高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

夏季副高次季节尺度东西变动特征及其与中国西南降水的关系

晏红明 字俣丞

晏红明, 字俣丞. 2021. 夏季副高次季节尺度东西变动特征及其与中国西南降水的关系[J]. 大气科学, 45(1): 1−20 doi: 10.3878/j.issn.1006-9895.2003.19204
引用本文: 晏红明, 字俣丞. 2021. 夏季副高次季节尺度东西变动特征及其与中国西南降水的关系[J]. 大气科学, 45(1): 1−20 doi: 10.3878/j.issn.1006-9895.2003.19204
YAN Hongming, ZI Yucheng. 2021. Characteristics of the Subseasonal-Scale Zonal Movement of Subtropical High in Summer and Its Relationship with Precipitation in Southwest China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(1): 1−20 doi: 10.3878/j.issn.1006-9895.2003.19204
Citation: YAN Hongming, ZI Yucheng. 2021. Characteristics of the Subseasonal-Scale Zonal Movement of Subtropical High in Summer and Its Relationship with Precipitation in Southwest China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(1): 1−20 doi: 10.3878/j.issn.1006-9895.2003.19204

夏季副高次季节尺度东西变动特征及其与中国西南降水的关系

doi: 10.3878/j.issn.1006-9895.2003.19204
基金项目: 国家自然科学基金项目41575097、U1902209、41775073、42030603,云南省自然科学基金重点项目2016FA041,西南区域重点项目2014-4
详细信息
    作者简介:

    晏红明,女,1966年出生,博士,研究员,主要从事季风气候研究和短期气候预测。E-mail: y-hm@netease.com

  • 中图分类号: P461

Characteristics of the Subseasonal-Scale Zonal Movement of Subtropical High in Summer and Its Relationship with Precipitation in Southwest China

Funds: National Natural Science Foundation of China (NSFC) (Grants 41575097, U1902209, 41775073, 42030603), Natural Science Key Foundation of Yunnan (Grant 2016FA041), Key Project of Southwest China (Grant 2014-4)
  • 摘要: 西北太平洋副热带高压(以下简称副高)是影响中国气候的大尺度环流系统,研究次季节尺度副高东西变动对西南地区降水的影响具有十分重要的意义。本文首先根据副高东西变动的关键区位置分别定义了前夏和后夏副高东西变动指数,指数具有显著的10~30天次季节周期,能够很好表征副高次季节东西变动的特征。根据指数的标准化值,共选取前夏和后夏东西事件195次(1374天)。进一步对东西事件的分析表明次季节尺度上副高东西变动与西南地区降水有十分密切的联系,在副高偏西(东)事件中,副高经历了由东→西→东(西→东→西)逐渐变化的过程,相应西南大部分地区的降水经历了逐渐由少→多→少(多→少→多)的演变,次季节尺度上西南地区降水对副高变化的响应与副高东西变动过程中副高北侧及副高主体区域的水汽和气流的垂直变化有很大的关系。另外,分析发现对于西南地区而言,受副高次季节东西变动的影响,贵州和重庆地区降水变化的一致性比较好,而云南和四川地区降水变化的区域差异较大,尤其是云南。前夏,在副高东西变动过程中云南大部分地区的降水呈现出与西南大部分地区,尤其与贵州和重庆地区的降水变化完全相反的特征,即副高偏西(东)事件中,云南大部分地区的降水偏少(多),西南其它大部地区降水偏多(少);后夏,除云南中北部地区,西南大部分地区的降水变化基本一致。
  • 图  1  选取的中国西南305个观测站点分布

    Figure  1.  Locations of 305 observation stations in Southwest China

    图  2  1979~2018年前夏(左列)和后夏(右列)气候平均风场(矢量,单位:m s−1)、高度特征线(红色线,单位:dagpm)和相对涡度(阴影,单位:10−5 s−1):(a、b)500 hPa;(c、d)700 hPa;(e、f)850 hPa。矩形方框表示关键区域位置,绿色虚线表示副高脊线

