Observational Analysis of the Influence of Aerosol Radiation Effect on Planetary Boundary Layer Structure and Entrainment Characteristics
-
摘要: 2017年12月22日至2018年1月18日利用无人机携带温、湿和颗粒物浓度探测仪对南京地区灰霾污染条件下大气边界层垂直结构开展加密观测。通过比较不同灰霾污染条件下温度、湿度和PM2.5(直径小于2.5微米的颗粒物)浓度的垂直结构差异,结合地面热通量、2米空气温度、相对湿度、风速、风向及主要大气污染物(如臭氧和PM2.5)浓度,定量评估了气溶胶辐射效应对边界层和夹卷过程的影响。分析表明,灰霾或气溶胶削弱到达地表太阳辐射,减小地表感热通量,延迟边界层发展,增加近地层大气稳定度,降低边界层高度,并加重灰霾污染。灰霾污染物在混合层顶处累积,导致PM2.5浓度最大变化出现在边界层顶部而不是近地层。气溶胶辐射效应对夹卷特征及其特征参数有重要影响。灰霾浓度升高时,夹卷区厚度增加;无量纲化夹卷速度随对流理查逊数的变化不再符合负1次方幂函数关系,与大涡模拟结果一致。本研究进一步指出,为提高重霾污染条件下天气和空气质量数值预报水平,必须考虑气溶胶辐射效应对边界层和夹卷参数化的影响。Abstract: An unmanned aerial vehicle (UAV) equipped with portable instruments was used to measure the vertical profiles of temperature, specific humidity, and particulate matter under different haze-polluted weather conditions in Nanjing from December 22, 2017 to January 18, 2018. The study aimed to assess the impact of the aerosol radiative effect on the atmospheric boundary layer (ABL) and the entrainment zone structures as well as their evolution on days with heavy haze pollution and other days with good air quality. The vertical profiles of the potential temperature, water vapor, and PM2.5 concentrations were obtained through detailed analyses of the UAV-measured vertical profiles and surface observations, including the surface heat flux, 2-m air temperature, specific humidity, wind speed, wind direction, and major air pollutants concentration (e.g., O3 and PM2.5) under different air pollution conditions. The results indicate that aerosols reduce the amount of surface-reaching solar radiation and the surface sensible heat flux, postpone the development of the ABL, enhance the atmospheric stability near the surface, decrease the ABL height, and exacerbate air pollution. The maximum concentrations of PM2.5 and the largest increase rate were observed at the top of the ABL rather than near the surface. Furthermore, the aerosol radiative effect was found to have an important impact on entrainment and its characteristic parameters. The depth of the entrainment zone increased with increasing surface PM2.5 concentrations. The entrainment rate normalized with convective velocity did not follow a negative?1 power function with the convective Richardson number under heavy haze or PM2.5 pollution conditions, which is consistent with the findings of large-eddy simulation studies. These results indicate that the aerosol radiative effect must be included in ABL and entrainment parameterization schemes to improve numerical predictions of weather and air quality under heavy pollution conditions.
-
图 1 PDR-1500无人机(PDR)与热电β射线颗粒物监测仪FH62C14(β-ray)观测的PM2.5浓度在不同相对湿度(RH)条件下比较(虚线为1∶1线)
Figure 1. A comparison of PM2.5 concentrations measured by PDR-1500 unmanned aerial vehicle (PDR) with a thermo beta ray particle monitor FH62C14 (β-ray) under different relative humidity (RH) conditions (the dotted line is the 1∶1 line)
图 2 2017年12月23日至2018年1月18日落桥试验站(32°30'N,118°37'E)观测的2 m温度、相对湿度(RH)、风速(WS)、风向(WD)及南京环监站(全市站点平均)臭氧、PM2.5浓度(C)时间序列
Figure 2. Time series of surface temperature, relative humidity (RH), wind speed (WS), wind direction (WD), O3, and PM2.5 concentration (C) observed at the Luoqiao Test Station (32°30'N, 118°37'E) and Nanjing environmental monitoring station (average of all sites in Nanjing) from December 23, 2017 to January 18, 2018
