高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BCC模式对北半球阻塞高压的模拟偏差评估及原因

张洁 董敏 吴统文 辛晓歌

张洁, 董敏, 吴统文, 等. 2021. BCC模式对北半球阻塞高压的模拟偏差评估及原因[J]. 大气科学, 45(1): 1−14 doi: 10.3878/j.issn.1006-9895.2001.19230
引用本文: 张洁, 董敏, 吴统文, 等. 2021. BCC模式对北半球阻塞高压的模拟偏差评估及原因[J]. 大气科学, 45(1): 1−14 doi: 10.3878/j.issn.1006-9895.2001.19230
ZHANG Jie, DONG Min, WU Tongwen, et al. 2021. Reproductions of Northern Hemisphere Blocking in BCC Models and Possible Reasons for the Biases [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(1): 1−14 doi: 10.3878/j.issn.1006-9895.2001.19230
Citation: ZHANG Jie, DONG Min, WU Tongwen, et al. 2021. Reproductions of Northern Hemisphere Blocking in BCC Models and Possible Reasons for the Biases [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(1): 1−14 doi: 10.3878/j.issn.1006-9895.2001.19230

BCC模式对北半球阻塞高压的模拟偏差评估及原因

doi: 10.3878/j.issn.1006-9895.2001.19230
基金项目: 国家重点研究发展计划2016YFA0602103、2018YFE0196000
详细信息
    作者简介:

    张洁,女,1983年出生,副研究员,主要从事气候变化的观测分析和数值模拟研究。E-mail: jiezhang@cma.gov.cn

    通讯作者:

    吴统文,E-mail: twwu@cma.gov.cn

  • 中图分类号: P448

Reproductions of Northern Hemisphere Blocking in BCC Models and Possible Reasons for the Biases

Funds: National Key Research and Development Program of China (Grants 2016YFA0602103, 2018YFE0196000)
  • 摘要: 基于NCEP/NCAR、日本气象厅的JRA55以及欧洲中期预报中心(ECMWF)最新发布的ERA5三套逐日再分析资料数据,考察国家气候中心中等分辨率(约110 km)的气候系统模式BCC-CSM2-MR和单独大气模式BCC-AGCM3-MR对北半球中高纬度阻塞高压(阻高)的模拟能力。再分析数据分析结果表明:“北大西洋—欧洲地区”以及“北太平洋中部地区”分别为北半球阻高发生的最高频及次高频区域;冬春季为阻高高发季节,夏秋季阻高频率减少至冬春季的一半左右;ERA5再分析资料中各个季节的阻高频率均高于另两套资料结果,尤其在北太平洋地区。模拟评估结果显示,单独大气模式BCC-AGCM3-MR对北半球中高纬度阻高发生频率、空间分布和季节变化特征均有较好的模拟能力,其主要偏差表现为冬春欧亚大陆特别是乌拉尔山地区阻高频率偏高,而北大西洋地区阻高频率偏低;春季北太平洋阻高频率偏低。这与模式北半球高纬度地区500 hPa位势高度场气候态偏差有关。BCC-CSM2-MR耦合模式的阻高模拟偏差总体与大气模式类似。但耦合模式中冬季欧亚大陆特别是乌拉尔山地区阻高频率减小、北太平洋春季阻高频率增大,模拟偏差减小。同时,耦合模式能够再现夏季北太平洋东西阻高频率双峰值特征。因此,海气耦合过程有助于改善对欧亚及北太平洋地区阻高频率模拟。阻高频率年际变率受到气候系统内部变率不确定性的较大影响,这也是制约阻高预测水平的重要因素。
  • 图  1  1998年6月14日500 hPa位势高度场(单位:dagpm)。黑色十字区为公式(1)、(2)和(3)成立的区域

    Figure  1.  500-hPa geopotential height (units: dagpm) on 14 June 1998. The black crosses indicate the geopotential height gradients meet the requirements of equations (1), (2), and (3)

    图  2  1979~2014年平均各经度阻高频率分布。黑色实线、长虚线和短虚线分别为ERA5、JRA55和NCEP/NCAR再分析资料的结果。红色长虚线、短虚线和长短虚线为BCC-AGCM3-MR大气模式三个AMIP样本的结果。蓝色长虚线为BCC-CSM2-MR耦合模式的结果