    Figure  2.  Climatology wind field (vectors, units: m s−1), height feature lines (red lines, units: dagpm), and relative vorticity (shaded, units: 10−5 s−1) in the early summer (left column) and late summer (right column) respectively at (a, b) 500 hPa, (c, d) 700 hPa, and (e, f) 850 hPa for 1979−2018. Rectangular boxes represent the regions of key areas. Green dot lines denote the ridge lines of WPSH (Western Pacific subtropical high)

    图  3  (a)前夏和(b)后夏700 hPa副高偏西和偏东事件时风场(矢量,单位:m s‒1)和相对涡度(阴影,单位:10−6 s‒1)的差值。红色矩形框表示关键区位置

    Figure  3.  Difference fields of wind (vectors, units: m s‒1) and relative vorticity (shaded, units: 10−6s‒1) at 700 hPa between WPSH westward and westward events in (a) early summer and (b) late summer. Red rectangles indicate the locations of the key areas

    图  4  (a)前夏和(b)后夏次季节异常副高东西指数的功率谱分析,(c)2018年5~8月副高东西指数的逐日标准化时间系列

    Figure  4.  Power spectrum analysis results of the subseasonal WPSH index in (a) early summer and (b) late summer; (c) the standardized time series of daily WPSH index from May to August 2018

    图  5  前夏副高东、西事件时588 dagpm特征线超前和滞后的合成:(a)偏西超前;(b)偏东超前;(c)偏西滞后;(d)偏东滞后

    Figure  5.  Leading and lagging composites of 588-dagpm characteristic lines during WPSH westward and eastward events in early summer: (a) Leading westward events; (b) leading eastward events; (c) lagging westward events; and (d) lagging eastward events

    图  6  图5,但为后夏

    Figure  6.  Same as Fig.5, but in late summer

    图  7  前夏副高偏西(左列)和偏东(右列)事件期间(a1、b1)200 hPa高度(等值线,单位:dagpm)和矢量风(箭头,单位:m s−1);(a2、b2)500 hPa高度(等值线,单位:dagpm)、矢量风(箭头,单位:m s−1)和垂直速度(阴影,单位:Pa s−1);(a3、b3)700 hPa高度(等值线,单位:dagpm)、矢量风(箭头,单位:m s−1)和相对涡度(阴影,单位:10−6 s−1)的合成场

    Figure  7.  Composite fields of (a1, b1) 200 hPa height(isolines, units: dagpm)and wind (vector arrows, units: m s−1), (a2, b2) 500 hPa height (isolines, units: dagpm), wind (vector arrows, units: m s−1) and vertical velocity (shaded area, units: Pa s−1), and (a3, b3) 700 hPa height (isolines, units: dagpm), wind (vector arrows, unit: m s−1) and relative vorticity (shaded, units: 10−6 s−1) during WPSH eastward (right column) and westward (left column) events in early summer

    图  8  图7,但为后夏

    Figure  8.  Same as Fig.7, but in late summer

    图  9  (a)前夏VORT-early和(b)后夏VORT-late指数回归的副高异常偏西和偏东事件期间200 hPa流函数(阴影,单位:106 m2 s‒1)和波通量场(矢量,单位:m2 s‒2)。绿色矢量箭头标注表示波通量通过90%的置信水平检验

    Figure  9.  Regression patterns of streamfunction (shaded areas, units: 106 m2 s‒1) and wave activity fluxes (vectors, units: m2 s‒2) at 200 hPa during WPSH westward and eastward events on (a) VORT-early and (b) VORT-later indexes. The green arrows represent the wave activity fluxes passing the test at 90% confidence level

    10  (续)

    10.  (Continued)

    图  10  (a1‒a9, b1‒b9)前夏和(c1‒c9, d1‒d9)后夏副高异常偏东、偏西事件西南地区次季节降水异常超前和滞后的合成(单位:mm d‒1)。实心圆点标注表示通过95%置信水平检验的区域