图 3 重霾日(2017年12月23日;左列)和干净日(2018年1月12日;右列)不同时次PM2.5浓度、位温和比湿垂直廓线比较
Figure 3. Comparison of the vertical profiles of PM2.5 concentration, potential temperature, and specific humidity on December 23, 2017 (Heavy haze day, left column) and January 12, 2018 (clear day, right column). BT means Beijing time
图 7 对数坐标系下无量纲化夹卷速度与对流理查逊数对应关系。填色代表PM2.5浓度,单位:μg m−3,实线为干净天时两者函数关系(Deardorff et al., 1980),即
${w_{\rm{e}}}/{w_*} = 0.25Ri_*^{ - 1}$ Figure 7. Correspondence between dimensionless entrainment rate and convective Richardson number in the logarithmic coordinate system. Colour filling represents PM2.5 concentration, units: μg m−3; the solid line is the function relationship on clean days (Deardorff et al., 1980),
${w_{\rm{e}}}/{w_*} = 0.25Ri_*^{ - 1}$ 表 1 大气边界层垂直探测所用仪器的主要技术指标
Table 1. Summary of key technical indicators of the instruments used for vertical detection of the atmospheric boundary layer
仪器名称 型号 探测要素 测量范围 探测精度 误差范围 小流量便携式气溶胶颗粒物检测仪 Thermo PDR-1500 PM2.5浓度 0~400 mg m−3 0.01 μg m−3 ±5%读数 温湿度传感器 sht75 温度 相对湿度 ‒40~123.8°C 0~100% 0.01°C 0.05% ±0.3°C ±1.8% 数字压力传感器 bmp085 大气压强 300~1100 hPa 0.03 hPa ±0.5 hPa 表 2 2017年12月23日与2018年1月12日气温(T)、地表PM2.5浓度(C)、地表感热通量(Hs)、边界层高度(PBLH)、夹卷厚度(△h)、摩擦速度(u*)、夹卷速度(we)、对流速度尺度(w*)的比较(表中所给值均为一天中最大值)
Table 2. A comparison of measured temperature (T), surface PM2.5 concentrations (C), surface sensible heat flux (Hs), planetary boundary layer height (PBLH), entrainment thickness (△h), friction velocity (u*), the winding speed (we), the convection speed scale (w*) between December 23, 2017 and January 12, 2018 (the values represent the maximum ones on each day)
T/°C C(PM2.5)/μg m−3 Hs/W m−2 PBLH/m △h/m u*/m s−1 we/m s−1 w*/m s−1 2017年12月23日 14.2 163.61 48.50 490 249 0.13 0.015 0.67 2018年1月12日 1.7 38.65 150.84 811 150 0.24 0.031 1.33 -
[1] Angevine W M, Grimsdell A W, McKeen S A. 1998. Entrainment results from the flatland boundary layer experiments [J]. J. Geophys. Res., 103(D12): 13689−13701. doi: 10.1029/98JD01150 [2] Atwater M A. 1971. The radiation budget for polluted layers of the urban environment [J]. J. Appl. Meteor., 10(2): 205−214. doi:10.1175/1520-0450(1971)010<0205:TRBFPL>2.0.CO;2 [3] Barbaro E, De Arellano J V G, Krol M C, et al. 2013. Impacts of aerosol shortwave radiation absorption on the dynamics of an idealized convective atmospheric boundary layer [J]. Bound.-Layer Meteor., 148(1): 31−49. doi: 10.1007/s10546-013-9800-7 [4] Barbaro E, De Arellano J V G, Ouwersloot H G, et al. 2014. Aerosols in the convective boundary layer: Shortwave radiation effects on the coupled land-atmosphere system [J]. J. Geophys. Res., 119(10): 5845−5863. doi: 10.1002/2013JD021237 [5] Boers R, Eloranta E W. 1986. Lidar measurements of the atmospheric entrainment zone and the potential temperature jump across the top of the mixed layer [J]. Bound.-Layer Meteor., 34(4): 357−375. doi: 10.1007/BF00120988 [6] 陈子赟, 孙鉴泞, 蒋维楣, 等. 2004. 对流边界层顶部夹卷速度参数化的分析研究 [J]. 