高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1521号台风“杜鹃”生成阶段中尺度对流系统和降水演变特征

王科 陈光华 吕欣宇 李兴良

王科, 陈光华, 吕欣宇, 等. 2021. 1521号台风“杜鹃”生成阶段中尺度对流系统和降水演变特征[J]. 大气科学, 45(1): 73−87 doi: 10.3878/j.issn.1006-9895.2001.19184
引用本文: 王科, 陈光华, 吕欣宇, 等. 2021. 1521号台风“杜鹃”生成阶段中尺度对流系统和降水演变特征[J]. 大气科学, 45(1): 73−87 doi: 10.3878/j.issn.1006-9895.2001.19184
WANG Ke, CHEN Guanghua, LÜ Xinyu, et al. 2021. Evolution Characteristics of Mesoscale Convective System during the Formation of Tropical Cyclone Dujuan (1521) [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(1): 73−87 doi: 10.3878/j.issn.1006-9895.2001.19184
Citation: WANG Ke, CHEN Guanghua, LÜ Xinyu, et al. 2021. Evolution Characteristics of Mesoscale Convective System during the Formation of Tropical Cyclone Dujuan (1521) [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(1): 73−87 doi: 10.3878/j.issn.1006-9895.2001.19184

1521号台风“杜鹃”生成阶段中尺度对流系统和降水演变特征

doi: 10.3878/j.issn.1006-9895.2001.19184
基金项目: 国家自然科学基金项目41775063,国家自然科学基金项目41975071,天津市自然科学基金19JCYBJC23700,天津市气象局博士基金项目201745bsjj05
详细信息
    作者简介:

    王科,男,1991年出生,博士,主要从事热带气旋生成阶段的中尺度过程研究,E-mail: wangke@mail.iap.ac.cn

    通讯作者:

    陈光华,E-mail: cgh@mail.iap.ac.cn

  • 中图分类号: P444

Evolution Characteristics of Mesoscale Convective System during the Formation of Tropical Cyclone Dujuan (1521)

Funds: National Natural Science Foundation of China (Grant 41775063), National Natural Science Foundation of China (Grant 41975071), Natural Science Foundation of Tianjin (Grant 19JCYBJC23700), Doctoral Foundation of Tianjin Meteorological Service (Grant 201745bsjj05)
  • 摘要: 在热带气旋的生成过程中,从热带扰动向热带低压增强的过程研究较少,而这一过程必定伴随着中尺度对流系统(MCS)的生成、合并和发展。本文利用FNL分析资料和高分辨率模式对1521号台风“杜鹃”生成前3天进行数值模拟,着重探讨了“杜鹃”生成过程中MCS的发展演变特征。在“杜鹃”生成过程中,对流层上部槽(TUTT)位置偏东,“杜鹃”主要从季风涡旋(MG)的东南侧边缘向西北方向移动,因此,减弱的大尺度垂直风切和MG东南侧的低层辐合都为“杜鹃”的生成提供了有利的动力条件。在“杜鹃”生成前期阶段,新生成更多的MCS有利于在热带扰动阶段“杜鹃”的增强;“杜鹃”生成的中后期阶段,对流爆发,MCS发生合并使得MCS个数减少,MCS结构变得更加紧凑,面积最大的MCS逐渐向热带扰动中心区域收缩,“杜鹃”生成速度加快。对比MCS中的层云降水和对流云降水的特征发现,MCS中层云降水覆盖面积更大;对流云降水的降雨率比层云的降雨率更大,同时变化幅度更明显。层云降水百分比的增加与“杜鹃”增强的过程关系密切,但对流云降水的降雨率增加有利于MCS增强,层云和对流云的共同作用促进了“杜鹃”生成。
  • 图  1  WRF模式三重嵌套的模拟区域。黑色实线代表“杜鹃”移动路径(JTWC,2015年9月20日18:00至29日18:00),红色实线表示“杜鹃”生成前的移动路径(2015年9月17日18:00至20日18:00),圆点代表每日的00:00。图中00Z18表示9月18日00:00

    Figure  1.  The triple nested grid domain configuration of the WRF model. The black solid line is the track of Dujuan (JTWC, 1800 UTC 17 to 1800 UTC September 29, 2015), red solid line is the track before Dujuan formation (1800 UTC 17 to 1800 UTC September 20, 2015). The dots represent 0000 UTC of each day 0000 UTC, 00Z18 means 0000 UTC on September 18, 2015

