Advances in Atmospheric Predictability of Heavy Rain and Severe Convection
-
摘要: 大气可预报性研究是开展天气、气候预测的基础科学问题。全球变暖背景下,近年暴雨和强对流等中小尺度灾害性天气频发,如何深入认识其可预报性问题成为了天气领域研究热点,也是制约数值天气预报模式能力提升的重要因素。本文在简要回顾国内外大气可预报性研究历程的基础上,重点对近二十年(1999~2018)国际上关于暴雨和强对流可预报性方面的最新研究进展进行了系统的综述和归纳。主要包括:中小尺度可预报性研究的主要方法和评估手段及其与传统大尺度天气可预报性研究的差异,初始误差增长机制的几种主要观点及其争论(误差升尺度、误差降尺度、升降尺度并存),数值模式误差和对流环境误差对实际预报性的影响,以及最近的中尺度可预报性科学观测试验进展等。最后,对暴雨、强对流可预报性研究存在的问题、未来发展方向进行了简要的讨论和展望。Abstract: Atmospheric predictability research is the basis for weather and climate prediction. Under the background of global warming, meso/micro-scale extreme weather events such as heavy rain and severe convection have occurred more frequently in recent years, and their predictability has attracted wide attention. After briefly reviewing the history of atmospheric predictability research, this paper systematically reviews the latest advances in the predictability of heavy rain and strong convection over the last 20 years (1999–2018). The main research methods for meso/micro-scale predictability and their differences with traditional large-scale weather predictability methods are first discussed. Then, the primary initial error growth mechanism (error upscaling under deep moist convection) is elaborated in detail, and some arguments (error downscaling, error upscaling, and downscaling coexisting) are discussed. The effects of errors in NWP (Numerical Weather Prediction) models and convective environments on the practical predictability are also highlighted, and some recent mesoscale predictability experiments are reviewed. Finally, this paper briefly discusses the current problems, challenges, and future directions of the predictability research of heavy rain and severe convection.
-
Key words:
- Heavy rain /
- Severe convection /
- Error growth /
- Ensemble forecast /
- Predictability
-
图 2 减少集合离散度来降低初始误差展示(a)实际可预报性(2003年6月9~10日的飑线和弓形回波)和(b)内在可预报性(同等有利条件的理论集合预报)的理想示意图。阴影区:流体状态1(有利飑线形成),斜条纹区:流体状态2(不利飑线形成),黑点:集合预报成员,白点:集合平均,白十字:预报真值。[引自Melhauser and Zhang(2012)的图18]
Figure 2. Idealized schematic illustrating the reduction of initial condition error by reducing the ensemble spread highlighting the (a) practical predictability representative of the 9–10 June 2003 squall line and bow echo and (b) intrinsic predictability representative of a theoretical ensemble forecast with the ensemble forecast having equally favorable solutions. Solid shading: flow regime 1 (favorable for squall line forming); striped pattern: flow regime 2 (not favorable for squall line forming); black dots: ensemble members; white dots: ensemble mean; white cross: forecast truth. [Cited from Fig. 18 of Melhauser and Zhang (2012)]
图 3 区域平均偏差总能量在三个不同特征尺度的演变。纵坐标为区域偏差总能量;S、M、L分别代表小(波长
$\lambda $ <200 km)、中(200 km<$\lambda $ <1000 km)和大尺度($\lambda $ >1000 km);紫、绿、橙色区域代表对流尺度增长、升尺度转换、天气尺度增长阶段。[改自Zhang et al.(2007)的图7]Figure 3. Evolution of the domain-integrated difference total energy at three different characteristic scales. y-axis indicates difference total energy; S: smaller scale
$\lambda $ <200 km; M: intermediate scale 200 km<$\lambda $ <1000 km; and L: larger scale$\lambda $ >1000 km; Purple, green, orange regions represent convective growth, upscale transition, synoptic growth, respectively. [Modified from Fig. 7 of Zhang et al. (2007)]图 4 改进的Lorenz模式中动能谱密度(“误差”)关于波数k的分布:(a)所有尺度的初始误差;(b)仅保留大尺度初始误差(去除波长<400 km的误差);(c)仅保留小尺度初始误差(去除波长>400 km的误差)。黑色实线代表饱和时动能谱。[引自Durran and Gingrich(2014)的图6和图8]