    Figure  10.  Leading and lagging composites of subseasonal precipitation anomalies (units: mm d−1) in Southwest China during WPSH eastward and westward events in (a1‒a9, b1‒b9) early and (c1‒c9, d1‒d9) late summer. The solid dots denote the areas passing the test at 95% confidence level

    图  11  根据前夏副高东西指数VORT-early超前滞后回归的(a–f)水汽通量(矢量,单位:kg m‒1 s‒1)和水汽通量散度(阴影,单位:10−5 kg m‒2 s‒1),以及(g–l)700 hPa垂直速度(阴影,单位:Pa s‒1)次季节尺度异常。绿色箭头为通过95%置信水平检验的水汽通量,黑色圆点标注的区域为水汽通量散度和垂直速度通过95%置信水平检验,(j)中绿色矩形框标注为选取垂直速度显著的关键区域,右列图中的黑色实线为零值线,所有图中的红色实线为西南各省省界

    Figure  11.  Leading and lagging regressions of (a–e) subseasonal-scale water vapor flux (vectors, units: kg m−2 s−1) and divergence of water vapor flux (shaded, units: 10−5 kg m−2 s−1), and (g–j) 700-hPa vertical velocity (units: Pa s‒1) on the WPSH index VORT in early summer. The green arrows represent the moisture flux that exceed the 95% significance test. The black dots represent the divergence of moisture flux and vertical velocity passing the test at 95% confidence level. Black solid lines denote 0 value line in right column maps and red solid lines denote the provincial boundary of Southwest China

    图  12  图11,但为后夏

    Figure  12.  Same as Fig.11, but in late summer

    图  13  前夏和后夏700 hPa不同区域(见图11j图12j矩形框标注的关键区)垂直速度(单位:Pa s−1)超前和滞后12天的逐日变化

    Figure  13.  Daily variation of vertical velocity leading and lagging 12 d (units: Pa s−1) at 700 hPa over different regions (the key regions marked by rectangular boxes in Fig.11j and Fig.12j) in early and late summers

    表  1  前夏和后夏次季节尺度副高偏西和偏东事件

    Table  1.   Subseasonal westward and eastward events of WPSH zonal movement in early summer and last summer

    偏西事件偏东事件
    前夏42次325天49次359天
    后夏49次329天55次365天
    下载: 导出CSV
  • [1] Dee D P, Uppala S M, Simmons A J, et al. 2011. The ERA‐interim reanalysis: Configuration and performance of the data assimilation system [J]. Quart. J. Roy. Meteor. Soc., 137(656): 553−597. doi: 10.1002/qj.828
    [2] Guan W N, Ren X J, Shang W, et al. 2018. Subseasonal zonal oscillation of the western Pacific subtropical high during early summer [J]. J. Meteor. Res., 32(5): 768−780. doi: 10.1007/s13351-018-8061-2
    [3] Krishnamurthy V, Shukla J. 2000. Intraseasonal and interannual variability of rainfall over India [J]. J. Climate, 13(24): 4366−4377. doi:10.1175/1520-0442(2000)013<0001:IAIVOR>2.0.CO;2
    [4] 李建平, 朱建磊. 2008. 晚春初夏西太平洋副热带高压南撤过程的气候学特征 [J]. 气象学报, 66(6): 926−939. doi: 10.11676/qxxb2008.084

    Li Jianping, Zhu Jianlei. 2008. Climatological features of the western pacific subtropical high southward retreat process in late-spring and early-summer [J]. Acta Meteor. Sinica (in Chinese), 66(6): 926−939. doi: 10.11676/qxxb2008.084
    [5] 李崇银, 杨辉, 顾薇. 2008. 中国南方雨雪冰冻异常天气原因的分析 [J]. 气候与环境研究, 13(2): 113−122. doi: 10.3878/j.issn.1006-9585.2008.02.01

