Numerical Simulation of Precipitation Processes during the Opening Ceremony of the Nanjing 2014 Youth Olympic Games
-
摘要: 为评估2014年南京青奥会开幕式日的人工催化消减雨作业效果,利用中尺度数值模式WRF对当日的云降水过程和催化作业开展数值模拟。本文系第一部分工作。首先对常用的八种云微物理方案的降水模拟效果进行评估,进一步选取Thompson和Milbrandt-Yau两个微物理方案对此次降水过程的云系结构和降水形成机制进行对比分析。模拟结果表明,采用Thompson和Milbrandt-Yau两个方案模拟的云系结构和降水形成的微物理机制是一致的。开幕式当天影响奥体场馆的降水由弱的积层混合云系产生,降水过程以冰相微物理过程为主。雪的融化是雨水的主要源项,Thompson方案中雪的融化对雨水的贡献率为72%,Milbrandt-Yau方案为60%,蒸发则是雨水的主要汇项,Thompson方案中蒸发对雨水的消耗率达94%,Milbrandt-Yau方案为95.6%。Abstract: To evaluate the effect of cloud seeding operation for rain suppression during the opening ceremony of the Nanjing 2014 Youth Olympics Games, the weather research and forecasting model was used to simulate the precipitation processes and the cloud seeding operation. The present work is the first part of the study. First, the effects of precipitation simulation using eight microphysics schemes were evaluated through comparison with the observation. Furthermore, we used Thompson and Milbrandt–Yau microphysics schemes to analyze the cloud structures and precipitation formation mechanisms. The results showed that the cloud structures and precipitation mechanisms simulated by the two microphysics schemes were consistent. The precipitation affecting the Nanjing Olympic Sports Center on the opening ceremony day was generated by the weak mixed convective–stratiform cloud system, and the precipitation processes were dominated by ice-phase microphysical processes. The melting of snow was the main source of rainwater, contributing 72% in the Thompson microphysics scheme and 60% in the Milbrandt–Yau microphysics scheme, and the evaporation was the main sink term, which consumed 94% of the rainwater in the Thompson microphysics scheme and 95.6% in the Milbrandt–Yau microphysics scheme.
-
图 3 南京站2014年8月16日00:00(第一行)和12:00(第二行)探空曲线:(a, c)层结曲线(实线为温度,虚线为露点,灰色粗实线为相对湿度);(b, d)环境风廓线(实线为u分量,正值代表西风;虚线为v分量,正值代表南风)
Figure 3. Sounding curves at 0000 UTC (first line) and 1200 UTC (second line) on August 16, 2014, at Nanjing station: (a, c) Stratification curve (temperature: solid line; dew point: dashed line; and relative humidity: gray thick solid line); (b, d) corresponding u (west wind, solid line) and v (south wind, dashed line) components of the horizontal wind
图 6 2014年8月16日05:00(e)卫星观测云场(填色表示云量,单位:%)与(a–d, f–i)不同微物理方案模拟云场(填色表示云量,单位:kg m−2)对比:(a)Eta;(b)Lin;(c)WSM6;(d)Goddard;(f)Thompson;(g)WDM6;(h)Milbrandt-Yau;(i)NSSL
Figure 6. Cloud fields simulated (shaded, units: kg m−2) with (a–d, f–i) different cloud microphysics schemes compared with (e) observations (shaded, units: %) at 0500 UTC on August 16, 2014: (a) Eta; (b) Lin; (c) WSM6; (d) Goddard; (f) Thompson; (g) WDM6; (h) Milbrandt–Yau; (i) NSSL
图 7 2014年8月16日05:00不同微物理方案模拟的组合雷达反射率与(e)观测雷达组合反射率(单位:dBZ)对比:(a)Eta;(b)Lin;(c)WSM6;(d)Goddard;(f)Thompson;(g)WDM6;(h)Milbrandt-Yau;(i)NSSL