Figure 4. Spectral density of kinetic energy as a function of wavenumber k for the improved Lorenz model: (a) Initial error at all scales; (b) initial error at large scales (initial error is removed at wavelengths less than 400 km); (c) initial error at small scales (initial error is removed at wavelengths greater than 400 km). The black curves show the saturation kinetic energy spectrum. [Cited from Figs. 6 and 8 of Durran and Gingrich (2014)]
图 5 (a)模式全部区域、(b)中尺度涡旋区、(c)中尺度对流系统区域、(d)非对流区在不同扰动方案下区域平均的误差能量(RMDTE)随时间的变化。TX_control:控制试验;TX_half:初始扰动减少至1/2;TX_third:初始扰动减少至1/3;TX_10th:初始扰动减少至1/10;TX_20th:初始扰动减少至1/20;TX_100th:初始扰动减少至1/100。[引自Nielsen and Schumacher(2016)的图13]
Figure 5. Temporal evolutions of domain-averaged root mean difference total energy (RMDTE) for the (a) full domain, (b) MCV (mesoscale convective vortex) region, (c) MCS (mesoscale convective system) region, and (d) NOCON (no convection) region in TX_control (control experiment), TX_half (the magnitude of initial perturbation was cut in half), TX_third (the magnitude of initial perturbation was cut in one-third), TX_10th (the magnitude of initial perturbation was cut in one-tenth), TX_20th (the magnitude of initial perturbation was cut in one-twentieth), and TX_100th (the magnitude of initial perturbation was cut in one percent). [Cited from Fig. 13 of Nielsen and Schumacher (2016)]
图 6 2015年5月19日08时(当地标准时间,下同)至20日08时(a)锋面暴雨区域(Region1)、(b)暖区暴雨区域(Region2)、(c)无强降水区(Region3)在不同扰动组合下区域平均的误差能量(RMDTE)随时间的变化。GTOP0-GTOP8:初始扰动差异试验;GTOP2-GTOP7:初始扰动差异减少至5/8;GTOP3-GTOP6:初始扰动差异减少至3/8;GTOP4-GTOP5:初始扰动差异减少至1/8。(d)根据降水量(单位:mm)的区域划分。[引自Wu et al.(2020)的图17]
Figure 6. Temporal evolutions of domain-averaged RMDTE for the (a) region of frontal torrential rainfall (Region1), (b) region of warm-sector torrential rainfall (Region2), and (c) region of no heavy rainfall (Region3) from 0800 LST (Local Standard Time) 19 May to 0800 LST 20 May 2015. GTOP0-GTOP8: experiment with initial perturbation difference; GTOP2-GTOP7: experiment with 5/8 initial perturbation difference; GTOP3-GTOP6: experiment with 3/8 initial perturbation difference; GTOP4-GTOP5: experiment with 1/8 initial perturbation difference. (d) The regional division according to the precipitation (units: mm). [Cited from Fig. 17 of Wu et al. (2020)]
图 7 基于1 h预报误差扰动的100个集合成员(a)30分钟预报、(b)60分钟预报、(c)90分钟预报、(d)120分钟预报的反射率等值线(40 dBZ)面条图。粗实线为控制预报;细线为不同成员预报。[引自Cintineo and Stensrud(2013)的图9]
Figure 7. Spaghetti plots of the 40-dBZ-reflectivity contours from all 100 simulations for the 1-h error runs at (a) 30 minutes, (b) 60 minutes, (c) 90 minutes, and (d) 120 minutes forecasts. [Cited from Fig. 9 of Cintineo and Stensrud (2013)]
图 8 (a)区域地形高度(单位:m),绿色框代表暖区暴雨中心区域,两黑色框区分别为山区2米高度处气温敏感区和海洋925-hPa低空风敏感区。2015年5月19日08时到20日08时好坏集合预报成员对(b)山区敏感区区域平均的2米高度处温度、(c)海洋敏感区区域平均的925 hPa风速预报的时间演变。[引自Wu et al.(2020)的图12]
Figure 8. (a) Terrain height (units: m), the green rectangle identifies the warm-sector torrential rainfall center, two black rectangles represent the sensitive area of 2-m temperature over the mountain area and the sensitive area of 925-hPa low-level wind over the sea, repetitively. Temporal evolution of (b) 2-m temperature averaged within the black rectangle region for the mountain area and (c) 925-hPa wind speed averaged within the black rectangle region for the sea area from 0800 LST 19 May to 0800 LST 20 May 2015. [Cited from Fig. 12 of Wu et al., (2020)]
图 9 MPEX试验的(a)早晨的下投作业的关注区域(数字星为下投点,红点为美国气象局业务探空点)和(b)午后前对流环境采样策略的探空位置(圆圈)示例。[引自Weisman et al.(2015)的图3和图5]
Figure 9. (a) Full domain of interest for MPEX (Mesoscale Predictability Experiment) morning dropsonde operations, numbered stars represent the dropsonde sites, and the operational National Weather Service sounding sites are indicated by the red dots. (b) Examples of upsonde locations (circles) for the preconvective environment sampling strategy in the afternoon during MPEX. [Cited from Figs. 3 and 5 of Weisman et al., (2015)]