    图  2  2015年9月(a)19日18:00、(b)20日18:00 FNL在分析资料的200 hPa无滤波风场(矢量,单位:m s−1)和500 hPa位势高度场(阴影,单位:gpm),黑色圆点表示该时刻“杜鹃”处于扰动状态的中心位置,粗黑线代表洋中槽TUTT槽线

    Figure  2.  The unfiltered 200-hPa wind field (vector, units: m s−1) and 500-hPa potential height field (shaded, units: gpm) at (a) 1800 UTC 19 September and (b) 1800 UTC 20 September, 2015 from FNL (Final Operational Global Analysis) data. Black dots are the central positions of Dujuan in the stage of tropical disturbance. Black lines represent the trough lines of TUTT (tropical upper tropospheric trough)

    图  3  2015年9月20日12:00(a)200 hPa、(b)850 hPa的FNL无滤波风场(矢量,单位:m s−1)和垂直风速切变(阴影,单位:m s−1),黑色圆点表示“杜鹃”的中心位置

    Figure  3.  The unfiltered wind fields (vector, units: m s−1) at 1200 UTC 20 September on (a) 200 hPa and (b) 850 hPa from FNL data, which are overlaid by the vertical wind shear (shaded, units: m s−1) between 200-hPa and 850-hPa levels. Black dots are the center locations of Dujuan

    图  4  2015年9月(a)17日18:00、(b)18日18:00、(c)19日18:00和(d)20日18:00的850 hPa 10天以上低通滤波风场(矢量,单位:m s−1)和850 hPa涡度场(阴影,单位:10−5 s−1),黑色圆点为“杜鹃”生成前的位置

    Figure  4.  The 10-day-low-pass filtered 850-hPa wind (vectors, units: m s−1) and 850-hPa vorticity fields (shaded, units: 10−5 s−1) at (a) 1800 UTC 17, (b) 1800 UTC 18, (c) 1800 UTC 19, and (d) 1800 UTC 20 September 2015. Black dots are the center positions before Dujuan formation

    图  5  模式模拟结果(蓝线)和FNL分析资料追踪(红线)的“杜鹃”路径,较大的圆点表示“杜鹃”中心每日00:00所在位置

    Figure  5.  The tracks of Dujuan traced by model results (blue solid line) and FNL data (red solid line). The larger dots indicate the center positions of Dujuan at 0000 UTC of each day

    图  6  2015年9月(a)18日09:00、(b)18日21:00和(c)20日09:00用FNL资料追踪的“杜鹃”中心位置(红色圆点),葵花8卫星的亮温产品(黑白阴影,单位:°C)和GPM卫星的近表面降水率产品(彩色阴影,单位:mm h−1)。(d‒f)与(a‒c)相同,但是为数值模拟结果。白色实线表示GPM卫星的轨道范围。红色实线为距离“杜鹃”中心半径500 km的范围

    Figure  6.  The center positions (red dots) of Dujuan traced by FNL data, the infrared brightness temperature (shaded by black and white, units: °C) from Himawari-8 satellite, and the near-surface precipitation rate (colorfully shaded, units: mm h−1) from GPM satellite at (a) 0900 UTC 18, (b) 2100 UTC 18, and (c) 0900 UTC 20 September 2015. (d), (e) and (f) are same as (a), (b) and (c) respectively, but for the numerical model results. White solid lines are the orbital boundaries of GPM swath, and the red circles indicate the radius of 500 km from Dujuan center

    图  7  2015年9月(a‒p)18日10:00至19日01:00距离“杜鹃”中心500 km范围内的MCS的空间分布。每个时次中不同的MCS用不同颜色表示,但不同时次相同颜色的MCS并不一定代表同一个MCS。黑色圆点为“杜鹃”中心位置

    Figure  7.  The spatial distribution of MCSs (Mesoscale Convective System) from (a‒p) 1000 UTC 18 to 0100 UTC 19 September 2015 within 500 km of Dujuan center. Different MCS are represented by different color in each figure. But MCSs with a same color in different figures don't necessarily point to a same MCS. Black dot indicates the center location of Dujuan

    图  8  2015年9月17日18:00至20日18:00所有MCS区域平均的(a)相对涡度(单位:10−5 s−1)和(b)动能(单位:J)的高度—时间演变

    Figure  8.  The areal averaged height–time evolution of (a) relative vorticity (units: 10−5 s−1) and (b) kinetic energy (units: J) of all MCSs from 1800 UTC 17 to 1800 UTC 20 September 2015