    Li Chongyin, Yang Hui, Gu Wei. 2008. Cause of severe weather with cold air, freezing rain and snow over South China in January 2008 [J]. Climatic Environ. Res. (in Chinese), 13(2): 113−122. doi: 10.3878/j.issn.1006-9585.2008.02.01
    [6] Li J, Ding T, Jia X L, et al. 2015. Analysis on the extreme heat wave over China around Yangtze River region in the summer of 2013 and its main contributing factors [J]. Adv. Meteor., 2015: 706713. doi: 10.1155/2015/706713
    [7] Liu Q, Zhao T J, Mao H T, et al. 2019. Decadal variations in the relationship between the western Pacific subtropical high and summer heat waves in East China [J]. J. Climate, 32(5): 1627−1640. doi: 10.1175/JCLI-D-18-0093.1
    [8] 刘芸芸, 李维京, 艾孑兑 秀, 等. 2012. 月尺度西太平洋副热带高压指数的重建与应用 [J]. 应用气象学报, 23(4): 414−423. doi: 10.3969/j.issn.1001-7313.2012.04.004

    Liu Yunyun, Li Weijing, Ai Wanxiu, et al. 2012. Reconstruction and application of the monthly western Pacific subtropical high indices [J]. J. Appl. Meteor. Sci. (in Chinese), 23(4): 414−423. doi: 10.3969/j.issn.1001-7313.2012.04.004
    [9] Lu R Y. 2001. Interannual variability of the summertime North Pacific subtropical high and its relation to atmospheric convection over the warm pool [J]. J. Meteor. Soc. Japan, 79(3): 771−783. doi: 10.2151/jmsj.79.771
    [10] Lu R Y, Dong B W. 2001. Westward extension of North Pacific subtropical high in summer [J]. J. Meteor. Soc. Japan, 79(6): 1229−1241. doi: 10.2151/jmsj.79.1229
    [11] 陆日宇, 李颖, Ryu C S. 2007. 夏季西太副热带高压的东西偏移和对流层低层环流变化的主要模态的关系 [J]. 自然科学进展, 17(4): 546−550. doi: 10.3321/j.issn:1002-008X.2007.04.019

    Lu Riyu, Li Ying, Ryu C S. 2007. The relationship between the east‒west migration of the western Pacific subtropical high and the main modes of the lower tropospheric circulation in summer [J]. Progress in Natural Science (in Chinese), 17(4): 546−550. doi: 10.3321/j.issn:1002-008X.2007.04.019
    [12] 祁莉, 张祖强, 何金海, 等. 2008. 气候平均场上西太平洋副热带高压双脊线过程可能成因的动力诊断分析 [J]. 大气科学, 32(2): 395−404. doi: 10.3878/j.issn.1006-9895.2008.02.17

    Qi Li, Zhang Zuqiang, He Jinhai, et al. 2008. Dynamical diagnosis on possible formation cause of climatological western Pacific subtropical high double ridges process [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(2): 395−404. doi: 10.3878/j.issn.1006-9895.2008.02.17
    [13] 钱贞成, 喻世华. 1991. 东亚地区凝结加热的中期变动与西太平洋副高准双周振荡的关系 [J]. 热带气象, 7(1): 57−63.

    Qian Zhencheng, Yu Shihua. 1991. The relationship between medium-range fluctuation of condensation heating JN East Asia and quasi-2 weeks oscillation of the west Pacific subtropical high [J]. J. Trop. Meteor. (in Chinese), 7(1): 57−63.
    [14] Ren X J, Yang D J, Yang X Q. 2015. Characteristics and mechanisms of the subseasonal eastward extension of the South Asian high [J]. J. Climate, 28(17): 6799−6822. doi: 10.1175/JCLI-D-14-00682.1
    [15] Simmons A J, Jones P D, da Costa Bechtold V, et al. 2004. Comparison of trends and low-frequency variability in CRU, ERA‐40, and NCEP/NCAR analyses of surface air temperature [J]. J. Geophys. Res., 109(D24): D24115. doi: 10.1029/2004JD005306
    [16] Sui C H, Chung P H, Li T. 2007. Interannual and interdecadal variability of the summertime western North Pacific subtropical high [J]. Geophys. Res. Lett., 34(11): L11701. doi: 10.1029/2006GL029204
    [17] 苏同华, 薛锋, 陈敏艳, 等. 2017. 季节内振荡影响西太平洋副热带高压两次北跳的机制 [J]. 大气科学, 41(3): 437−460. doi: 10.3878/j.issn.1006-9895.1609.16125

