer based on radar and in situ observations [J]. Bound.-Layer Meteor., 89(3): 407−444. doi: 10.1023/a:1001791408470
    [18] Lohou F, Druilhet A, Campistron B, et al. 2000. Numerical study of the impact of coherent structures on vertical transfers in the atmospheric boundary layer [J]. Bound.-Layer Meteor., 97(3): 361−383. doi: 10.1023/a:1002641728075
    [19] Maronga B, Raasch S. 2013. Large-eddy simulations of surface heterogeneity effects on the convective boundary layer during the LITFASS-2003 experiment [J]. Bound.-Layer Meteor., 146(1): 17−44. doi: 10.1007/s10546-012-9748-z
    [20] Meng X, Lu S, Gao Y, et al. 2015. Simulated effects of soil moisture on oasis self-maintenance in a surrounding desert environment in Northwest China [J]. Int. J. Climatol., 35(14): 4116−4125. doi: 10.1002/joc.4271
    [21] Moeng C H, Sullivan P P, Khairoutdinov M F, et al. 2010. A mixed scheme for subgrid-scale fluxes in cloud-resolving models [J]. J. Atmos. Sci., 67(11): 3692−3705. doi: 10.1175/2010JAS3565.1
    [22] Niu G Y, Yang Z L, Mitchell K E, et al. 2011. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements [J]. J. Geophys. Res., 116(D12): D12109. doi: 10.1029/2010JD015139
    [23] Patton E G, Sullivan P P, Moeng C H. 2005. The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface [J]. J. Atmos. Sci., 62(7): 2078−2097. doi: 10.1175/JAS3465.1
    [24] Robinson K S. 1991. Coherent motions in the turbulent boundary layer [J]. Annual Review of Fluid Mechanics, 23: 601−639. doi: 10.1146/annurev.fl.23.010191.003125
    [25] Shao Y P, Liu S F, Schween J H, et al. 2013. Large-eddy atmosphere-land-surface modelling over heterogeneous surfaces: Model development and comparison with measurements [J]. Bound.-Layer Meteor., 148(2): 333−356. doi: 10.1007/s10546-013-9823-0
    [26] Süring M, Raasch S. 2013. Heterogeneity-induced heat-flux patterns in the convective boundary layer: Can they be detected from observations and is there a blending height?—A large-eddy simulation study for the LITFASS-2003 experiment [J]. Bound.-Layer Meteor., 148(2): 309−331. doi: 10.1007/s10546-013-9822-1
    [27] Vereecken H, Pachepsky Y, Simmer C, et al. 2016. On the role of patterns in understanding the functioning of soil-vegetation-atmosphere systems [J]. J. Hydrol., 542: 63−86. doi: 10.1016/j.jhydrol.2016.08.053
    [28] 王介民, 王维真, 刘绍民, 等. 2009. 近地层能量平衡闭合问题——综述及个例分析 [J]. 地球科学进展, 24(7): 705−713. doi:  10.3321/j.issn:1001-8166.2009.07.003

    Wang Jiemin, Wang Weizhen, Liu Shaomin, et al. 2009. The problems of surface energy balance closure - An overview and case study [J]. Adv. Earth Sci. (in Chinese), 24(7): 705−713. doi: 10.3321/j.issn:1001-8166.2009.07.003
    [29] 王蓉, 黄倩, 田文寿, 等. 2015. 边界层对流对示踪物抬升和传输影响的大涡模拟研究 [J]. 大气科学, 39(4): 731−746. doi:  10.3878/j.issn.1006-9895.1502.14155