    图  9  2015年9月17日18:00至20日18:00逐小时(a)“杜鹃”中心附近10 m高度上方位角平均切向风最大值(Vmax,单位:m s−1)、(b)MCS总面积(单位:km2)、(c)MCS个数和(d)MCS的平均降雨率(单位:mm h−1)的演变

    Figure  9.  The temporal evolution of (a) the maximum of azimuthal averaged tangential wind speed at 10 m height (Vmax, units: m s−1) near the center of Dujuan, (b) the total areal coverage of MCSs (units: km2), (c) the total number of MCSs, and (d) the averaged precipitation rate of all MCSs (units: mm h−1) from 1800 UTC 17 to 1800 UTC 20 September 2015

    图  10  距离“杜鹃”中心500 km范围内,对流降水和层云降水格点分别占这两类降水总格点数的百分比。8833和8840代表GPM卫星的轨道号(图6ab),Con和Str分别表示对流降水和层云降水。红色柱状图为GPM 2ADPR产品,蓝色柱状图为利用WRF模拟结果在相应时刻GPM轨道范围内的分类结果

    Figure  10.  The percentage of the grid number of convective/stratiform precipitation to the total grid number of these two types of precipitation within 500 km of Dujuan center. 8833 and 8840 indicate the GPM swath number as shown in Fig. 6a and Fig. 6b, respectively. Con and Str indicate convective and stratiform precipitation, respectively. The red histograms represent the statistics from the GPM 2ADPR product, and the blue histograms are the classification results from WRF outputs within the same areal coverage of GPM swath at the same time

    图  11  所有MCS中层云降水(蓝色实线)和对流降水(红色实线)的格点数占这两类降水总格点数的百分比,以及层云降水(蓝色虚线)和对流降水(红色虚线)的降雨率(单位:mm h−1)随时间的演变。

    Figure  11.  The temporal evolution of the percentage of the grid number of stratiform (blue solid line) and convective (red solid line) precipitation to the total grid number of the precipitating pixels of these two precipitation types and the precipitation rate (units: mm h−1) of stratiform (blue dashed line) and convective (red dashed line) precipitation in all MCS

  • [1] Bister M, Emanuel K A. 1997. The genesis of hurricane Guillermo: TEXMEX analyses and a modeling study [J]. Mon. Wea. Rev., 125(10): 2662−2682. doi:10.1175/1520-0493(1997)125<2662:TGOHGT>2.0.CO;2
    [2] Charney J G, Eliassen A. 1964. On the growth of the hurricane depression [J]. J. Atmos. Sci., 21(1): 68−75. doi:10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2
    [3] Cheung K K W. 2004. Large-scale environmental parameters associated with tropical cyclone formations in the western North Pacific [J]. J. Climate, 17(3): 466−484. doi:10.1175/1520-0442(2004)017<0466:LEPAWT>2.0.CO;2
    [4] Cheung K K W, Elsberry R L. 2004. Characteristic fields associated with tropical cyclone formations [C]//Proceedings of the 26th Conference on Hurricanes and Tropical Meteorology. Miami, FL: Amer. Meteor. Soc., 2C.4.
    [5] Dickinson M, Molinari J. 2002. Mixed Rossby-gravity waves and western Pacific tropical cyclogenesis. Part I: Synoptic evolution [J]. J. Atmos. Sci., 59(14): 2183−2196. doi:10.1175/1520-0469(2002)059<2183:MRGWAW>2.0.CO;2
    [6] Emanuel K A. 1986. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance [J]. J. Atmos. Sci., 43(6): 585−605. doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2
    [7] 冯文, 黄伟健, 谭绮婷, 等. 2016. 一种基于多物理量阈值定义的热带气旋生成预报方法及在ECMWF全球模式中的应用验证 [J]. 热带气象学报, 32(6): 908−917. doi: 10.16032/j.issn.1004-4965.2016.06.012