    Figure  2.  Annually averaged longitudinal distribution of blocking high frequency during the period 1979–2014. The black solid line, black long dashed line, and black short dashed line represent ERA5, JRA55, and NCEP/NCAR reanalysis datasets; the red long dashed line, red short dashed line, and red long–short dashed line indicate AMIP (Atmospheric Model Intercomparison Project) simulations using BCC-AGCM3-MR model; the blue line indicate historical simulation using BCC-CSM2-MR model

    图  3  图2,但为四个季节平均各经度阻高频率分布:(a)冬季(DJF);(b)春季(MAM);(c)夏季(JJA);(d)秋季(SON)

    Figure  3.  As in Fig. 2, but for seasonal distributions: (a) Winter (December–January–February, DJF); (b) spring (March–April–May, MAM); (c) summer (June–July–August, JJA); (d) autumn (September–October–November, SON)

    图  4  (a)冬季(DJF)、(b)春季(MAM)、(c)夏季(JJA)、(d)秋季(SON)BCC-AGCM3-MR模式模拟的500 hPa位势高度场相对于ERA5再分析资料的偏差(单位:gpm)。(e–h)同(a–d),但为BCC-CSM2-MR模式的模拟偏差

    Figure  4.  Biases (units: gpm) of 500-hPa geopotential height between BCC-AGCM3-MR model and ERA5 reanalysis dataset in (a) winter (DJF), (b) spring (MAM), (c) summer (JJA), and (d) autumn (SON); (e–h) as in (a–d), but for the biases between BCC-CSM2-MR model and ERA5 reanalysis dataset

    图  5  1979~2014年北半球季节平均阻高发生频率的经度—时间分布:(a)ERA5再分析资料;(b)BCC-AGCM3-MR大气模式AMIP试验第一个样本结果;(c)BCC-CSM2-MR气候系统模式历史试验(Historical)第一个样本结果

    Figure  5.  Distributions of the longitude–time for blocking frequency in each season from 1979 to 2014: (a) ERA5 reanalysis dataset; (b) first member in the AMIP simulation by BCC-AGCM3-MR model; (c) first member in the historical simulation by BCC-CSM2-MR model

    图  6  1979~2014年北半球两个阻高中心区季节平均阻高发生频率统计分布:(a–c)大西洋欧洲地区(20°W~40°E);(d–f)北太平洋中部地区(150°E~150°W)。方括号中的数字分别为阻高出现频率的中间值和变幅(最大频率与最小频率之差),长方形的上、下方短横线分别表示上10%频率阈值(上十分位数)、下10%频率阈值(下十分位数),长方形的上、下边界及中间横线分别为上三分之一(上三分位数)、下三分之一(下三分位数)频率阈值、中间值

    Figure  6.  Statistical distributions of seasonal blocking frequency for the two blocking centers in the Northern Hemisphere from 1979 to 2014: (a–c) “North Atlantic–West Europe” (20°W–40°E); (d–f) “Central North Pacific” (150°E–150°W). Numbers in square brackets represent the medians and amplitudes (maximum minus minimum) of seasonal blocking frequency, respectively; the short lines above and below the rectangles indicate upper interdecitile and lower interdectile, respectively; the upper and lower sides of the rectangles represent the upper and lower intertritiles, respectively; the lines within the rectangles represent the medians

    图  7  图6,但为1979~2014年乌拉尔山(45°E~75°E)、贝加尔湖(90°E~120°E)和鄂霍次克海(135°E~165°E)地区季节平均阻高发生频率的统计分布

    Figure  7.  As in Fig. 6, but for the seasonal blocking high frequency over the Ural Mountains (45°E–75°E), Lake Baikal (45°E–75°E), and Okhotsk Sea (135°E–165°E)

    表  1  国家气候中心大气模式BCC-AGCM3-MR和耦合模式BCC-CSM2-MR模拟的北半球1979~2014年各个季节平均及年平均阻高频率与三套再分析资料(ERA5、JRA55、NCEP/NCAR)结果间的均方根误差