-
[1] Anthes R A, Kuo Y H, Baumhefner D P, et al. 1985. Predictability of mesoscale atmospheric motions [J]. Advances in Geophysics, 28: 159−202. doi: 10.1016/S0065-2687(08)60188-0 [2] Bauer P, Thorpe A, Brunet G. 2015. The quiet revolution of numerical weather prediction [J]. Nature, 525(7567): 47−55. doi: 10.1038/nature14956 [3] Baumgart M, Riemer M, Wirth V, et al. 2018. Potential vorticity dynamics of forecast errors: A quantitative case study [J]. Mon. Wea. Rev., 146(5): 1405−1425. doi: 10.1175/MWR-D-17-0196.1 [4] Bei N F, Zhang F Q. 2007. Impacts of initial condition errors on mesoscale predictability of heavy precipitation along the Mei-Yu front of China [J]. Quart. J. Roy. Meteor. Soc., 133(622): 83−99. doi: 10.1002/qj.20 [5] Berner J, Achatz U, Batte L, et al. 2017. Stochastic parameterization: Toward a new view of weather and climate models [J]. Bull. Amer. Meteor. Soc., 98(3): 565−588. doi: 10.1175/BAMS-D-15-00268.1 [6] Bierdel L, Selz T, Craig G C. 2017. Theoretical aspects of upscale error growth through the mesoscales: An analytical model [J]. Quart. J. Roy. Meteor. Soc., 143(709): 3048−3059. doi: 10.1002/qj.3160 [7] Bierdel L, Selz T, Craig G C. 2018. Theoretical aspects of upscale error growth on the mesoscales: Idealized numerical simulations [J]. Quart. J. Roy. Meteor. Soc., 144(712): 682−694. doi: 10.1002/qj.3236 [8] Bishop C H, Etherton B J, Majumdar S J. 2001. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects [J]. Mon. Wea. Rev., 129(3): 420−436. doi:10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2 [9] Burghardt B J, Evans C, Roebber P J. 2014. Assessing the predictability of convection initiation in the high plains using an object-based approach [J]. Wea. Forecasting, 29(2): 403−418. doi: 10.1175/WAF-D-13-00089.1 [10] Burlingame B M, Evans C, Roebber P J. 2017. The influence of PBL parameterization on the practical predictability of convection initiation during the Mesoscale Predictability Experiment (MPEX) [J]. Wea. Forecasting, 32(3): 1161−1183. doi: 10.1175/WAF-D-16-0174.1 [11] 丑纪范. 2011. 天气和气候的可预报性 [J]. 气象科技进展, 1(2): 11−14.Chou J F. 2011. Predictability of weather and climate [J]. Advances in Meteorological Science and Technology (in Chinese), 1(2): 11−14. [12] Cintineo R M, Stensrud D J. 2013. On the predictability of supercell thunderstorm evolution [J]. J. Atmos. Sci., 70(7): 1993−2011. doi: 10.1175/JAS-D-12-0166.1 [13] Coniglio M C, Hitchcock S M, Knopfmeier K H. 2016. Impact of assimilating preconvective upsonde observations on short-term forecasts of convection observed during MPEX [J]. Mon. Wea. Rev., 144(11): 4301−4325. doi: 10.1175/MWR-D-16-0091.1 [14] Crook N A. 1996. Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields [J]. Mon. Wea. Rev., 124(8): 1767−1785. doi:10.1175/1520-0493(1996)124<1767:SOMCFB>2.0.CO;2 [15] Davis C, Brown B, Bullock R. 2006a. Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas [J]. Mon. Wea. Rev., 134(7): 1772−1784. doi: 10.1175/MWR3145.1 [16] Davis C, Brown B, Bullock R. 2006b. Object-based verification of precipitation forecasts. Part II: Application to convective rain systems [J]. Mon. Wea. Rev., 134(7): 1785−1795. doi: 10.1175/MWR3146.1 [17] Ding R Q, Li J P. 2007. Nonlinear finite-time Lyapunov exponent and predictability [J]. Physics Letters A, 364(5): 396−400. doi: 10.1016/j.physleta.2006.11.094 [18] 丁瑞强, 李建平. 2007. 误差非线性的增长理论及可预报性研究 [J]. 