    Wang Rong, Huang Qian, Tian Wenshou, et al. 2015. Study of a large eddy simulation of the effects of boundary layer convection tracer uplift and transmission [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(4): 731−746. doi: 10.3878/j.issn.1006-9895.1502.14155
    [30] Xu, Z. W., Liu, S. M., Li, X., Shi, S. J., Wang, J. M., Zhu, Z. L., Xu, T. R., Wang, W. Z. and Ma, M. G 2013. Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE [J]. J. Geophys. Res., 118(13): 140−157. doi: 10.1002/2013JD020260
    [31] Zhang S W, Cao B J, Zhang W D, et al. 2016. A variational method for estimating surface turbulent heat fluxes with a consideration of energy storage [J]. J. Hydrometeor., 17(10): 2575−2590. doi: 10.1175/JHM-D-15-0193.1
  • [1] 向杰勋, 陈桂兴, 姜平, 吴乃庚, 温之平.  冷空气强风在大型城市中的精细结构和形成机制, 大气科学. doi: 10.3878/j.issn.1006-9895.1805.18140
    [2] 刘梦娟, 张旭, 陈葆德.  边界层参数化方案在“灰色区域”尺度下的适用性评估, 大气科学. doi: 10.3878/j.issn.1006-9895.1704.16269
    [3] 王蓉, 黄倩, 田文寿, 张强, 张健恺, 桑文军.  边界层对流对示踪物抬升和传输影响的大涡模拟研究, 大气科学. doi: 10.3878/j.issn.1006-9895.1502.14155
    [4] 刘磊, 胡非, 程雪玲.  夜间稳定边界层中间歇性湍流热通量的提取及其谱特征, 大气科学. doi: 10.3878/j.issn.1006-9895.2012.12065
    [5] 王少影, 张宇, 吕世华, 等.  应用通量方差法估算戈壁绿洲下垫面湍流通量的研究, 大气科学. doi: 10.3878/j.issn.1006-9895.2010.06.14
    [6] 吴春强, 周天军, 宇如聪, 等.  热通量和风应力影响北太平洋SST年际和年代际变率的数值模拟, 大气科学. doi: 10.3878/j.issn.1006-9895.2009.02.06
    [7] 郑建秋, 任保华, 李根.  北太平洋海气界面湍流热通量的年际变化, 大气科学. doi: 10.3878/j.issn.1006-9895.2009.05.20
    [8] 张宁, 蒋维楣.  建筑物对大气污染物扩散影响的大涡模拟, 大气科学. doi: 10.3878/j.issn.1006-9895.2006.02.04
    [9] 陈家宜, 范邵华, 赵传峰, 肖雪, 蔡旭辉, 刘辉志.  涡旋相关法测定湍流通量偏低的研究, 大气科学. doi: 10.3878/j.issn.1006-9895.2006.03.06
    [10] 刘树华, 胡予, 胡非, 梁福明, 王建华, 刘和平.  绿洲效应的模拟及内外因子的敏感性实验, 大气科学. doi: 10.3878/j.issn.1006-9895.2005.06.15
    [11] 蔡旭晖, 陈家宜.  非均匀对流边界层的地转强迫流动和动量输送, 大气科学. doi: 10.3878/j.issn.1006-9895.2003.03.08
    [12] 苗世光, 蒋维楣, 李昕, 刘衡.  对流边界层大涡模式的改进及对夹卷速度的研究, 大气科学. doi: 10.3878/j.issn.1006-9895.2001.01.03
    [13] 蔡旭晖, 陈家宜.  水平非均匀对流边界层热量平衡和平流输送作用的大涡模拟, 大气科学. doi: 10.3878/j.issn.1006-9895.2000.01.10
    [14] 潘林林, 陈家宜.  绿洲夜间“冷岛效应”的模拟研究, 大气科学. doi: 10.3878/j.issn.1006-9895.1997.01.05
    [15] 牛国跃, 洪钟祥, 孙菽芬.  沙漠绿洲非均匀分布引起的中尺度通量的数值模拟, 大气科学. doi: 10.3878/j.issn.1006-9895.1997.04.01
    [16] 蔡旭晖, 陈家宜.  对流边界层中泡状结构的大涡模拟研究, 大气科学. doi: 10.3878/j.issn.1006-9895.1997.02.11
    [17] 蔡旭晖, 陈家宜.  一个对流边界层大涡模式的建立与调试, 大气科学. doi: 10.3878/j.issn.1006-9895.1995.04.04
    [18] 苗曼倩, 季劲钧.  荒漠绿洲边界层结构的数值模拟, 大气科学. doi: 10.3878/j.issn.1006-9895.1993.01.10
    [19] 苏从先, 胡隐樵, 张永丰, 等.  河西地区绿洲的小气候特征和"冷岛效应", 大气科学. doi: 10.3878/j.issn.1006-9895.1987.04.07
    [20] 李兴生, 卞新棣, 钟世远.  近地面层中湍流热通量和长波辐射通量相互作用的数值研究, 大气科学. doi: 10.3878/j.issn.1006-9895.1985.04.02
  • 加载中
图(14) / 表ll (4)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  21
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-16
  • 网络出版日期:  2020-04-27
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回