高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

“威马逊”(1409)强降水物理过程模拟诊断研究

薛一迪 崔晓鹏

薛一迪, 崔晓鹏. 2020. “威马逊”(1409)强降水物理过程模拟诊断研究[J]. 大气科学, 44(6): 1320−1336 doi:  10.3878/j.issn.1006-9895.2003.19224
引用本文: 薛一迪, 崔晓鹏. 2020. “威马逊”(1409)强降水物理过程模拟诊断研究[J]. 大气科学, 44(6): 1320−1336 doi:  10.3878/j.issn.1006-9895.2003.19224
XUE Yidi, CUI Xiaopeng. 2020. Diagnostic and Numerical Study on Physical Process of Strong Rainfall Associated with Rammasun (1409) [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(6): 1320−1336 doi:  10.3878/j.issn.1006-9895.2003.19224
Citation: XUE Yidi, CUI Xiaopeng. 2020. Diagnostic and Numerical Study on Physical Process of Strong Rainfall Associated with Rammasun (1409) [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(6): 1320−1336 doi:  10.3878/j.issn.1006-9895.2003.19224

“威马逊”(1409)强降水物理过程模拟诊断研究

doi: 10.3878/j.issn.1006-9895.2003.19224
基金项目: 国家重点基础研究发展计划(973计划)项目2015CB452804
详细信息
    作者简介:

    薛一迪,女,1992年出生,博士研究生,主要从事热带气旋暴雨过程研究。E-mail: xueyidi@mail.iap.ac.cn

    通讯作者:

    崔晓鹏,E-mail: xpcui@mail.iap.ac.cn

  • 中图分类号: P444

Diagnostic and Numerical Study on Physical Process of Strong Rainfall Associated with Rammasun (1409)

Funds: National Basic Research Program of China (973 Program) (Grant 2015CB452804)
  • 摘要: 利用WRF模式,结合三维降水诊断方程和降水效率定义,针对1409号超强台风“威马逊”临岸迅速加强为超强台风并登陆我国华南沿海这一时段的强降水物理过程开展了高分辨率数值模拟诊断研究。结果表明,“威马逊”主体环流区域内一直维持很强的平均降水强度(PS),陆地和海洋PS的相对贡献基本呈反向变化,登陆期间陆面摩擦辐合增强,有利于水汽更多地向陆地区域辐合(QWVA代表垂直积分的三维水汽通量辐合/辐散率,此时段QWVA为正值),造成登陆前短时段内陆地上空局地大气增湿(QWVL代表垂直积分的水汽局地变化率的负值,此时段Q WVL为负值),借助云微物理过程快速转化为液相和固相云水凝物(QCLLQCIL分别代表垂直积分的液相和固相云水凝物局地变化率的负值,此时段QCLLQCIL为负值),促使陆地上空降水云系快速发展和降水强度增强,而当环流中心位于北部湾洋面时,海洋QWVA的相对贡献显著增强,登陆期间下垫面的变化导致水汽相关物理过程明显变化,进而造成降水云系和强降水中心的显著变化;与陆地相比,海洋表面蒸发的作用更强,变化更明显;“威马逊”影响华南沿海期间,主体环流圈内平均的QCLLQCIL均基本呈现“正—负—正”的变化特征,当环流中心位于北部湾洋面(三次登陆时期)时水凝物含量以增加(减少)为主;“威马逊”主体环流区域内一直维持高降水效率,从主体环流圈接触陆地开始,陆地降水效率迅速升高,而海洋降水效率在绝大多数积分时段内维持较高数值,只在第二和第三次登陆后有所降低。
  • 图  1  模拟区域设置

    Figure  1.  Model domain configuration

    图  2  2014年7月16日06至19日06时(a)实况(实线)与模拟(虚线,分辨率3 km)的“威马逊”移动路径,(b)观测与模拟的路径偏差(单位:km)以及(c)观测(实线)与模拟(虚线)的热带气旋中心附近最低海平面气压(实心点线,单位:hPa)和近地面最大风速(空心点线,单位:m s−1)。图a中的数字前两位表示日期,后两位表示时刻,如1606表示16日06时

    Figure  2.  (a) Observed (solid lines) and simulated (dashed lines, 3-km horizontal resolution) tracks of Rammasun, (b) distance deviation of observed and simulated tracks (units: km), (c) time series of minimum sea level pressure (units: hPa) and maximum wind speed (units: m s−1) from observation data (solid lines) and simulation (dashed lines) at 6-h intervals from 0600 UTC 16 July to 0600 UTC 19 July 2014. In Fig. a, the first two numbers represent date, the last two numbers represent time, for example, 1606 represents 0600 UTC 16 July