大气科学, 31(4): 571−576. doi: 10.3878/j.issn.1006-9895.2007.04.02Ding R Q, Li J P. 2007. Nonlinear error dynamics and predictability study [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31(4): 571−576. doi: 10.3878/j.issn.1006-9895.2007.04.02 [19] Ding R Q, Li J P, Li B S. 2017. Determining the spectrum of the nonlinear local Lyapunov exponents in a multidimensional chaotic system [J]. Adv. Atmos. Sci., 34(9): 1027−1034. doi: 10.1007/s00376-017-7011-8 [20] 杜钧, 李俊. 2014. 集合预报方法在暴雨研究和预报中的应用 [J]. 气象科技进展, 4(5): 6−20. doi: 10.3969/j.issn.2095-1973.2014.05.001Du J, Li J. 2014. Application of ensemble methodology to heavy-rain research and prediction [J]. Advances in Meteorological Science and Technology (in Chinese), 4(5): 6−20. doi: 10.3969/j.issn.2095-1973.2014.05.001 [21] Durran D R, Reinecke P A, Doyle J D. 2013. Large-scale errors and mesoscale predictability in Pacific northwest snowstorms [J]. J. Atmos. Sci., 70(5): 1470−1487. doi: 10.1175/JAS-D-12-0202.1 [22] Durran D R, Gingrich M. 2014. Atmospheric predictability: Why butterflies are not of practical importance [J]. J. Atmos. Sci., 71(7): 2476−2488. doi: 10.1175/JAS-D-14-0007.1 [23] Durran D R, Weyn J A. 2016. Thunderstorms do not get butterflies [J]. Bull. Amer. Meteor. Soc., 97(2): 237−243. doi: 10.1175/BAMS-D-15-00070.1 [24] Ehrendorfer M. 1997. Predicting the uncertainty of numerical weather forecasts: A review [J]. Meteor. Z., 6(4): 147−183. doi: 10.1127/metz/6/1997/147 [25] Feng J, Ding R Q, Liu D Q, et al. 2014. The application of nonlinear local Lyapunov vectors to ensemble predictions in Lorenz systems [J]. J. Atmos. Sci., 71(9): 3554−3567. doi: 10.1175/JAS-D-13-0270.1 [26] Fraedrich K. 1987. Estimating weather and climate predictability on attractors [J]. J. Atmos. Sci., 44(4): 722−728. doi:10.1175/1520-0469(1987)044<0722:EWACPO>2.0.CO;2 [27] Gilmore M S, Wicker L J. 1998. The influence of midtropospheric dryness on supercell morphology and evolution [J]. Mon. Wea. Rev., 126(4): 943−958. doi:10.1175/1520-0493(1998)126<0943:TIOMDO>2.0.CO;2 [28] Hawblitzel D P, Zhang F Q, Meng Z Y, et al. 2007. Probabilistic evaluation of the dynamics and predictability of the mesoscale convective vortex of 10−13 June 2003 [J]. Mon. Wea. Rev., 135(4): 1544−1563. doi: 10.1175/MWR3346.1 [29] Hohenegger C, Schär C. 2007a. Atmospheric predictability at synoptic versus cloud-resolving scales [J]. Bull. Amer. Meteor. Soc., 88(11): 1783−1794. doi: 10.1175/BAMS-88-11-1783 [30] Hohenegger C, Schär C. 2007b. Predictability and error growth dynamics in cloud-resolving models [J]. J. Atmos. Sci., 64(12): 4467−4478. doi: 10.1175/2007JAS2143.1 [31] Hohenegger C, Lüthi D, Schär C. 2006. Predictability mysteries in cloud-resolving models [J]. Mon. Wea. Rev., 134(8): 2095−2107. doi: 10.1175/MWR3176.1 [32] Hoskins B. 2013. The potential for skill across the range of the seamless weather–climate prediction problem: A stimulus for our science [J]. Quart. J. Roy. Meteor. Soc., 139(672): 573−584. doi: 10.1002/qj.1991 [33] Johnson A, Wang X G, Xue M, et al. 2014. Multiscale characteristics and evolution of perturbations for warm season convection-allowing precipitation forecasts: Dependence on background flow and method of perturbation [J]. Mon. Wea. Rev., 142(3): 1053−1073. doi: 10.1175/MWR-D-13-00204.1 [34] Keclik A M, Evans C, Roebber P J, et al. 2017. The influence of assimilated upstream, preconvective dropsonde observations on ensemble forecasts of convection initiation during the Mesoscale Predictability Experiment [J]. Mon. Wea. Rev., 145(12): 4747−4770. doi: 10.1175/MWR-D-17-0159.1 [35] Kong F Y, Xue M, Droegemeier K K, et al. 2007. Preliminary analysis on the real-time storm-scale ensemble forecasts produced as a part of the NOAA