Figure 7. Composite radar reflectivity factor (units: dBZ) simulated with different cloud microphysics schemes compared with (e) observations at 0500 UTC on August 16, 2014: (a) Eta; (b) Lin; (c) WSM6; (d) Goddard; (f) Thompson; (g) WDM6; (h) Milbrandt–Yau; (i) NSSL
图 8 2014年8月16日11:00(b–f)不同微物理方案模拟的组合雷达反射率与(a)观测组合雷达反射率(单位:dBZ)对比:(b)WSM6;(c)Thompson;(d)WDM6;(e)Milbrandt-Yau;(f)NSSL
Figure 8. Composite radar reflectivity factor (units: dBZ) simulated with different cloud microphysics schemes compared to (a) observations at 1100 UTC on August 16, 2014: (a) Observations; (b) WSM6; (c) Thompson; (d) WDM6; (e) Milbrandt-Yau; (f) NSSL
图 10 2014年8月16日08:00~18:00图9中红色矩形区域内Thompson方案(实线)和Milbrandt-Yau方案(虚线)模拟的不同水成物的空间积分总质量和区域平均降水率随时间变化:(a)云水;(b)雨水;(c)冰晶;(d)雪;(e)霰;(f)降水率
Figure 10. Time-dependence of domain-integrated total mass of different hydrometeor, and regionally averaged precipitation rate: (a) Cloud water; (b) rain water; (c) ice; (d) snow; (e) graupel; (f) precipitation rate in red rectangle region in Fig. 9 from 0800 UTC to 1800 UTC on August 16, 2014. The solid and dashed lines represent the simulations with the Thompson scheme and the Milbrandt–Yau scheme, respectively
图 12 2014年8月16日09:00~12:00 Thompson方案(左列)和Milbrandt-Yau方案(右列)区域(图9红色矩形区域)平均的水成物质量混合比高度—时间分布: (a, b)云水;(c, d)冰晶;(e, f)雪;(g, h)霰;(i, j)雨水。黑色虚线为等温线,单位: °C,除(c)和(d)的水成物含量单位是mg kg−1外,其余均为g kg−1
Figure 12. Time–height distributions of regionally averaged (red rectangular region in Fig. 9) hydrometeor mixing ratio simulated with the Thompson scheme (left column) and the Milbrandt–Yau scheme (right column): (a, b) Cloud water; (c, d) ice; (e, f) snow; (g, h) graupel; (i, j) rain water from 0900 UTC to 1200 UTC, on August 16, 2014. The black dashed lines are isotherms, units: °C
图 11 2014年8月16日(a、b)09:00、(c、d)10:00、(e、f)11:00和(g、h)12:00 Thompson方案(左列)和Milbrandt-Yau方案(右列)模拟的不同时刻云水(黑色)、雨水(绿色)、冰晶(橙色)、雪(蓝色)、霰(红色)和雹(紫色)混合比(单位:g kg−1)纬向垂直分布,箭头表示(u, w)风场。云水混合比等值线范围为0~2 g kg−1,间隔为0.1 g kg−1;雨水混合比等值线范围为0~0.3 g kg−1,间隔为0.02 g kg−1,冰晶混合比等值线范围为0~0.2 g kg−1,间隔为0.04 g kg−1;雪混合比等值线范围为0~3.2 g kg−1,间隔为0.4 g kg−1;霰混合比等值线范围为0~0.7 g kg−1,间隔为0.1 g kg−1;雹混合比等值线范围为0~0.3 g kg−1,间隔为0.03 g kg−1;黑色粗等值线为零度等温线;黑色三角表示南京奥林匹克体育中心场馆位置
Figure 11. The vertical cross sections of hydrometeor mixing ratio of cloud water (black contours), rain water (green contours), ice (orange contours), snow (blue contours), graupel (red contours), hail (purple contours), and winds (arrows) simulated with the Thompson scheme (left column) and the Milbrandt–Yau scheme (right column): (a, b) 0900 UTC, (c, d) 1000 UTC, (e, f) 1100 UTC, (g, h) 1200 UTC, on August 16, 2014. Cloud water mixing ratio contours range from 0 to 2 g kg−1, with an interval of 0.1 g kg−1; rain water mixing ratio contours range from 0 to 0.3 g kg−1, with an interval of 0.02 g kg−1; ice mixing ratio contours range from 0 to 0.2 g kg−1, with an interval of 0.04 g kg−1; snow mixing ratio contours range from 0 to 3.2 g kg−1, with an interval of 0.4 g kg−1; graupel mixing ratio contours range from 0 to 0.7 g kg−1, with an interval of 0.1 g kg−1; hail mixing ratio contours range from 0 to 0.3 g kg−1, with an interval of 0.03 g kg−1; the black thick contour line is the zero isotherm; the black triangle represents the NOC location