    图  3  NCEP FNL分析资料(左,分辨率为1°)与模拟(右,分辨率为54 km)的500 hPa位势高度场(黑色等值线,单位:gpm,以5780 gpm为界,>5780 gpm的位势高度场间隔为20 gpm,<5780 gpm的位势高度场间隔为40 gpm,加粗黑线代表5880 gpm)、850 hPa风矢量[仅绘制出≥10 m s−1(红色箭头)]和200 hPa风矢量[仅绘制出≥30 m s−1(蓝色风羽)]:(a1、b1)2014年7月16日06时;(a2、b2)2014年7月17日06时;(a3、b3)2014年7月18日06时;(a4、b4)2014年7月19日06时

    Figure  3.  500-hPa geopotential height (black contours, units: gpm, the thick lines indicate 5880 gpm, the contours interval is 20 gpm when the values are greater than 5780 gpm, the contours interval is 40 gpm when the values are less than 5780 gpm), 850-hPa wind field (red vectors indicate≥10 m s−1 wind) and 200-hPa wind field (blue wind bars indicate≥30 m s−1 wind) from the National Centers for Environmental Prediction Final Operational Global Analysis data (NCEP FNL, left column) with horizontal resolution of 1° and numerical simulation (right column) with horizontal resolution of 54 km at (a1, b1) 0600 UTC 16 July 2014, (a2, b2) 0600 UTC 17 July 2014, (a3, b3) 0600 UTC 18 July 2014, (a4, b4) 0600 UTC 19 July 2014

    图  4  实况(左)与模拟(右,分辨率为3 km)的6 h累积降水量(单位:mm)分布:(a1、b1)2014年7月16日12~18时;(a2、b2)2014年7月17日00~06时;(a3、b3)2014年7月17日12~18时;(a4、b4)2014年7月18日00~06时;(a5、b5)2014年7月18日12~18时;(a6、b6)2014年7月19日00~06时

    Figure  4.  Six-hour accumulated precipitation (units: mm) from observations (left column) and simulation (right column, 3-km horizontal resolution): (a1, b1) 1200–1800 UTC 16 July 2014; (a2, b2) 0000–0600 UTC 17 July 2014; (a3, b3) 1200–1800 UTC 17 July 2014; (a4, b4) 0000–0600 UTC 18 July 2014; (a5, b5) 1200–1800 UTC 18 July 2014; (a6, b6) 0000–0600 UTC 19 July 2014

    图  5  模拟的近地面10 m高度处风速为17 m s−1的格点与“威马逊”中心距离(单位:km)的盒须图。蓝色叉号代表平均值,矩形中间的红点为中位数,矩形上(下)边代表75(25)百分位

    Figure  5.  The box plot of the distances (units: km) between the simulated grid (wind speed is 17 m s−1 at 10-m height) and Rammasun center. The blue crosses represent the average, the red points in the middle of the rectangle denote the median, and the upper (lower) sides of the rectangle represent the 75 (25) percentile

    图  6  2014年7月16日18时至19日06时大风圈区域平均的地面降水率(PS)、水汽收支相关变率(QWV)、云水凝物收支相关变率(QCM),以及“威马逊”大风圈环流区域内陆地格点数、海洋格点数占大风圈区域总格点百分比的时间演变。红色实线:“威马逊”大风圈环流区域平均值;绿色虚线:“威马逊”大风圈环流区域内陆地格点的相对贡献;蓝色虚线:“威马逊”大风圈环流区域内海洋格点的相对贡献。左起第一条黑色竖实线代表“威马逊”大风圈环流区域开始接触陆地的时刻,其他三条黑色竖实线分别对应“威马逊”三次登陆时刻

    Figure  6.  Time series of area-averaged (in the R17 domain, R17 domain represents the main circulation area of Rammasun) surface precipitation rate (PS), change rates of moisture-related processes (QWV), change rates of cloud-related processes (QCM), and the percentage of land grid point numbers, sea grid numbers in all grid numbers in the R17 domain from 1800 UTC 16 July 2014 to 0600 UTC 19 July 2014. The red solid lines represent the area-averaged values in the R17 domain, the green (blue) dashed lines denote the relative contribution of land (sea) grid in the R17 domain, the first black vertical solid line from the left represents the moment when the land grid appeared in the R17 domain, and the other three black vertical solid lines correspond to three moments of the landfall of Rammasun