    Table  1.   Root mean square errors of the seasonal and annual mean northern hemispheric blocking high frequencies for simulations using BCC models (BCC-AGCM3-MR, BCC-CSM2-MR) and the three reanalysis datasets (ERA5, JRA55, NCEP/NCAR) from 1979 to 2014

    模式 再分析资料 阻高频率均方根误差
    冬季 春季 夏季 秋季 全年
    BCC-AGCM3-MR ERA5 3.99% 3.42% 3.24% 1.81% 1.57%
    JRA55 4.83% 2.53% 2.15% 1.81% 1.40%
    NCEP/NCAR 4.75% 2.66% 2.20% 1.84% 1.37%
    BCC-CSM2-MR ERA5 2.61% 3.27% 2.46% 1.66% 1.19%
    JRA55 3.32% 3.21% 1.59% 1.84% 1.41%
    NCEP/NCAR 3.28% 3.20% 1.65% 1.81% 1.34%
    下载: 导出CSV
  • [1] Barriopedro D, Garcia-Herrera R, Lupo A R, et al. 2006. A climatology of Northern Hemisphere blocking [J]. J. Climate, 19(6): 1042−1063. doi: 10.1175/JCLI3678.1
    [2] Barriopedro D, Garcia-Herrera R, Trigo R M. 2010. Application of blocking diagnosis methods to General Circulation Models. Part I: A novel detection scheme [J]. Climate Dyn., 35(7–8): 1373−1391. doi: 10.1007/s00382-010-0767-5
    [3] Cash B A, Lee S. 2000. Dynamical processes of block evolution [J]. J. Atmos. Sci., 57(19): 3202−3218. doi:10.1175/1520-0469(2000)057<3202:DPOBE>2.0.CO;2
    [4] 陈汉耀. 1957. 1954年长江淮河流域洪水时期的环流特征 [J]. 气象学报, 28(1): 1−12. doi: 10.11676/qxxb1957.001

    Chen H Y. 1957. Features of the atmosphere circulation and its connection with flooding on the Yantgze and Huaihe River basin in 1954 [J]. Acta Meteor. Sinica (in Chinese), 28(1): 1−12. doi: 10.11676/qxxb1957.001
    [5] 丁一汇, 王遵娅, 宋亚芳, 等. 2008. 中国南方2008年1月罕见低温雨雪冰冻灾害发生的原因及其与气候变暖的关系 [J]. 气象学报, 66(5): 808−825. doi: 10.11676/qxxb2008.074

    Ding Y H, Wang Z Y, Song Y F, et al. 2008. Causes of the unprecedented freezing disaster in January 2008 and its possible association with the global warming [J]. Acta Meteor. Sinica (in Chinese), 66(5): 808−825. doi: 10.11676/qxxb2008.074
    [6] D’ Andrea F, Tibaldi S, Blackburn M, et al. 1998. Northern Hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988 [J]. Climate Dyn., 14(6): 385−407. doi: 10.1007/s003820050230
    [7] Dole R M. 1986. Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation: Structure [J]. Mon. Wea. Rev., 114(1): 178−207. doi:10.1175/1520-0493(1986)114<0178:PAOTEN>2.0.CO;2
    [8] Duan A M, Sui C, Wu G X. 2008. Simulation of local air–sea interaction in the great warm pool and its influence on Asian monsoon [J]. J. Geophys. Res., 113(D22): D22105. doi: 10.1029/2008JD010520
    [9] 高守亭, 朱文妹, 董敏. 1998. 大气低频变异中的波流相互作用 (阻塞形势) [J]. 气象学报, 56(6): 665−680. doi: 10.11676/qxxb1998.062