图 13 2014年8月16日09:00~12:00 Thompson方案(左列)和Milbrandt-Yau方案(右列)模拟的(a, b)雨水和(c, d)雪的源汇项微物理过程转化率随时间的变化(源项用正值表示,汇项用负值表示)。所有量均为图9红色矩形区域的平均值,图中没有给出那些相对贡献很小的过程
Figure 13. Microphysical conversion rates over time of source terms and sink terms of (a, b) rain water and (c, d) snow simulated with the Thompson scheme (left column) and the Milbrandt–Yau scheme (right column) from 0900 UTC to 1200 UTC, August 16, 2014 (the source term is represented by the positive value, and the sink term by the negative value). All the quantities are averages in red rectangular region in Fig. 9; the processes with relatively small contributions are not shown in the figures
图 14 Thompson方案(左列)和Milbrandt-Yau方案(右列)模拟的区域(图9红色矩形区域)平均的(a, b)雨水和(c, d)雪的源汇项微物理过程转化率的垂直分布(2014年8月16日09:00~12:00的平均值)
Figure 14. Vertical distributions of regionally averaged (red rectangular region in Fig. 9) microphysical conversion rates of source terms and sink terms of (a, b) rain water and (c, d) snow simulated with the Thompson scheme (left column) and the Milbrandt–Yau scheme (right column) (averaged from 0900 UTC to 1200 UTC, August 16, 2014
表 1 各微物理方案中的水成物预报量
Table 1. Predictors of hydrometeors in different microphysical schemes
云微物理方案 混合比预报量 数浓度预报量 Eta ${Q}_{\mathrm{c} }\;{Q}_{\mathrm{r} }\;{Q}_{\mathrm{s} }$ Lin ${Q}_{\mathrm{c} } \;{Q}_{\mathrm{r} } \;{Q}_{\mathrm{i} } \;{Q}_{\mathrm{s} } \;{Q}_{\mathrm{g} }$ WSM6 ${Q}_{\mathrm{c} }\;{Q}_{\mathrm{r} }\;{Q}_{\mathrm{i} }\;{Q}_{\mathrm{s} }\;{Q}_{\mathrm{g} }$ Goddard ${Q}_{\mathrm{c} }\;{Q}_{\mathrm{r} }\;{Q}_{\mathrm{i} }\;{Q}_{\mathrm{s} }\;{Q}_{\mathrm{g} }$ Thompson ${Q}_{\mathrm{c} }\;{Q}_{\mathrm{r} }\;{Q}_{\mathrm{i} }\;{Q}_{\mathrm{s} }\;{Q}_{\mathrm{g} }$ ${N}_{\mathrm{r} }\;{N}_{\mathrm{i} }$ WDM6 ${Q}_{\mathrm{c} }\;{Q}_{\mathrm{r} }\;{Q}_{\mathrm{i} }\;{Q}_{\mathrm{s} }\;{Q}_{\mathrm{g} }$ ${N}_{\mathrm{c} }\;{N}_{\mathrm{r} }$ Milbrandt-Yau ${Q}_{\mathrm{c} }\;{Q}_{\mathrm{r} }\;{Q}_{\mathrm{i} }\;{Q}_{\mathrm{s} }\;{Q}_{\mathrm{g} }\;{Q}_{\mathrm{h} }$ ${N}_{\mathrm{c} }\;{N}_{\mathrm{r} }\;{N}_{\mathrm{i} }\;{N}_{\mathrm{s} }\;{N}_{\mathrm{g} }\;{N}_{\mathrm{h} }$ NSSL ${Q}_{\mathrm{c} }\;{Q}_{\mathrm{r} }\;{Q}_{\mathrm{i} }\;{Q}_{\mathrm{s} }\;{Q}_{\mathrm{g} }\;{Q}_{\mathrm{h} }$ ${N}_{\mathrm{c} }\;{N}_{\mathrm{r} }\;{N}_{\mathrm{i} }\;{N}_{\mathrm{s} }\;{N}_{\mathrm{g} }\;{N}_{\mathrm{h} }$ 注:下标c表示云水,下标r表示雨水,下标i表示冰晶,下标s表示雪,下标g表示霰,下标h表示雹。 -