    Feng Wen, Wong Weijian, Tan Qiting, et al. 2016. Tropical cyclone genesis forecasting based on thresholds of multiple physical parameters and verification of performance using ECMWF model [J]. Journal of Tropical Meteorology (in Chinese), 32(6): 908−917. doi: 10.16032/j.issn.1004-4965.2016.06.012
    [8] Frank W M, Roundy P E. 2006. The role of tropical waves in tropical cyclogenesis [J]. Mon. Wea. Rev., 134(9): 2397−2417. doi: 10.1175/MWR3204.1
    [9] Fritz C, Wang Z, Nesbitt S W, et al. 2016. Vertical structure and contribution of different types of precipitation during Atlantic tropical cyclone formation as revealed by TRMM PR [J]. Geophys. Res. Lett., 43(2): 894−901. doi: 10.1002/2015GL067122
    [10] Fu B, Peng M S, Li T, et al. 2012. Developing versus nondeveloping disturbances for tropical cyclone formation. Part Ⅱ: Western North Pacific [J]. Mon. Wea. Rev., 140(4): 1067−1080. doi: 10.1175/2011MWR3618.1
    [11] Gray W M. 1968. Global view of the origin of tropical disturbances and storms [J]. Mon. Wea. Rev., 96(10): 669−700. doi:10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2
    [12] Gray W M. 1998. The formation of tropical cyclones [J]. Meteor. Atmos. Phys., 67(1): 37−69. doi: 10.1007/BF01277501
    [13] Hendricks E A, Montgomery M T, Davis C A. 2004. The role of "Vortical" hot towers in the formation of tropical cyclone Diana (1984) [J]. J. Atmos. Sci., 61(11): 1209−1232. doi:10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2
    [14] Holland G J. 1995. Scale interaction in the Western Pacific Monsoon [J]. Meteor. Atmos. Phys., 56(1-2): 57−79. doi: 10.1007/BF01022521
    [15] Hong S Y, Lim J. 2006. The WRF single-moment 6-class microphysics scheme (WSM6) [J]. J. Korean Meteor. Soc., 42: 129−151.
    [16] Houze R A Jr. 1993. Cloud Dynamics [M]. New York: Academic Press, 573 pp.
    [17] Houze R A Jr. 1997. Stratiform precipitation in regions of convection: A meteorological paradox? [J]. Bull. Amer. Meteor. Soc., 78(10): 2179−2196. doi:10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2
    [18] Iacono M J, Delamere J S, Mlawer E, et al. 2008. Radiative forcing by longlived greenhouse gases: Calculations with the AER radiative transfer models [J]. J. Geophys. Res., 113: D13103. doi: 10.1029/2008JD009944
    [19] Kelley W E Jr, Mock D R. 1982. A diagnostic study of upper tropospheric cold lows over the western North Pacific [J]. Mon. Wea. Rev., 110(6): 471−480. doi:10.1175/1520-0493(1982)110<0471:ADSOUT>2.0.CO;2
    [20] Kieu C Q, Zhang D. 2008. Genesis of tropical storm Eugene (2005) from merging vortices associated with ITCZ breakdowns. Part I: Observational and modeling analyses [J]. J. Atmos. Sci., 65: 3419−3439. doi: 10.1175/2008JAS2605.1
    [21] Lander M A. 1994. Description of a monsoon gyre and its effects on the tropical cyclones in the western North Pacific during August 1991 [J]. Wea. Forecasting, 9(4): 640−654. doi:10.1175/1520-0434(1994)009<0640:DOAMGA>2.0.CO;2
    [22] Lee C S, Cheung K K W, Hui J S N, et al. 2008. Mesoscale features associated with tropical cyclone formations in the western North Pacific [J]. Mon. Wea. Rev., 136(6): 2006−2022. doi: 10.1175/2007MWR2267.1
    [23] 李宪之. 1983. 论台风 [M]. 北京: 气象出版社, 19–28, 100–112.