    图  7  图6,但为水汽收支相关过程各项变率(QWVLQWVAQWVDQWVE,单位:mm h−1

    Figure  7.  As in Fig. 6, but for change rates of moisture-related processes [QWVL (vertically integrated negative local change rate of water vapor), QWVA (vertically integrated three-dimensional flux convergence/divergence rate of moisture), QWVD (vertically integrated three-dimensional moisture diffusion), and QWVE (surface evaporation rate), units: mm h−1]

    图  8  图6,但为云水凝物收支相关过程各项变率(QCLQCLLQCLAQCLDQCIQCILQCIAQCID,单位:mm h−1

    Figure  8.  As in Fig. 6, but for change rates of cloud-related processes[ QCL (the rate of change for liquid-phase hydrometeors), QCLL (vertically integrated negative local change rate of liquid-phase hydrometeors), QCLA (vertically integrated three-dimensional flux convergence/divergence rate of liquid-phase hydrometeors), QCLD (vertically integrated three-dimensional diffusion of liquid-phase hydrometeors), QCI (the rate of change for ice-phase hydrometeors), QCIL (vertically integrated negative local change rate of ice-phase hydrometeors), QCIA (vertically integrated three-dimensional flux convergence/divergence rate of ice-phase hydrometeors), QCID (vertically integrated three-dimensional diffusion of ice-phase hydrometeors), units: mm h−1]

    图  9  图6,但为大尺度降水效率(LSPE)的时间演变

    Figure  9.  As in Fig. 6, but for time series of large-scale precipitation efficiency (LSPE)

  • [1] Atallah E, Bosart L F, Aiyyer A R. 2007. Precipitation distribution associated with landfalling tropical cyclones over the eastern United States [J]. Mon. Wea. Rev., 135(6): 2185−2206. doi: 10.1175/MWR3382.1
    [2] Auer Jr A H, Marwitz J D. 1968. Estimates of air and moisture flux into hailstorms on the high plains [J]. J. Appl. Meteor., 7(2): 196−198. doi:10.1175/1520-0450(1968)007<0196:EOAAMF>2.0.CO;2
    [3] Braham Jr R R. 1952. The water and energy budgets of the thunderstorm and their relation to thunderstorm development [J]. J. Meteor., 9(4): 227−242. doi:10.1175/1520-0469(1952)009<0227:TWAEBO>2.0.CO;2
    [4] Chan K T F, Chan J C L. 2016. Sensitivity of the simulation of tropical cyclone size to microphysics schemes [J]. Adv. Atmos. Sci., 33(9): 1024−1035. doi: 10.1007/s00376-016-5183-2
    [5] 陈见, 孙红梅, 高安宁, 等. 2014. 超强台风“威马逊”与“达维”进入北部湾强度变化对比分析 [J]. 暴雨灾害, 33(4): 392−400. doi:  10.3969/j.issn.1004-9045.2014.04.012

    Chen Jian, Sun Hongmei, Gao Anning, et al. 2014. Comparative analysis of intensity changes between super typhoons Rammasun (1409) and Damrey (0518) during the period of entering the Beibu Gulf [J]. Torrential Rain and Disasters (in Chinese), 33(4): 392−400. doi: 10.3969/j.issn.1004-9045.2014.04.012
    [6] Chen L S, Li Y, Cheng Z Q. 2010. An overview of research and forecasting on rainfall associated with landfalling tropical cyclones [J]. Adv. Atmos. Sci., 27(5): 967−976. doi: 10.1007/s00376-010-8171-y
    [7] 程正泉, 陈联寿, 李英. 2009. 登陆台风降水的大尺度环流诊断分析 [J]. 气象学报, 67(5): 840−850. doi:  10.3321/j.issn:0577-6619.2009.05.015

    Cheng Zhengquan, Chen Lianshou, Li Ying. 2009. Diagnostic analysis of large-scale circulation features associated with strong and weak landfalling typhoon precipitation events [J]. Acta Meteor. Sinica (in Chinese), 67(5): 840−850. doi: 10.3321/j.issn:0577-6619.2009.05.015
    [8] 程正泉, 陈联寿, 徐祥德, 等. 2005. 近10年中国台风暴雨研究进展 [J]. 气象, 31(12): 3−9. doi:  10.3969/j.issn.1000-0526.2005.12.001