[1] Chen B J, Xiao H. 2010. Silver iodide seeding impact on the microphysics and dynamics of convective clouds in the high plains [J]. Atmos. Res., 96(2–3): 186−207. doi: 10.1016/j.atmosres.2009.04.001 [2] 陈宝君, 李爱华, 吴林林, 等. 2016. 暖底对流云催化的微物理和动力效应的数值模拟 [J]. 大气科学, 40(2): 271−288. doi: 10.3878/j.issn.1006-9895.1503.14271Chen Baojun, Li Aihua, Wu Linlin, et al. 2016. Modeling the microphysical and dynamical effects of silver iodide seeding of warm-based convective clouds [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(2): 271−288. doi: 10.3878/j.issn.1006-9895.1503.14271 [3] Ćurić M, Janc D, Vučković V. 2008. Precipitation change from a cumulonimbus cloud downwind of a seeded target area [J]. J. Geophys. Res., 113(D11): D11215. doi: 10.1029/2007JD009483 [4] DeFelice T P, Golden J, Griffith D, et al. 2014. Extra area effects of cloud seeding—An updated assessment [J]. Atmos. Res., 135–136: 193−203. doi: 10.1016/j.atmosres.2013.08.014 [5] Dudhia J. 1996. A multi-layer soil temperature model for MM5 [C]//Proceedings of the 6th Annual PSU/NCAR Mesoscale Model User’s Workshop. Boulder, CO: PSU/NCAR, 22–24. [6] 郭学良, 付丹红, 胡朝霞. 2013. 云降水物理与人工影响天气研究进展(2008~2012年) [J]. 大气科学, 37(2): 351−363. doi: 10.3878/j.issn.1006-9895.2012.12321Guo Xueliang, Fu Danhong, Hu Zhaoxia. 2013. Progress in cloud physics, precipitation, and weather modification during 2008–2012 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(2): 351−363. doi: 10.3878/j.issn.1006-9895.2012.12321 [7] 何观芳, 胡志晋. 1998. 不同云底温度雹云成雹机制及其引晶催化的数值研究 [J]. 气象学报, 56(1): 31−45. doi: 10.11676/qxxb1998.003He Guanfang, Hu Zhijin. 1998. Numerical study on ice seeding in hailstorms with various cloud base temperatures [J]. Acta Meteor. Sinica (in Chinese), 56(1): 31−45. doi: 10.11676/qxxb1998.003 [8] 何观芳, 胡志晋, 李淑日. 2001. 鄂西北对流云及其人工催化的三维数值模拟个例研究 [J]. 应用气象学报, 12(S1): 96−106. doi: 10.3969/j.issn.1001-7313.2001.z1.013He Guanfang, Hu Zhijin, Li Shuri. 2001. Numerical simulation of rain enhancement experiment in northwestern Hubei Province of China [J]. Quart. J. Appl. Meteor. (in Chinese), 12(S1): 96−106. doi: 10.3969/j.issn.1001-7313.2001.z1.013 [9] 何晖, 金华, 李宏宇, 等. 2012. 2008年奥运会开幕式日人工消减雨作业中尺度数值模拟的初步结果 [J]. 气候与环境研究, 17(1): 46−58. doi: 10.3878/j.issn.1006-9585.2011.10043He Hui, Jin Hua, Li Hongyu, et al. 2012. Preliminary study of the mesoscale numerical simulation of the rain mitigation operation during the opening ceremony of the 2008 Beijing Olympic Games [J]. Climatic Environ. Res. (in Chinese), 17(1): 46−58. doi: 10.3878/j.issn.1006-9585.2011.10043 [10] Hong S Y, Lim J O J. 2006. The WRF single-moment 6-class microphysics scheme (WSM6) [J]. J. Korean Meteor. Soc., 42(2): 129−151. [11] Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes [J]. Mon. Wea. Rev., 134(9): 2318−2341. doi: 10.1175/MWR3199.1 [12] 洪延超, 周非非. 2005. “催化—供给”云降水形成机理的数值模拟研究 [J]. 大气科学, 29(6): 885−896. doi: 10.3878/j.issn.1006-9895.2005.06.05Hong Yanchao, Zhou Feifei. 2005. A numerical simulation study of precipitation formation mechanism of “seeding–feeding” cloud system [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 29(6): 885−896. doi: 10.3878/j.issn.1006-9895.2005.06.05 [13] 洪延超, 雷恒池. 2012. 云降水物理和人工影响天气研究进展和思考 [J]. 气候与环境研究, 17(6): 951−967. doi: 10.3878/j.issn.1006-9585.2012.06.32Hong Yanchao, Lei Hengchi. 