    Li Xianzhi. 1983. On Typhoon [M]. Beijing: China Meteorological Press, 19–28, 100–112.
    [24] Montgomery M T, Nicholls M E, Cram T A, et al. 2006. A Vortical hot tower route to tropical Cyclogenesis [J]. J. Atmos. Sci., 63(1): 355−386. doi: 10.1175/JAS3604.1
    [25] Nesbitt S W, Zipser E J, Cecil D J. 2000. A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations [J]. J. Climate, 13(23): 4087−4106. doi:10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2
    [26] Peng M S, Fu B, Li T, et al. 2012. Developing versus nondeveloping disturbances for tropical cyclone formation. Part I: North Atlantic [J]. Mon. Wea. Rev., 140(4): 1047−1066. doi: 10.1175/2011MWR3617.1
    [27] Ritchie E A, Holland G J. 1997. Scale interactions during the formation of typhoon Irving [J]. Mon. Wea. Rev., 125(7): 1377−1396. doi:10.1175/1520-0493(1997)125<1377:SIDTFO>2.0.CO;2
    [28] Ritchie E A, Holland G J. 1999. Large-scale patterns associated with tropical cyclogenesis in the western Pacific [J]. Mon. Wea. Rev., 127(9): 2027−2043. doi:10.1175/1520-0493(1999)127<2027:LSPAWT>2.0.CO;2
    [29] Sadler J C. 1978. Mid-season typhoon development and intensity changes and the tropical upper tropospheric trough [J]. Mon. Wea. Rev., 106(8): 1137−1152. doi:10.1175/1520-0493(1978)106<1137:MSTDAI>2.0.CO;2
    [30] Shin H H, Hong S, Dudhia J. 2012. Impacts of the lowest model level height on the performance of planetary boundary layer parameterizations [J]. Mon. Wea. Rev., 140: 664−682. doi: 10.1175/MWR-D-11-00027.1
    [31] Simpson J, Ritchie E, Holland G J, et al. 1997. Mesoscale interactions in tropical cyclone genesis [J]. Mon. Wea. Rev., 125(10): 2643−2661. doi:10.1175/1520-0493(1997)125<2643:MⅡTCG>2.0.CO;2
    [32] Tory K J, Montgomery M T, Davidson N E. 2006a. Prediction and diagnosis of tropical cyclone formation in an NWP system. Part I: The critical role of vortex enhancement in deep convection [J]. J. Atmos. Sci., 63(12): 3077−3090. doi: 10.1175/JAS3764.1
    [33] Tory K J, Montgomery M T, Davidson N E, et al. 2006b. Prediction and diagnosis of tropical cyclone formation in an NWP system. Part Ⅱ: A diagnosis of tropical cyclone Chris formation [J]. J. Atmos. Sci., 63(12): 3091−3113. doi: 10.1175/JAS3765.1
    [34] Tory K J, Frank W M. 2010. Tropical cyclone formation [M]//Chan J C L, Kepert J D. World Scientific Series on Asia−Pacific Weather and Climate: Volume 4: Global Perspectives on Tropical Cyclones. Singapore: World Scientific, 55–92. doi: 10.1142/9789814293488_0002
    [35] Trier S B, Davis C A. 2002. Influence of balanced motions on heavy precipitation within a long-lived convectively generated vortex [J]. Mon. Wea. Rev., 130(4): 877−899. doi:10.1175/1520-0493(2002)130<0877:IOBMOH>2.0.CO;2
    [36] Wang C, Wu L G. 2016. Interannual shift of the tropical upper-tropospheric trough and its influence on tropical cyclone formation over the western North Pacific [J]. J. Climate, 29(11): 4203−4211. doi: 10.1175/JCLI-D-15-0653.1
    [37] Webster P J, Chang H R. 1988. Equatorial energy accumulation and emanation regions: Impacts of a zonally varying basic state [J]. J. Atmos. Sci., 45(5): 803−829. doi:10.1175/1520-0469(1988)045<0803:EEAAER>2.0.CO;2
    [38] Wu L G, Zong H J, Liang J. 2013. Observational analysis of tropical cyclone formation associated with monsoon gyres [J]. J. Atmos. Sci., 70(4): 1023−1034. doi: 10.1175/JAS-D-12-0117.1
    [39] Zehr R M. 1992. Tropical cyclogenesis in the western North Pacific [R]. NOAA Tech. Rep. NESDIS 61.
    [40] Zhang, C., Y. Wang, and K. Hamilton 2011. Improved Representation of Boundary Layer Clouds over the Southeast Pacific in ARW-WRF Using a Modified Tiedtke Cumulus Parameterization Scheme [J]. Mon. Wea. Rev., 139: 3489−3513. doi: 10.1175/MWR-D-10-05091.1
    [41] 张庆红, 郭春蕊. 2008. 热带气旋生成机制的研究进展 [J]. 海洋学报, 30(4): 1−11. doi: 10.3321/j.issn:0253-4193.2008.04.001

    Zhang Qinghon, Guo Chunrui. 2008. Overview of the studies on tropical cyclone genesis [J]. Acta Oceanologica Sinica (in Chinese), 30(4): 1−11. doi: 10.3321/j.issn:0253-4193.2008.04.001
  • 加载中
图(11)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  12
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-06
  • 录用日期:  2020-01-03
  • 网络出版日期:  2020-04-27

目录

    /

    返回文章
    返回