    Cheng Zhengquan, Chen Lianshou, Xu Xiangde, et al. 2005. Research progress on typhoon heavy rainfall in China for last ten years [J]. Meteor. Mon. (in Chinese), 31(12): 3−9. doi: 10.3969/j.issn.1000-0526.2005.12.001
    [9] Chong M, Hauser D. 1989. A tropical squall line observed during the COPT 81 experiment in West Africa. Part II: Water-budget [J]. Mon. Wea. Rev., 117(4): 728−744. doi:10.1175/1520-0493(1989)117<0728:ATSLOD>2.0.CO;2
    [10] 丛春华, 陈联寿, 雷小途, 等. 2011. 台风远距离暴雨的研究进展 [J]. 热带气象学报, 27(2): 264−270. doi:  10.3969/j.issn.1004-4965.2011.02.016

    Cong Chunhua, Chen Lianshou, Lei Xiaotu, et al. 2011. An overview on the study of tropical cyclone remote rainfall [J]. J. Trop. Meteor. (in Chinese), 27(2): 264−270. doi: 10.3969/j.issn.1004-4965.2011.02.016
    [11] Cui X P, Li X F. 2006. Role of surface evaporation in surface rainfall processes [J]. J. Geophys. Res. Atmos., 111(D17): D17112. doi: 10.1029/2005JD006876
    [12] 崔晓鹏. 2009. 地面降水诊断方程对降水过程的定量诊断 [J]. 大气科学, 33(2): 375−387. doi:  10.3878/j.issn.1006-9895.2009.02.15

    Cui Xiaopeng. 2009. Quantitative diagnostic analysis of surface rainfall processes by surface rainfall equation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33(2): 375−387. doi: 10.3878/j.issn.1006-9895.2009.02.15
    [13] Cui X P, Li X F. 2009. Diurnal responses of tropical convective and stratiform rainfall to diurnally varying sea surface temperature [J]. Meteor. Atmos. Phys., 104(1–2): 53−61. doi: 10.1007/s00703-008-0016-1
    [14] Cui X P, Li X F. 2011. A cloud-resolving modeling study of short-term surface rainfall processes [J]. Meteor. Atmos. Phys., 111(1–2): 1−11. doi: 10.1007/s00703-010-0121-9
    [15] 邓琳, 端义宏, 高文华, 等. 2016. 超强台风“威马逊”(2014)云微物理特征的模拟与对比分析 [J]. 气象学报, 74(5): 697−714. doi:  10.11676/qxxb2016.058

    Deng Lin, Duan Yihong, Gao Wenhua, et al. 2016. Numerical simulation and comparison of cloud microphysical features of super typhoon Rammasun (2014) [J]. Acta Meteor. Sinica (in Chinese), 74(5): 697−714. doi: 10.11676/qxxb2016.058
    [16] 丁治英, 陈久康. 1995. 有效位能和冷空气活动与台风暴雨增幅的研究 [J]. 热带气象学报, 11(1): 80−85.