hazardous weather testbed 2007 spring experiment [C]//Proceedings of the 22nd Conference on Weather Analysis and Forecasting and 18th Conference on Numerical Weather Prediction. Park City, UT: Amer. Meteor. Soc. [36] Leith C E. 1971. Atmospheric predictability and two-dimensional turbulence [J]. J. Atmos. Sci., 28(2): 145−161. doi:10.1175/1520-0469(1971)028<0145:APATDT>2.0.CO;2 [37] Leith C E, Kraichnan R H. 1972. Predictability of turbulent flows [J]. J. Atmos. Sci., 29(6): 1041−1058. doi:10.1175/1520-0469(1972)029<1041:POTF>2.0.CO;2 [38] Leith C E. 1974. Theoretical skill of Monte Carlo forecasts [J]. Mon. Wea. Rev., 102(6): 409−418. doi:10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2 [39] Leith C E. 1983. Predictability in theory and practice [M]//Hoskins B, Pearce R. Large-Scale Dynamical Processes in the Atmosphere. New York: Academic Press, 365–372. [40] 李建平, 丁瑞强, 陈宝花. 2006. 大气可预报性的回顾与展望——21世纪初大气科学前沿与展望 [M]. 北京: 气象出版社, 96–104.Li J P, Ding R Q, Chen B H. 2006. Review and Prospect on the Predictability Study of the Atmosphere. Review and Prospects of the Developments of Atmosphere Sciences in Early 21st Century (in Chinese) [M]. Beijing: China Meteorology Press, 96–104. [41] Li J P, Swinbank R, Grotjahn R, et al. 2016. Dynamics and Predictability of Large-Scale, High-Impact Weather and Climate Events [M]. Cambridge: Cambridge University Press, 369pp. [42] Lichtenberg A J, Lieberman M A. 1983. Regular and Stochastic Motion [M]. New York: Springer-Verlag, 499pp. [43] Liu J Y, Tan Z M. 2009. Mesoscale predictability of Mei-yu heavy rainfall [J]. Adv. Atmos. Sci., 26(3): 438−450. doi: 10.1007/s00376-009-0438-9 [44] 刘建勇, 谈哲敏, 顾思南. 2011. 梅雨期暴雨系统的流依赖中尺度可预报性 [J]. 大气科学, 35(5): 912−926. doi: 10.3878/j.issn.1006-9895.2011.05.11Liu J Y, Tan Z M, Gu S N. 2011. Flow-dependent mesoscale predictability of Meiyu heavy rainfall [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35(5): 912−926. doi: 10.3878/j.issn.1006-9895.2011.05.11 [45] 刘永柱, 沈学顺, 李晓莉. 2013. 基于总能量模的GRAPES全球模式奇异向量扰动研究 [J]. 气象学报, 71(3): 517−526. doi: 10.11676/qxxb2013.043Liu Y Z, Shen X X, Li X L. 2013. Research on the singular vector perturbation of the GRAPES global model based on the total energy norm [J]. Acta Meteor. Sinica (in Chinese), 71(3): 517−526. doi: 10.11676/qxxb2013.043 [46] Lorenz E N. 1963. Deterministic nonperiodic flow [J]. J. Atmos. Sci., 20(2): 130−141. doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 [47] Lorenz E N. 1965. A study of the predictability of a 28-variable atmospheric model [J]. Tellus, 17(3): 321−333. doi: 10.3402/tellusa.v17i3.9076 [48] Lorenz E N. 1969. The predictability of a flow which possesses many scales of motion [J]. Tellus, 21(3): 289−307. doi: 10.1111/j.2153-3490.1969.tb00444.x [49] Lorenz E N. 1975. Climate Predictability: The Physical Basis of Climate Modelling [M]. Geneva: World Meteorological Organisation, 132–136. [50] Lorenz E N. 1982. Atmospheric predictability experiments with a large numerical model [J]. Tellus, 34(6): 505−513. doi: 10.1111/j.2153-3490.1982.tb01839.x [51] Lorenz E N. 1996. Predictability: A problem partly solved [C]//Proceedings of the Seminar on Predictability. Reading, United Kingdom: ECMWF, 1–18. [52] Métais O, Lesieur M. 1986. Statistical predictability of decaying turbulence [J]. J. Atmos. Sci., 43(9): 857−870. doi:10.1175/1520-0469(1986)043<0857:SPODT>2.0.CO;2 [53] Melhauser C, Zhang F Q. 2012. Practical and intrinsic predictability of severe and convective weather at the mesoscales [J]. J. Atmos. Sci., 69(11): 3350−3371. doi: 10.1175/JAS-D-11-0315.1 [54] Molteni F, Buizza R, Palmer T N, et al. 1996. The ECMWF ensemble prediction system: Methodology and validation [J]. Quart. J. Roy. Meteor. Soc., 122(529): 73−119. doi: 10.1002/qj.49712252905 [55] 穆穆, 李建平, 丑纪范, 等. 2002. 