    Gao S T, Zhu W M, Dong M. 1998. On the wave flow interaction in the low frequency atmospheric variation: Blocking pattern [J]. Acta Meteor. Sinica (in Chinese), 56(6): 665−680. doi: 10.11676/qxxb1998.062
    [10] Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis [J]. Quarterly Journal of the Royal Meteorological Society, 146: 1999−2049. doi: 10.1002/qj.3803
    [11] Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-Year Reanalysis Project [J]. Bull. Amer. Meteor. Soc., 77: 437−472. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [12] Kan M Y, Huang A N, Zhao Y, et al. 2015. Evaluation of the summer precipitation over China simulated by BCC_CSM model with different horizontal resolutions during the recent half century [J]. J. Geophys. Res., 120(10): 4657−4670. doi: 10.1002/2015JD023131
    [13] Kobayashi S, Ota Y, Harada Y, et al. 2015. The JRA-55 reanalysis: General specifications and basic characteristics [J]. Journal of the Meteorological Society of Japan, 93(1): 5−48. doi: 10.2151/jmsj.2015-001
    [14] Lejenäs H, Økland H. 1983. Characteristics of Northern Hemisphere blocking as determined from a long time series of observational data [J]. Tellus A, 35(5): 350−362. doi: 10.3402/tellusa.v35i5.11446
    [15] 李崇银, 顾薇. 2010. 2008年1月乌拉尔阻塞高压异常活动的分析研究 [J]. 大气科学, 34(5): 865−874. doi: 10.3878/j.issn.1006-9895.2010.05.02

    Li C Y, Gu W. 2010. An analyzing study of the anomalous activity of blocking high over the ural mountains in January 2008 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34(5): 865−874. doi: 10.3878/j.issn.1006-9895.2010.05.02
    [16] 李峰, 丁一汇. 2004. 近30年夏季亚欧大陆中高纬度阻塞高压的统计特征 [J]. 气象学报, 62(3): 347−354. doi: 10.11676/qxxb2004.035

    Li F, Ding Y H. 2004. Statistical characteristic of atmospheric blocking in the Eurasia high-mid latitudes based on recent 30-year summers [J]. Acta Meteor. Sinica (in Chinese), 62(3): 347−354. doi: 10.11676/qxxb2004.035
    [17] 李艳, 金荣花, 王式功. 2010. 1950~2008年影响中国天气的关键区阻塞高压统计特征 [J]. 兰州大学学报 (自然科学版), 46(3): 47−55. doi: 10.13885/j.issn.0455-2059.2010.03.013

    Li Y, Jin R H, Wang S G. 2010. Statistical characteristics of blocking highs influencing the weather in China during 1950–2008 [J]. Journal of Lanzhou University (Natural Sciences) (in Chinese), 46(3): 47−55. doi: 10.13885/j.issn.0455-2059.2010.03.013
    [18] 林学椿, 张素琴. 2000. 1998年中国特大洪涝时期的环流特征 [J]. 地球物理学报, 43(5): 607−615. doi: 10.3321/j.issn:0001-5733.2000.05.004

    Lin X C, Zhang S Q. 2000. Characteristics of the circulation during the catastrophic flood period over China in 1998 [J]. Chinese J. Geophys. (in Chinese), 43(5): 607−615. doi: 10.3321/j.issn:0001-5733.2000.05.004
    [19] Liu X W, Wu T W, Yang S, et al. 2017. MJO prediction using the sub-seasonal to seasonal forecast model of Beijing Climate Center [J]. Climate Dyn., 48(9–10): 3283−3307. doi: 10.1007/s00382-016-3264-7
    [20] 陆日宇, 黄荣辉. 1996. 关于阻塞形势演变过程中波数域能量的诊断分析 [J]. 大气科学, 20(3): 269−278. doi: 10.3878/j.issn.1006-9895.1996.03.02

    Lu R Y, Huang R H. 1996. Energetics examination of the blocking episodes in the Northern Hemisphere [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 20(3): 269−278. doi: 10.3878/j.issn.1006-9895.1996.03.02
    [21] 罗德海. 1999. 大气中大尺度包络孤立子理论与阻塞环流 [M]. 北京: 气象出版社, 113pp.