    Ding Zhiying, Chen Jiukang. 1995. A study of relationship between enhancement of typhoon rain and available potential energy and cold air [J]. J. Trop. Meteor. (in Chinese), 11(1): 80−85.
    [17] Doswell III C A, Brooks H E, Maddox R A. 1996. Flash flood forecasting: An ingredients-based methodology [J]. Wea. Forecasting, 11(4): 560−581. doi:10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2
    [18] Ferrier B S, Simpson J, Tao W K. 1996. Factors responsible for precipitation efficiencies in midlatitude and tropical squall simulations [J]. Mon. Wea. Rev., 124(10): 2100−2125. doi:10.1175/1520-0493(1996)124<2100:FRFPEI>2.0.CO;2
    [19] Gao S T, Cui X P, Zhou Y S, et al. 2005. Surface rainfall processes as simulated in a cloud-resolving model [J]. J. Geophys. Res. Atmos., 110(D10): D10202. doi: 10.1029/2004JD005467
    [20] Grell G A. 1993. Prognostic evaluation of assumptions used by cumulus parameterizations [J]. Mon. Wea. Rev., 121(3): 764−787. doi:10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2
    [21] Heymsfield G M, Schotz S. 1985. Structure and evolution of a severe squall line over Oklahoma [J]. Mon. Wea. Rev., 113(9): 1563−1589. doi:10.1175/1520-0493(1985)113<1563:SAEOAS>2.0.CO;2
    [22] Huang Y J, Cui X P. 2015a. Moisture sources of torrential rainfall events in the Sichuan basin of China during summers of 2009–13 [J]. J. Hydrometeorol., 16(4): 1906−1917. doi: 10.1175/JHM-D-14-0220.1
    [23] Huang Y J, Cui X P. 2015b. Moisture sources of an extreme precipitation event in Sichuan, China, based on the Lagrangian method [J]. Atmos. Sci. Lett., 16(2): 177−183. doi: 10.1002/asl2.562
    [24] Huang Y J, Cui X P, Li X F. 2016. A three-dimensional WRF-based precipitation equation and its application in the analysis of roles of surface evaporation in a torrential rainfall event [J]. Atmos. Res., 169: 54−64. doi: 10.1016/j.atmosres.2015.09.026
    [25] Lau K M, Wu H T. 2003. Warm rain processes over tropical oceans and climate implications [J]. Geophys. Res. Lett., 30(24): 2290. doi: 10.1029/2003GL018567
    [26] Lau K M, Zhou Y P, Wu H T. 2008. Have tropical cyclones been feeding more extreme rainfall? [J]. J. Geophys. Res. Atmos., 113(D23): D23113. doi: 10.1029/2008JD009963
    [27] Li X F, Sui C H, Lau K M. 2002. Precipitation efficiency in the tropical deep convective regime: A 2-d cloud resolving modeling study [J]. J. Meteor. Soc. Japan, 80(2): 205−212. doi: 10.2151/jmsj.80.205
    [28] Liu M F, Vecchi G A, Smith J A, et al. 2018. Projection of landfalling-tropical cyclone rainfall in the eastern United States under anthropogenic warming [J]. J. Climate, 31(18): 7269−7286. doi: 10.1175/JCLI-D-17-0747.1
    [29] 刘圣楠, 崔晓鹏. 2018. “碧利斯” (2006) 暴雨过程降水强度和降水效率分析 [J]. 大气科学, 42(1): 192−208. doi:  10.3878/j.issn.1006-9895.1704.17148

    Liu Shengnan, Cui Xiaopeng. 2018. Diagnostic analysis of rate and efficiency of torrential rainfall associated with Bilis (2006) [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(1): 192−208. doi: 10.3878/j.issn.1006-9895.1704.17148
    [30] Meng W G, Wang Y Q. 2016a. A diagnostic study on heavy rainfall induced by typhoon Utor (2013) in South China: 1. Rainfall asymmetry at landfall [J]. J. Geophys. Res. Atmos., 121(21): 12781−12802. doi: 10.1002/2015JD024647
    [31] Meng W G, Wang Y Q. 2016b. A diagnostic study on heavy rainfall induced by landfalling typhoon Utor (2013) in South China: 2. Postlandfall rainfall [J]. J. Geophys. Res. Atmos., 121(21): 12803−12819. doi: 10.1002/2015JD024646
    [32] 潘旸, 沈艳, 宇婧婧, 等. 2012. 基于最优插值方法分析的中国区域地面观测与卫星反演逐时降水融合试验 [J]. 气象学报, 70(6): 1381−1389.

    Pan Yang, Shen Yan, Yu Jingjing, et al. 2012. Analysis of the combined gauge-satellite hourly precipitation over China based on the OI technique [J]. Acta Meteor. Sinica (in Chinese), 70(6): 1381−1389.
    [33] 潘旸, 宇婧婧, 廖捷, 等. 2011. 地面和卫星降水产品对台风莫拉克降水监测能力的对比分析 [J]. 气象, 37(5): 564−570. doi:  10.7519/j.issn.1000-0526.2011.05.007

    Pan Yang, Yu Jingjing, Liao Jie, et al. 2011. Assessment on the rainfall monitoring of typhoon Morakot by ground-gauged and satellite precipitation products [J]. Meteor. Mon. (in Chinese), 37(5): 564−570. doi: 10.7519/j.issn.1000-0526.2011.05.007
    [34] Sapiano M R P, Arkin P A. 2009. An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data [J]. J. Hydrometeorol., 10(1): 149−166. doi: 10.1175/2008JHM1052.1
    [35] 沈艳, 潘旸, 宇婧婧, 等. 2013. 中国区域小时降水量融合产品的质量评估 [J]. 大气科学学报, 36(1): 37−46. doi:  10.3969/j.issn.1674-7097.2013.01.005