南京大学学报(自然科学版), 40(6): 692−700. doi: 10.3321/j.issn:0469-5097.2004.06.005Chen Ziyun, Sun Jianning, Jiang Weimei, et al. 2004. Comparison of parameterizations of the entrainment rate at the top of the convective boundary layer [J]. Journal of Nanjing University (Natural Sciences) (in Chinese), 40(6): 692−700. doi: 10.3321/j.issn:0469-5097.2004.06.005 [7] Deardorff J W, Willis G E, Stockton B H. 1980. Laboratory studies of the entrainment zone of a convectively mixed layer [J]. J. Fluid Mech., 100(1): 41−64. doi: 10.1017/S0022112080001000 [8] Fedorovich E, Conzemius R, Mironov D. 2004. Convective entrainment into a shear-free, linearly stratified atmosphere: Bulk models reevaluated through large eddy [J]. J. Atmos. Sci., 61(3): 281−295. doi:10.1175/1520-0469(2004)061<0281:CEIASL>2.0.CO;2 [9] Foken T, Leuning R, Oncley S R, et al. 2012. Corrections and data quality control [M]//Aubinet M, Vesala T, Papale D. Eddy Covariance. Dordrecht: Springer, 85-131. doi: 10.3878/j.issn.1006-9585.2018.18057 [10] 贺园园, 胡非, 刘郁珏, 等. 2019. 北京地区一次PM2.5重污染过程的边界层特征分析 [J]. 气候与环境研究, 24(1): 61−72. doi: 10.3878/j.issn.1006-9585.2018.18057He Yuanyuan, Hu Fei, Liu Yujue, et al. 2019. Boundary layer characteristics during a heavy PM2.5 pollution process in Beijing [J]. Climatic and Environmental Research (in Chinese), 24(1): 61−72. doi: 10.3878/j.issn.1006-9585.2018.18057 [11] Huang J P, Lee X, Patton E G. 2008. A modelling study of flux imbalance and the influence of entrainment in the convective boundary layer [J]. Bound.-Layer Meteor., 127(2): 273−292. doi: 10.1007/s10546-007-9254-x [12] Huang J P, Lee X, Patton E G. 2009. Dissimilarity of scalar transport in the convective boundary layer in inhomogeneous landscapes [J]. Bound.-Layer Meteor., 130(3): 327−345. doi: 10.1007/s10546-009-9356-8 [13] Huang J P, Lee X, Patton E G. 2011. Entrainment and budgets of heat, water vapor, and carbon dioxide in a convective boundary layer driven by time-varying forcing [J]. J. Geophys. Res., 116(D6): D06308. doi: 10.1029/2010JD014938 [14] Huang J P, Zhou C H, Lee X, et al. 2013. The effects of rapid urbanization on the levels in tropospheric nitrogen dioxide and ozone over East China [J]. Atmos. Environ., 77: 558−567. doi: 10.1016/j.atmosenv.2013.05.030 [15] Jacobson M Z, Kaufman Y J. 2006. Wind reduction by aerosol particles [J]. Geophys. Res. Lett., 33(24): L24814. doi: 10.1029/2006GL027838 [16] 柯钊跃. 2011. 典型污染源或敏感点大气颗粒物的组分特征与健康暴露水平研究 [D]. 华南理工大学硕士学位论文, 24pp.Ke Zhaoyue. 2011. Research on compositional characteristics and health exposure levels of atmosphere particulate matter in typical pollution sources or sensitive spots [D]. M. S. thesis (in Chinese), South China University of Technology, 24pp. [17] Kim S W, Park S U, Moeng C H. 2003. Entrainment process in the convective boundary layer with varying wind shear [J]. Boundary Layer Meteorology, 108: 221−245. doi: 10.1023/A:1024170229293 [18] Lee X, Massman W J. 2011. A perspective on thirty years of the Webb, Pearman and Leuning density corrections [J]. Bound.-Layer Meteor., 139(1): 37−59. doi: 10.1007/s10546-010-9575-z [19] 李敏娜, 牛生杰, 张舒婷, 等. 2015. 南京雾霾天气个例湍流运动特征的对比研究 [J]. 气象学报, 73(3): 593−608. doi: 10.11676/qxxb2015.032Li Minna, Niu Shengjie, Zhang Shuting, et al. 2015. Comparative study of turbulent characteristics between the fog day and haze day in Nanjing [J]. Acta Meleorologica Sinica (in Chinese), 73(3): 593−608. doi: 10.11676/qxxb2015.032 [20] 李娟, 李跃清, 蒋兴文, 等. 2016. 青藏高原东南部复杂地形区不同天气状况下陆气能量交换特征分析 [J]. 