    Su Tonghua, Xue Feng, Chen Minyan, et al. 2017. A mechanism study for the intraseasonal oscillation impact on the two northward jumps of the western Pacific subtropical high [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 41(3): 437−460. doi: 10.3878/j.issn.1006-9895.1609.16125
    [18] 王黎娟, 罗玲, 张兴强, 等. 2005. 西太平洋副热带高压东西位置变动特征分析 [J]. 南京气象学院学报, 28(5): 577−585.

    Wang Lijuan, Luo Ling, Zhang Xinqiang, et al. 2005. Variation features of the longitudinal position of the western Pacific subtropical high [J]. Journal of Nanjing Institute of Meteorology (in Chinese), 28(5): 577−585.
    [19] 王黎娟, 陈璇, 管兆勇, 等. 2009. 我国南方洪涝暴雨期西太平洋副高短期位置变异的特点及成因 [J]. 大气科学, 33(5): 1047−1057. doi: 10.3878/j.issn.1006-9895.2009.05.15

    Wang Lijuan, Chen Xuan, Guan Zhaoyong, et al. 2009. Features of the short-team position variation of the western Pacific subtropical high during the torrential rain causing severe floods in southern China and it’s possible cause [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33(5): 1047−1057. doi: 10.3878/j.issn.1006-9895.2009.05.15
    [20] Wang P Y, Tang J P, Wang S Y, et al. 2018. Regional heatwaves in China: A cluster analysis [J]. Climate Dyn., 50(5-6): 1901−1917. doi: 10.1007/s00382-017-3728-4
    [21] 韦道明, 李崇银, 谭言科. 2011. 夏季西太平洋副热带高压南北位置变动特征及其影响 [J]. 气候与环境研究, 16(3): 255−272. doi: 10.3878/j.issn.1006-9585.2011.03.01

    Wei Daoming, Li Chongyin, Tan Yanke. 2011. Variation features and the impact of the latitudinal position of the western Pacific subtropical high in summer [J]. Climatic Environ. Res. (in Chinese), 16(3): 255−272. doi: 10.3878/j.issn.1006-9585.2011.03.01
    [22] 卫捷, 杨辉, 孙淑清. 2004. 西太平洋副热带高压东西位置异常与华北夏季酷暑 [J]. 气象学报, 62(3): 308−316. doi: 10.11676/qxxb2004.031

    Wei Jie, Yang Hui, Sun Shuqing. 2004. Relationship between the anomaly longitudinal position of subtropical high in the western Pacific and severe hot weather in North China in summer [J]. Acta Meteor. Sinica (in Chinese), 62(3): 308−316. doi: 10.11676/qxxb2004.031
    [23] Wu L G, Wang C. 2015. Has the western Pacific subtropical high extended westward since the late 1970s? [J]. J. Climate, 28(13): 5406−5413. doi: 10.1175/JCLI-D-14-00618.1
    [24] 晏红明, 王灵. 2019. 西北太平洋副高东西变动与西南地区降水的关系 [J]. 应用气象学报, 30(3): 360−375. doi: 10.11898/1001-7313.20190309

    Yan Hongming, Wang Ling. 2019. The relationship between East-west movement of subtropical high over northwestern Pacific and precipitation in southwestern China [J]. J. Appl. Meteor. Sci. (in Chinese), 30(3): 360−375. doi: 10.11898/1001-7313.20190309
    [25] 晏红明, 程建刚, 郑建萌, 等. 2012. 2009年云南秋季特大干旱的气候成因分析 [J]. 大气科学学报, 35(2): 229−239. doi: 10.3969/j.issn.1674-7097.2012.02.011