2012. Research advance and thinking of the cloud precipitation physics and weather modification [J]. Climatic Environ. Res. (in Chinese), 17(6): 951−967. doi: 10.3878/j.issn.1006-9585.2012.06.32 [14] 胡朝霞, 雷恒池, 郭学良, 等. 2007. 降水性层状云系结构和降水过程的观测个例与模拟研究 [J]. 大气科学, 31(3): 425−439. doi: 10.3878/j.issn.1006-9895.2007.03.06Hu Zhaoxia, Lei Hengchi, Guo Xueliang, et al. 2007. Studies of the structure of a stratiform cloud and the physical processes of precipitation formation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31(3): 425−439. doi: 10.3878/j.issn.1006-9895.2007.03.06 [15] 黄美元, 沈志来, 洪延超. 2003. 半个世纪的云雾、降水和人工影响天气研究进展 [J]. 大气科学, 27(4): 536−551. doi: 10.3878/j.issn.1006-9895.2003.04.08Huang Meiyuan, Shen Zhilai, Hong Yanchao. 2003. Advance of research on cloud and precipitation and weather modification in the latest half century [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 27(4): 536−551. doi: 10.3878/j.issn.1006-9895.2003.04.08 [16] Iacono M J, Delamere J S, Mlawer E J, et al. 2008. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models [J]. J. Geophys. Res., 113(D13): D13103. doi: 10.1029/2008JD009944 [17] 雷恒池, 洪延超, 赵震, 等. 2008. 近年来云降水物理和人工影响天气研究进展 [J]. 大气科学, 32(4): 967−974. doi: 10.3878/j.issn.1006-9895.2008.04.21Lei Hengchi, Hong Yanchao, Zhao Zhen, et al. 2008. Advances in cloud and precipitation physics and weather modification in recent years [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(4): 967−974. doi: 10.3878/j.issn.1006-9895.2008.04.21 [18] Lim K S S, Hong S Y. 2010. Development of an effective double-moment cloud microphysics scheme with prognostic Cloud Condensation Nuclei (CCN) for weather and climate models [J]. Mon. Wea. Rev., 138(5): 1587−1612. doi: 10.1175/2009MWR2968.1 [19] Lin H M, Wang P K, Schlesinger R E. 2005. Three-dimensional nonhydrostatic simulations of summer thunderstorms in the humid subtropics versus high plains [J]. Atmos. Res., 78(1–2): 103−145. doi: 10.1016/j.atmosres.2005.03.005 [20] Lin Y L, Farley R D, Orville H D. 1983. Bulk parameterization of the snow field in a cloud model [J]. J. Climate Appl. Meteor., 22(6): 1065−1092. doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2 [21] Mansell E R, Ziegler C L, Bruning E C. 2010. Simulated electrification of a small thunderstorm with two-moment bulk microphysics [J]. J. Atmos. Sci., 67(1): 171−194. doi: 10.1175/2009JAS2965.1 [22] 毛玉华, 胡志晋. 1993. 强对流云人工增雨和防雹原理的二维数值研究 [J]. 气象学报, 51(2): 184−194. doi: 10.11676/qxxb1993.023Mao Yuhua, Hu Zhijin. 1993. The 2-D numerical study of rain-enhancement and hail-suppression principles on convective clouds [J]. Acta Meteor. Sinica (in Chinese), 51(2): 184−194. doi: 10.11676/qxxb1993.023 [23] Milbrandt J A, Yau M K. 2005a. A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter [J]. J. Atmos. Sci., 62(9): 3051−3064. doi: 10.1175/JAS3534.1 [24] Milbrandt J A, Yau M K. 2005b. A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description [J]. J. Atmos. Sci., 62(9): 3065−3081. doi: 10.1175/JAS3535.1 [25] Rogers E, Black T, Ferrier B, et al. 2001. Changes to the NCEP Meso Eta analysis and forecast system: Increase in resolution, new cloud microphysics, modified precipitation assimilation, and modified 3DVAR analysis [R]. NWS Tech. Procedures Bull. 488, NOAA/NWS. [26] 史月琴, 楼小凤, 邓雪娇, 等. 2008. 