气候系统可预报性理论研究 [J]. 气候与环境研究, 7(2): 227−235. doi: 10.3969/j.issn.1006-9585.2002.02.010Mu M, Li J P, Chou J F, et al. 2002. Theoretical research on the predictability of climate system [J]. Climatic and Environmental Research (in Chinese), 7(2): 227−235. doi: 10.3969/j.issn.1006-9585.2002.02.010 [56] Mu M, Duan W S, Wang B. 2003. Conditional nonlinear optimal perturbation and its applications [J]. Nonlinear Processes in Geophysics, 10(6): 493−501. doi: 10.5194/npg-10-493-2003 [57] 穆穆, 王洪利, 周菲凡. 2007. 条件非线性最优扰动方法在适应性观测研究中的初步应用 [J]. 大气科学, 31(6): 1102−1112. doi: 10.3878/j.issn.1006-9895.2007.06.06Mu M, Wang H L, Zhou F F. 2007. A preliminary application of conditional nonlinear optimal perturbation to adaptive observation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31(6): 1102−1112. doi: 10.3878/j.issn.1006-9895.2007.06.06 [58] 穆穆, 段晚锁, 唐佑民. 2017. 大气—海洋运动的可预报性: 思考与展望 [J]. 中国科学: 地球科学, 60(11): 2001−2012. doi: 10.1007/s11430-016-9101-xMu M, Duan W S, Tang Y M. 2017. The predictability of atmospheric and oceanic motions: Retrospect and prospects [J]. Science China: Earth Sciences (in Chinese), 60(11): 2001−2012. doi: 10.1007/s11430-016-9101-x [59] Nese J M. 1989. Quantifying local predictability in phase space [J]. Physica D: Nonlinear Phenomena, 35(1-2): 237−250. doi: 10.1016/0167-2789(89)90105-X [60] Nielsen, E R, Schumacher, R S. 2016. Using convection-allowing ensembles to understand the predictability of an extreme rainfall event [J]. Mon. Wea. Rev., 144: 3651−3676. doi: 10.1175/MWR-D-16-0083.1 [61] Palmer T N, Molteni F, Mureau R, et al. 1992. Ensemble prediction [R]. ECMWF Tech. Memo., No. 188, 45. [62] Palmer T N, Molteni F, Mureau R, et al. 1993. Ensemble prediction [C]//Proceedings of ECMWF Seminar: Validation of Models over Europe. UK: ECMWF. [63] Palmer T N, Buizza R, Molteni F, et al. 1994. Singular vectors and the predictability of weather and climate [J]. Philos. Trans. Roy. Soc. A: Math. Phys. Eng. Sci., 348(1688): 459−475. doi: 10.1098/rsta.1994.0105 [64] Palmer T N. 1999. Predicting uncertainty in forecasts of weather and climate [R]. ECMWF Tech. Memo., No. 294, 64. [65] Palmer T N, Hagedorn R. 2006. Predictability of Weather and Climate [M]. New York: Cambridge University Press. [66] Park S K. 1999. Nonlinearity and predictability of convective rainfall associated with water vapor perturbations in a numerically simulated storm [J]. J. Geophys. Res. Atmos., 104(D24): 31575−31587. doi: 10.1029/1999JD900446 [67] Park S K, Droegemeier K K. 2000. Sensitivity analysis of a 3D convective storm: Implications for variational data assimilation and forecast error [J]. Mon. Wea. Rev., 128(1): 140−159. doi:10.1175/1520-0493(2000)128<0140:SAOACS>2.0.CO;2 [68] Rotunno R, Snyder C. 2008. A generalization of Lorenz’s model for the predictability of flows with many scales of motion [J]. J. Atmos. Sci., 65(3): 1063−1076. doi: 10.1175/2007JAS2449.1 [69] Selz T, Craig G C. 2015. Upscale error growth in a high-resolution simulation of a summertime weather event over Europe [J]. Mon. Wea. Rev., 143(3): 813−827. doi: 10.1175/MWR-D-14-00140.1 [70] Smith T L, Benjamin S G, Brown J M, et al. 2008. Convection forecasts from the hourly updated, 3-km high resolution rapid refresh model [C]//Proceedings of the 24th Conference on Severe Local Storms. Savannah, GA: Amer. Meteor. Soc. [71] Stensrud D J, Bao J W, Warner T T. 2000. Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems [J]. Mon. Wea. Rev., 128(7): 2077−2107. doi:10.1175/1520-0493(2000)128<2077:UICAMP>2.0.CO;2 [72] Stensrud D J, Xue M, Wicker L J, et al. 2009. Convective-scale warn-on-forecast system: A vision for 2020 [J]. Bull. Amer. Meteor. Soc., 90(10): 1487−1500. doi: 10.1175/2009BAMS2795.1 [73] Sun Y Q, Zhang F Q. 2016. Intrinsic versus practical limits of atmospheric predictability and the significance of the butterfly effect [J]. J. Atmos. Sci., 73(3): 1419−1438. doi: 10.1175/JAS-D-15-0142.1 [74] Tan Z M, Zhang F Q, Rotunno R, et al. 2004. Mesoscale predictability of moist baroclinic waves: Experiments with parameterized convection [J]. J. Atmos. Sci., 61(14): 1794−1804. doi:10.1175/1520-0469(2004)061<1794:MPOMBW>2.0.CO;2 [75] Thompson P D. 1957. Uncertainty of initial state as a factor in the predictability of large scale atmospheric flow patterns [J]. Tellus, 9(3): 275−295. doi: 10.3402/tellusa.v9i3.9111 [76] Toth Z, Kalnay E. 1993. Ensemble forecasting at NMC: The generation of perturbations [J]. Bull. Amer. Meteor. Soc., 74(12): 2317−2330. doi:10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2 [77] Trapp R J, Stensrud D J, Coniglio M C, et al. 2016. Mobile radiosonde deployments during the Mesoscale Predictability Experiment (MPEX): Rapid and adaptive sampling of upscale convective feedbacks [J]. Bull. Amer. Meteor. Soc., 97(3): 329−336. doi: 10.1175/BAMS-D-14-00258.1 [78] Trapp R J, Woznicki J M. 2017. Convectively induced stabilizations and subsequent recovery with supercell thunderstorms during the Mesoscale Predictability Experiment (MPEX) [J]. Mon. Wea. Rev., 145(5): 1739−1754. doi: 10.1175/MWR-D-16-0266.1 [79] Trevisan A, Legnani R. 1995. Transient error growth and local predictability: A study in the Lorenz system [J]. Tellus A: Dynamic Meteorology and Oceanography, 47(1): 103−117. doi: 10.3402/tellusa.v47i1.11496 [80] Tribbia J J, Baumhefner D P. 2004. Scale interactions and atmospheric predictability: An updated perspective [J]. Mon. Wea. Rev., 132(3): 703−713. doi:10.1175/1520-0493(2004)132<0703:SIAAPA>2.0.CO;2 [81] Wandishin M S, Stensrud D J, Wicker L J, et al. 2004. On the predictability of mesoscale convective systems [C]//Proceedings of the 12th Conference on Mesoscale Processes. Waterville Valley, NH: American Meteorological Society. [82] Wandishin M S, Stensrud D J, Mullen S L, et al. 2008. On the predictability of mesoscale convective systems: Two-dimensional simulations [J]. Wea. Forecasting, 23(5): 773−785. doi: 10.1175/2008WAF2007057.1 [83] Wandishin M S, Stensrud D J, Mullen S L, et al. 2010. On the predictability of mesoscale convective systems: Three-dimensional simulations [J]. Mon. Wea. Rev., 138(3): 863−885. doi: 10.1175/2009MWR2961.1 [84] Wang H L, Mu M, Huang X Y. 2011. Application of conditional non-linear optimal perturbations to tropical cyclone adaptive observation using the Weather Research Forecasting (WRF) model [J]. Tellus A: Dynamic Meteorology and Oceanography, 63(5): 939−957. doi: 10.1111/j.1600-0870.2011.00536.x [85] Wang H L, Auligné T, Morrison H. 2012. Impact of microphysics scheme complexity on the propagation of initial perturbations [J]. Mon. Wea. Rev., 140(7): 2287−2296. doi: 10.1175/MWR-D-12-00005.1 [86] Wang W, Seaman N L. 1997. A comparison study of convective parameterization schemes in a mesoscale model [J]. Mon. Wea. Rev., 125(2): 252−278. doi:10.1175/1520-0493(1997)125<0252:ACSOCP>2.0.CO;2 [87] Wang X G, Bishop C H. 2003. A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes [J]. J. Atmos. Sci., 60(9): 1140−1158. doi:10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2 [88] Weisman M L, Trapp R J, Romine G S, et al. 2015. The Mesoscale Predictability