大气科学, 40(4): 777−791. doi: 10.3878/j.issn.1006-9895.1509.15197Li Juan, Li Yueqing, Jiang Xingwen, et al. 2016. Characteristics of land-atmosphere energy exchanges over complex terrain area of Southeastern Tibetan Plateau under different synoptic conditions [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(4): 777−791. doi: 10.3878/j.issn.1006-9895.1509.15197 [21] 李德平, 程兴宏, 孙治安, 等. 2018. 北京不同区域气溶胶辐射效应 [J]. 应用气象学报, 29(5): 609−618. doi: 10.11898/1001-7313.20180509Li Deping, Cheng Xinghong, Sun Zhian, et al. 2018. Radiative effects of aerosols in different areas of Beijing [J]. J. Appl. Meteor. Sci. (in Chinese), 29(5): 609−618. doi: 10.11898/1001-7313.20180509 [22] Liu C, Fedorovich E, Huang J P, et al. 2019. Impact of aerosol shortwave radiative heating on entrainment in the atmospheric convective boundary layer: A large-eddy simulation study [J]. J. Atmos. Sci., 76(3): 785−799. doi: 10.1175/JAS-D-18-0107.1 [23] Mallet M, Tulet P, Serça D, et al. 2009. Impact of dust aerosols on the radiative budget, surface heat fluxes, heating rate profiles and convective activity over West Africa during March 2006 [J]. Atmospheric Chemistry and Physics, 9(18): 7143−7160. doi: 10.5194/acp-9-7143-2009 [24] 苗世光, 蒋维楣, 李昕, 等. 2001. 对流边界层大涡模式的改进及对夹卷速度的研究 [J]. 大气科学, 25(1): 25−37. doi: 10.3878/j.issn.1006-9895.2001.01.03Miao Shiguang, Jiang Weimei, Li Xin, et al. 2001. Improvements of the large eddy simulation models and a study of the entrainment rate [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 25(1): 25−37. doi: 10.3878/j.issn.1006-9895.2001.01.03 [25] Shen L X, Zhao C F, Ma Z S, et al. 2019. Observed decrease of summer sea-land breeze in Shanghai from 1994 to 2014 and its association with urbanization [J]. Atmospheric Research, 227: 198−209. doi: 10.1016/j.atmosres.2019.05.007 [26] 盛裴轩, 毛节泰, 李建国, 等. 2013. 大气物理学 [M]. 2版. 北京: 北京大学出版社, 19-134.Sheng Peixuan, Mao Jietai, Li Jianguo, et al. 2013. Atmospheric Physics (in Chinese) [M]. 2nd ed. Beijing: Peking University Press, 19-134. [27] Sorbjan Z. 1996. Effects caused by varying the strength of the capping inversion based on a large eddy simulation model of the shear-free convective boundary layer [J]. J. Atmos. Sci., 53(14): 2015−2024. doi:10.1175/1520-0469(1996)053<2015:ECBVTS>2.0.CO;2 [28] Sullivan P P, Moeng C H, Stevens B, et al. 1998. Structure of the entrainment zone capping the convective atmospheric boundary layer [J]. J. Atmos. Sci., 55(19): 3042−3064. doi:10.1175/1520-0469(1998)055<3042:SOTEZC>2.0.CO;2 [29] 田文寿, 陈长和, 黄建国, 等. 1997. 兰州冬季气溶胶的短波加热效应及其对混合层发展的影响 [J]. 应用气象学报, 8(3): 292−301.Tian Wenshou, Chen Changhe, Huang Jianguo, et al. 1997. The solar heating effect of the winter aerosol in Lanzhou and its influence on evolution of the mixed layer [J]. Quarterly Journal of Applied Meteorlolgy (in Chinese), 8(3): 292−301. [30] Van Zanten M C, Duynkerke P G, Cuijpers J W M. 1999. Entrainment parameterization in convective boundary layers [J]. J. Atmos. Sci., 56(6): 813−828. doi:10.1175/1520-0469(1999)056<0813:EPICBL>2.0.CO;2 [31] Villa T, Salimi F, Morton K, et al. 2016. Development and validation of a UAV based system for air pollution measurements [J]. Sensors, 16(12): 2202. doi: 10.3390/s16122202 [32] Wang X Y, Wang K C. 2014. Estimation of atmospheric mixing layer height from radiosonde data [J]. Atmospheric Measurement Techniques, 7(6): 1701−1709. doi: 10.5194/amt-7-1701-2014 [33] Webb E K, Pearman G I, Leuning R. 1980. Correction of flux measurements for density effects due to heat and water vapour transfer [J]. Quart. J. Roy. Meteor. Soc., 106(447): 85−100. doi: 10.1002/qj.49710644707 [34] Wilczak J M, Oncley S P, Stage S A. 2001. Sonic anemometer tilt correction algorithms [J]. Bound.