    Luo D H. 1999. Envelope Rossby Solitons in the Large Scale Atmosphere and Blocking Circulations (in Chinese) [M]. Beijing: China Meteorological Press, 113pp.
    [22] Matsueda M. 2009. Blocking predictability in operational medium-range ensemble forecasts [J]. Sola, 5: 113−116. doi: 10.2151/sola.2009-029
    [23] Pelly J L, Hoskins B J. 2003. A new perspective on blocking [J]. J. Atmos. Sci., 60(5): 743−755. doi:10.1175/1520-0469(2003)060<0743:ANPOB>2.0.CO;2
    [24] Ren H L, Jin F F, Song L C, et al. 2017. Prediction of primary climate variability modes at the Beijing Climate Center [J]. J. Geophys. Res., 31(1): 204−223. doi: 10.1007/s13351-017-6097-3
    [25] Rex D F. 1950a. Blocking action in the middle troposphere and its effect upon regional climate. II: The climatology of blocking action [J]. Tellus, 2(4): 275−301. doi: 10.1111/j.2153-3490.1950.tb00339.x
    [26] Rex D F. 1950b. Blocking action in the middle troposphere and its effect upon regional climate. I. An aerological study of blocking action [J]. Tellus, 2(3): 196−211. doi: 10.1111/j.2153-3490.1950.tb00331.x
    [27] Stein O. 2000. The variability of Atlantic–European blocking as derived from long SLP time series [J]. Tellus A, 52(3): 225−236. doi: 10.3402/tellusa.v52i3.12263
    [28] 陶诗言. 1957. 阻塞形势破坏时期的东亚一次寒潮过程 [J]. 气象学报, 28(1): 63−74. doi: 10.11676/qxxb1957.005

    Tao S Y. 1957. A synoptic and aerological study on a cold wave in the Far East during the period of the break down of the blocking situation over Euroasia and Atlantic [J]. Acta Meteor. Sinica (in Chinese), 28(1): 63−74. doi: 10.11676/qxxb1957.005
    [29] 陶诗言, 卫婕. 2008. 2008年1月我国南方严重冰雪灾害过程分析 [J]. 气候与环境研究, 13(4): 337−350. doi: 10.3878/j.issn.1006-9585.2008.04.01

    Tao S Y, Wei J. 2008. Severe snow and freezing-rain in January 2008 in the southern China [J]. Climatic And Environmental Research (in Chinese), 13(4): 337−350. doi: 10.3878/j.issn.1006-9585.2008.04.01
    [30] Tibaldi S, Molteni F. 1990. On the operational predictability of blocking [J]. Tellus A, 42(3): 343−365. doi: 10.3402/tellusa.v42i3.11882
    [31] Treidl R A, Birch E C, Sajecki P. 1981. Blocking action in the Northern Hemisphere: A climatological study [J]. Atmosphere-Ocean, 19(1): 1−23. doi: 10.1080/07055900.1981.9649096
    [32] Tyrlis E, Hoskins B J. 2008a. Aspects of a Northern Hemisphere atmospheric blocking climatology [J]. J. Atmos. Sci., 65(5): 1638−1652. doi: 10.1175/2007JAS2337.1
    [33] Tyrlis E, Hoskins B J. 2008b. The morphology of Northern Hemisphere blocking [J]. J. Atmos. Sci., 65(5): 1653−1665. doi: 10.1175/2007JAS2338.1
    [34] Vial J, Osborn T J. 2012. Assessment of atmosphere–ocean general circulation model simulations of winter Northern Hemisphere atmospheric blocking [J]. Climate Dyn., 39(1–2): 95−112. doi: 10.1007/s00382-011-1177-z
    [35] Wang Q, Huang A N, Zhao Y, et al. 2016. Evaluation of the precipitation seasonal variation over eastern China simulated by BCC_CSM model with two horizontal resolutions [J]. J. Geophys. Res., 121(14): 8374−8389. doi: 10.1002/2016JD024959
    [36] White W B, Clark N E. 1975. On the development of blocking ridge activity over the central North Pacific [J]. J. Atmos. Sci., 32(3): 489−502. doi:10.1175/1520-0469(1975)032<0489:OTDOBR>2.0.CO;2
    [37] Wiedenmann J M, Lupo A R, Mokhov I I, et al. 2002. The climatology of blocking anticyclones for the Northern and Southern Hemispheres: Block intensity as a diagnostic [J]. J. Climate, 15(23): 3459−3473. doi:10.1175/1520-0442(2002)015<3459:TCOBAF>2.0.CO;2
    [38] 吴静, 刁一娜, 庄绪宗. 2015. CMIP5气候模式对北半球夏季阻塞的评估 [J]. 中国海洋大学学报, 45(2): 18−30. doi: 10.16441/j.cnki.hdxb.20130225