华南冷锋云系的人工引晶催化数值试验 [J]. 大气科学, 32(6): 1256−1275. doi: 10.3878/j.issn.1006-9895.2008.06.03Shi Yueqin, Lou Xiaofeng, Deng Xuejiao, et al. 2008. Seeding numerical experiments of cold front clouds in South China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(6): 1256−1275. doi: 10.3878/j.issn.1006-9895.2008.06.03 [27] 孙鸿娉, 李培仁, 闫世明, 等. 2011. 华北层状冷云降水微物理特征及人工增雨可播性研究 [J]. 气象, 37(10): 1252−1261. doi: 10.7519/j.issn.1000-0526.2011.10.008Sun Hongping, Li Peiren, Yan Shiming, et al. 2011. A study of microphysical characteristics and seedability of cold stratiform clouds in North China [J]. Meteor. Mon. (in Chinese), 37(10): 1252−1261. doi: 10.7519/j.issn.1000-0526.2011.10.008 [28] 孙晶, 史月琴, 楼小凤, 等. 2010. 人工缓减梅雨锋暴雨的数值试验 [J]. 大气科学, 34(2): 337−350. doi: 10.3878/j.issn.1006-9895.2010.02.08Sun Jing, Shi Yueqin, Lou Xiaofeng, et al. 2010. Numerical experiments on artificial seeding of decreasing the Meiyu heavy rainfall [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34(2): 337−350. doi: 10.3878/j.issn.1006-9895.2010.02.08 [29] Tao W K, Simpson J, McCumber M. 1989. An ice-water saturation adjustment [J]. Mon. Wea. Rev., 117(1): 231−235. doi:10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2 [30] Thompson G, Field P R, Rasmussen R M, et al. 2008. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization [J]. Mon. Wea. Rev., 136(12): 5095−5115. doi: 10.1175/2008MWR2387.1 [31] 叶家东, 范蓓芬, 杜京朝. 1998. 人工增雨试验中的反效果问题 [J]. 应用气象学报, 9(3): 336−344.Ye Jiadong, Fan Beifen, Du Jingchao. 1998. Study of negative effects in artificial precipitation enhancement experiments [J]. Quart. J. Appl. Meteor. (in Chinese), 9(3): 336−344. [32] 张蔷, 何晖, 刘建忠, 等. 2009. 北京2008年奥运会开幕式人工消减雨作业 [J]. 气象, 35(8): 3−15. doi: 10.7519/j.issn.1000-0526.2009.08.001Zhang Qiang, He Hui, Liu Jianzhong, et al. 2009. Brief introduction of rain mitigation operation during Beijing 2008 Olympic Opening Ceremony [J]. Meteor. Mon. (in Chinese), 35(8): 3−15. doi: 10.7519/j.issn.1000-0526.2009.08.001 [33] 张蔷, 郭恩铭, 何晖, 等. 2011. 人工影响天气试验研究和应用 [M]. 北京: 气象出版社, 398pp.Zhang Qiang, Guo Enming, He Hui, et al. 2011. Experimental Research and Application of Weather Modification (in Chinese) [M]. Beijing: China Meteorological Press, 398pp. [34] 赵震, 雷恒池. 2008. 西北地区一次层状云降水云物理结构和云微物理过程的数值模拟研究 [J]. 大气科学, 32(2): 323−334. doi: 10.3878/j.issn.1006-9895.2008.02.11Zhao Zhen, Lei Hengchi. 2008. A numerical simulation of cloud physical structure and microphysical processes associated with stratiform precipitation in Northwest China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(2): 323−334. doi: 10.3878/j.issn.1006-9895.2008.02.11 -