Experiment (MPEX) [J]. Bull. Amer. Meteor. Soc., 96(12): 2127−2149. doi: 10.1175/BAMS-D-13-00281.1 [89] Weyn J A, Durran D R. 2017a. The dependence of the predictability of mesoscale convective systems on the horizontal scale and amplitude of initial errors in idealized simulations [J]. J. Atmos. Sci., 74(7): 2191−2210. doi: 10.1175/JAS-D-17-0006.1 [90] Weyn J A, Durran D R. 2017b. Predictability in idealized and real-data simulations of deep convection [C]//Proceedings of the 17th Conference on Mesoscale Processes. San Diego, CA: Amer. Meteor. Soc. [91] Wolf A, Swift J B, Swinney H L, et al. 1985. Determining Lyapunov exponents from a time series [J]. Physica D: Nonlinear Phenomena, 16(3): 285−317. doi: 10.1016/0167-2789(85)90011-9 [92] Wu D C, Meng Z Y, Yan D C. 2013. The predictability of a squall line in South China on 23 April 2007 [J]. Adv. Atmos. Sci., 30(2): 485−502. doi: 10.1007/s00376-012-2076-x [93] Wu N G, Zhuang X R, Min J Z, et al. 2020. Practical and intrinsic predictability of a warm-sector torrential rainfall event in the South China monsoon region [J]. J. Geophys. Res. Atmos., 125(4): e2019JD031313. doi: 10.1029/2019JD031313 [94] Xue M, Brewster K, Droegemeier K, et al. 1996. The 1996 CAPS spring operational forecasting period—Realtime storm-scale NWP. Part II: Operational summary and sample cases [C]//Proceedings of the 11th Conference on Numerical Weather Prediction. Norfolk, VA, Amer. Meteor. Soc., 297–300. [95] Xue M, Kong F Y, Weber D, et al. 2007. CAPS realtime storm-scale ensemble and high-resolution forecasts as part of the NOAA hazardous weather testbed 2007 spring experiment [C]//Proceedings of the 22nd Conference on Weather Analysis and Forecasting and 18th Conference on Numerical Weather Prediction. Park City, UT: Amer. Meteor. Soc. [96] Yoden S, Nomura M. 1993. Finite-time Lyapunov stability analysis and its application to atmospheric predictability [J]. J. Atmos. Sci., 50(11): 1531−1543. doi:10.1175/1520-0469(1993)050<1531:FTLSAA>2.0.CO;2 [97] Yu H Z, Wang H L, Meng Z Y, et al. 2017. A WRF-based tool for forecast sensitivity to the initial perturbation: The conditional nonlinear optimal perturbations versus the first singular vector method and comparison to MM5 [J]. J. Atmos. Oceanic Technol., 34(1): 187−206. doi: 10.1175/JTECH-D-15-0183.1 [98] Zhang F, Snyder C, Rotunno R. 2002. Mesoscale predictability of the “Surprise” snowstorm of 24−25 January 2000 [J]. Mon. Wea. Rev., 130(6): 1617−1632. doi:10.1175/1520-0493(2002)130<1617:MPOTSS>2.0.CO;2 [99] Zhang F, Snyder C, Rotunno R. 2003. Effects of moist convection on mesoscale predictability [J]. J. Atmos. Sci., 60(9): 1173−1185. doi:10.1175/1520-0469(2003)060<1173:EOMCOM>2.0.CO;2 [100] Zhang F Q, Odins A M, Nielsen-Gammon J W. 2006. Mesoscale predictability of an extreme warm-season precipitation event [J]. Wea. Forecasting, 21(2): 149−166. doi: 10.1175/WAF909.1 [101] Zhang F Q, Bei N F, Rotunno R, et al. 2007. Mesoscale predictability of moist baroclinic waves: Convection-permitting experiments and multistage error growth dynamics [J]. J. Atmos. Sci., 64(10): 3579−3594. doi: 10.1175/JAS4028.1 [102] Zhang Y J, Zhang F Q, Stensrud D J, et al. 2015. Practical predictability of the 20 May 2013 tornadic thunderstorm event in Oklahoma: Sensitivity to synoptic timing and topographical influence [J]. Mon. Wea. Rev., 143(8): 2973−2997. doi: 10.1175/MWR-D-14-00394.1 [103] Zhang Y J, Zhang F Q, Stensrud D J, et al. 2016. Intrinsic predictability of the 20 May 2013 tornadic thunderstorm event in Oklahoma at storm scales [J]. Mon. Wea. Rev., 144(4): 1273−1298. doi: 10.1175/MWR-D-15-0105.1 -