-Layer Meteor., 99(1): 127−150. doi: 10.1023/A:1018966204465 [35] 吴兑. 2012. 近十年中国灰霾天气研究综述 [J]. 环境科学学报, 32(2): 257−269. doi: 10.13671/j.hjkxxb.2012.02.011Wu Dui. 2012. Hazy weather research in China in the last decade: A review [J]. Acta Scientiae Circumstantiae (in Chinese), 32(2): 257−269. doi: 10.13671/j.hjkxxb.2012.02.011 [36] 吴丹, 于亚鑫, 夏俊荣, 等. 2014. 我国灰霾污染的研究综述 [J]. 环境科学与技术, 37(S2): 295−304.Wu Dan, Yu Yaxin, Xia Junrong, et al. 2014. Hazy pollution research of China: A review [J]. Environ. Sci. Technol. (in Chinese), 37(S2): 295−304. [37] 徐强君, 孙鉴泞, 刘罡, 等. 2008. 夹卷层厚度定义对其参数化的影响 [J]. 南京大学学报(自然科学版), 44(2): 219−226. doi: 10.3321/j.issn:0469-5097.2008.02.015Xu Qiangjun, Sun Jianning, Liu Gang, et al. 2008. On the definition and parameterization of the entrainment zone depth at the top of convective boundary layer [J]. Journal of Nanjing University (Natural Sciences) (in Chinese), 44(2): 219−226. doi: 10.3321/j.issn:0469-5097.2008.02.015 [38] Yang X, Zhao C F, Guo J P, et al. 2016. Intensification of aerosol pollution associated with its feedback with surface solar radiation and winds in Beijing [J]. J. Geophys. Res., 121(8): 4093−4099. doi: 10.1002/2015JD024645 [39] 于超, 张蕾. 2019. 南京北郊大气能见度影响因子研究 [J]. 三峡生态环境监测, 4(1): 56−60. doi: 10.19478/j.cnki.2096-2347.2019.01.08Yu Chao, Zhang Lei. 2019. The influence factors of atmospheric visibility in Nanjing’s Northern Suburb [J]. Ecology and Environmental Monitoring of Three Gorges (in Chinese), 4(1): 56−60. doi: 10.19478/j.cnki.2096-2347.2019.01.08 [40] Yu H B, Liu S C, Dickinson R E. 2002. Radiative effects of aerosols on the evolution of the atmospheric boundary layer [J]. J. Geophys. Res., 107(D12): 4142. doi: 10.1029/2001JD000754 [41] Zhang K Y, Zhao C F, Fan H, et al. 2020. Toward understanding the differences of PM2.5 characteristics among five China urban cities [J]. Asia-Pacific Journal of Atmospheric Sciences, 56: 493−502. doi: 10.1007/s13143-019-00125-w [42] 张敏, 蔡子颖, 韩素芹, 等. 2018. 天津污染天气边界层温度层结变化特征及预报阈值确定 [J]. 环境科学学报, 38(6): 2270−2278. doi: 10.13671/j.hjkxxb.2018.0066Zhang Min, Cai Ziying, Han Suqin, et al. 2018. The research on threshold and regularity of temperature stratification in heavy pollution weather in Tianjin [J]. Acta Scientiae Circumstantiae (in Chinese), 38(6): 2270−2278. doi: 10.13671/j.hjkxxb.2018.0066 [43] 张晗宇, 温维, 程水源, 等. 2018. 京津冀区域典型重污染过程与反馈效应研究 [J]. 中国环境科学, 38(4): 1209−1220. doi: 10.19674/j.cnki.issn1000-6923.2018.0144Zhang Hanyu, Wen Wei, Cheng Shuiyuan, et al. 2018. Study on typical heavy pollution process and feedback effect in Beijing-Tianjin-Hebei region [J]. China Environmental Science (in Chinese), 38(4): 1209−1220. doi: 10.19674/j.cnki.issn1000-6923.2018.0144 [44] Zhao C F, Wang Y, Shi X Q, et al. 2019. Estimating the contribution of local primary emissions to particulate pollution using high-density station observations [J]. J. Geophys. Res., 124(3): 1648−1661. doi: 10.1029/2018jd028888 -