    Wu J, Diao Y N, Zhuang X Z. 2015. Assessments on simulation of summer Northern Hemisphere blocking in CMIP5 climate models [J]. Periodical of Ocean University of China (in Chinese), 45(2): 18−30. doi: 10.16441/j.cnki.hdxb.20130225
    [39] Wu T W, Yu R C, Zhang F, et al. 2010. The Beijing Climate Center atmospheric general circulation model: Description and its performance for the present-day climate [J]. Climate Dyn., 34(1): 123−147. doi: 10.1007/s00382-008-0487-2
    [40] Wu T W, Li W P, Ji J J, et al. 2013. Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century [J]. J. Geophys. Res., 118(10): 4326−4347. doi: 10.1002/jgrd.50320
    [41] Wu T W, Song L C, Li W P, et al. 2014. An overview of BCC climate system model development and application for climate change studies [J]. J. Meteor. Res., 28(1): 34−56. doi: 10.1007/s13351-014-3041-7
    [42] Wu T W, Lu Y X, Fang Y J, et al. 2019. The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6 [J]. Geoscientific Model Development, 12(4): 1573−1600. doi: 10.5194/gmd-12-1573-2019
    [43] 辛晓歌, 吴统文, 张洁, 等. 2019. BCC 模式及其开展的CMIP6试验介绍 [J]. 气候变化研究进展, 15(5): 533−539. doi: 10.12006/j.issn.1673-1719.2019.039

    Xin X G, Wu T W, Zhang J, et al. 2019. Introduction of BCC models and its participation in CMIP6 [J]. Climate Change Research (in Chinese), 15(5): 533−539. doi: 10.12006/j.issn.1673-1719.2019.039
    [44] 叶笃正, 陶诗言, 朱抱真. 1962. 北半球冬季阻塞形势的研究 [M]. 北京: 科学出版社, 135pp.

    Ye D Z, Tao S Y, Zhu B Z. 1962. Research on Northern Hemisphere Blocking (in Chinese) [M]. Beijing: Science Press, 135pp.
    [45] 叶培龙, 2015. CMIP5模式对欧亚阻塞高压模拟能力检验及阻高变化趋势预估 [D]. 兰州大学硕士学位论文, 63pp.

    Ye P L. 2015. Evaluation of CMIP5 models’ capacity in simulating the Eurasian blocking highs and projection of its change trend [D]. Mater Dissertation. Lanzhou University, 63pp.
    [46] 张庆云, 陶诗言. 1998. 亚洲中高纬度环流对东亚夏季降水的影响 [J]. 气象学报, 56(2): 199−211. doi: 10.11676/qxxb1998.019

    Zhang Q Y, Tao S Y. 1998. Influence of Asian mid-high latitude circulation on East Asian summer rainfall [J]. Acta Meteor. Sinica (in Chinese), 56(2): 199−211. doi: 10.11676/qxxb1998.019
    [47] Zhao S S, He W P. 2015. Evaluation of the performance of the Beijing Climate Centre Climate System Model 1.1 (m) to simulate precipitation across China based on long-range correlation characteristics [J]. J. Geophys. Res., 120(24): 12576−12588. doi: 10.1002/2015JD024059
    [48] 周晓平. 2016. 亚洲中纬度区域阻塞形势的统计研究 [J]. 气象学报, 75(1): 33−45. doi: 10.1016/j.dynatmoce.2016.05.002

    Zuo J Q, Ren H L, Wu J, et al. 2016. Subseasonal variability and predictability of the Arctic Oscillation/North Atlantic Oscillation in BCC_AGCM2.2 [J]. Dyn. Atmos. Oceans, 75(1): 33−45. doi: 10.1016/j.dynatmoce.2016.05.002
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  2
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-18
  • 录用日期:  2020-01-17
  • 网络出版日期:  2020-02-19

目录

    /

    返回文章
    返回