    Yan Hongming, Cheng Jiangang, Zheng Jianmeng, et al. 2012. The climate cause of heavy drought in Yunnan in autumn 2009 [J]. Trans. Atmos. Sci. (in Chinese), 35(2): 229−239. doi: 10.3969/j.issn.1674-7097.2012.02.011
    [26] Yang H, Sun S Q. 2003. Longitudinal displacement of the subtropical high in the western Pacific in summer and its influence [J]. Adv. Atmos. Sci., 20(6): 921−933. doi: 10.1007/BF02915515
    [27] Yang R W, Xie Z A, Cao J. 2017. A dynamic index for the westward ridge point variability of the western Pacific subtropical high during summer [J]. J. Climate, 30(9): 3325−3341. doi: 10.1175/JCLI-D-16-0434.1
    [28] Yeo S R, Jhun J G, Kim W M. 2012. Intraseasonal variability of western North Pacific subtropical high based on the El Niño influence and its relationship with East Asian summer monsoon [J]. Asia-Pacific J. Atmos. Sci., 48(1): 43−53. doi: 10.1007/s13143-012-0005-7
    [29] Yu D D, Zhang R, Hong M. 2007. A characteristic correlation analysis between the Asia summer monsoon members and the West Pacific subtropical high [J]. J. Trop. Meteor., 13(1): 101−104.
    [30] 喻世华, 王绍龙. 1989. 西太平洋副热带高压中期进退的环流机制 [J]. 海洋学报, 11(3): 372−377.

    Yu Shihua, Wang Shaolong. 1989. The circulation mechanism of the mid-term advance and retreat of the western Pacific subtropical high [J]. Acta Oceanol. Sinica (in Chinese), 11(3): 372−377.
    [31] 张庆云, 陶诗言. 1999. 夏季西太平洋副热带高压北跳及异常的研究 [J]. 气象学报, 57(5): 539−548. doi: 10.11676/qxxb1999.052

    Zhang Qingyun, Tao Shiyan. 1999. The study of the sudden northward jump of the subtropical high over the western Pacific [J]. Acta Meteor. Sinica (in Chinese), 57(5): 539−548. doi: 10.11676/qxxb1999.052
    [32] 张韧, 喻世华. 1992. 夏季西太平洋副热带高压准双周振荡的动力学机制 [J]. 热带气象, 8(4): 306−314.

    Zhang Ren, Yu Shihua. 1992. On the dynamic mechanism of biweekly oscillation of subtropical high for the western Pacific in summer [J]. J. Trop. Meteor. (in Chinese), 8(4): 306−314.
    [33] 赵思雄, 孙建华, 陈红, 等. 1998. 1998年7月长江流域特大洪水期间暴雨特征的分析研究 [J]. 气候与环境研究, 3(4): 368−381. doi: 10.3878/j.issn.1006-9585.1998.04.09

    Zhao Sixiong, Sun Jianhua, Chen Hong, et al. 1998. Study of heavy rainfall in the Changjiang River during July 1998 [J]. Climatic Environ. Res. (in Chinese), 3(4): 368−381. doi: 10.3878/j.issn.1006-9585.1998.04.09
    [34] Zhou T J, Ma S M, Zou L W. 2014. Understanding a hot summer in central eastern China: Summer 2013 in context of multimodel trend analysis [J]. Bull. Amer. Meteor. Soc., 95(9): S54−S57.
    [35] Zhou T J, Yu R C, Zhang J, et al. 2009. Why the western Pacific subtropical high has extended westward since the late 1970s [J]. J. Climate, 22(8): 2199−2215. doi: 10.1175/2008jcli2527.1
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  21
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-21
  • 录用日期:  2020-04-01
  • 网络出版日期:  2020-04-27
  • 刊出日期:  2021-01-19

目录

    /

    返回文章
    返回