    Shen Yan, Pan Yang, Yu Jingjing, et al. 2013. Quality assessment of hourly merged precipitation product over China [J]. Trans. Atmos. Sci. (in Chinese), 36(1): 37−46. doi: 10.3969/j.issn.1674-7097.2013.01.005
    [36] Skamarock W C, Klemp J B, Dudhia J, et al. 2008. A description of the advanced research WRF version 3 [R]. NCAR Technical Note NCAR/TN-475+STR. doi: 10.5065/D68S4MVH
    [37] Sui C H, Li X F, Yang M J, et al. 2005. Estimation of oceanic precipitation efficiency in cloud models [J]. J. Atmos. Sci., 62(12): 4358−4370. doi: 10.1175/JAS3587.1
    [38] Sui C H, Li X F, Yang M J. 2007. On the definition of precipitation efficiency [J]. J. Atmos. Sci., 64(12): 4506−4513. doi: 10.1175/2007JAS2332.1
    [39] Tao W K, Johnson D, Shie C L. 2004. The atmospheric energy budget and large-scale precipitation efficiency of convective systems during TOGA COARE, GATE, SCSMEX, and ARM: Cloud-resolving model simulations [J]. J. Atmos. Sci., 61(20): 2405−2423. doi:10.1175/1520-0469(2004)061<2405:TAEBAL>2.0.CO;2
    [40] Wang L J, Dai Z J, He J L. 2017. Numerical simulation of the relationship between the maintenance and increase in heavy rainfall of the landing tropical storm Bilis and moisture transport from lower latitudes [J]. J. Trop. Meteor., 23(1): 47−57.
    [41] Wang M J, Zhao K, Xue M, et al. 2016. Precipitation microphysics characteristics of a typhoon Matmo (2014) rainband after landfall over eastern China based on polarimetric radar observations [J]. J. Geophys. Res. Atmos., 121(20): 12415−12433. doi: 10.1002/2016JD025307
    [42] 王晓慧, 崔晓鹏, 郝世峰, 等. 2019a. 热带气旋“苏迪罗”(2015)海上活动时段降水物理过程模拟诊断研究 [J]. 大气科学, 43(2): 417−436. doi:  10.3878/j.issn.1006-9895.1804.18118

    Wang Xiaohui, Cui Xiaopeng, Hao Shifeng, et al. 2019a. Diagnostic and numerical study on surface rainfall processes associated with tropical cyclone Soudelor (2015) over the ocean [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(2): 417−436. doi: 10.3878/j.issn.1006-9895.1804.18118
    [43] 王晓慧, 崔晓鹏, 郝世峰, 等. 2019b. 热带气旋“苏迪罗”(2015)海上活动时段降水物理过程模拟诊断研究——海表温度敏感性试验 [J]. 大气科学, 43(5): 1125−1142. doi:  10.3878/j.issn.1006-9895.1812.18204

    Wang Xiaohui, Cui Xiaopeng, Hao Shifeng, et al. 2019b. A diagnostic and numerical study on surface rainfall process of tropical cyclone Soudelor (2015) over the ocean: Sensitivity experiments on precipitation response to sea surface temperature change [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(5): 1125−1142. doi: 10.3878/j.issn.1006-9895.1812.18204
    [44] Wu C C, Yen T H, Kuo Y H, et al. 2002. Rainfall simulation associated with typhoon Herb (1996) near Taiwan. Part I: The topographic effect [J]. Wea. Forecasting, 17(5): 1001−1015. doi:10.1175/1520-0434(2003)017<1001:RSAWTH>2.0.CO;2
    [45] 吴联要, 雷小途. 2012. 内核及外围尺度与热带气旋强度关系的初步研究 [J]. 热带气象学报, 28(5): 719−725. doi:  10.3969/j.issn.1004-4965.2012.05.011

    Wu Lianyao, Lei Xiaotu. 2012. Preliminary research on the size of inner core and periphery and their relationship with the intensity of tropical cyclones [J]. J. Trop. Meteor. (in Chinese), 28(5): 719−725. doi: 10.3969/j.issn.1004-4965.2012.05.011
    [46] Xu H Y, Liu R, Zhai G Q, et al. 2016. Torrential rainfall responses of typhoon Fitow (2013) to radiative processes: A three-dimensional WRF modeling study [J]. J. Geophys. Res. Atmos., 121(23): 14127−14136. doi: 10.1002/2016JD025479
    [47] 薛一迪, 崔晓鹏. 2020. “威马逊”(1409)降水水汽来源和源区定量贡献分析 [J]. 大气科学, 44(2): 341−355. doi:  10.3878/j.issn.1006-9895.1903.18245

    Xue Yidi, Cui Xiaopeng. 2020. Moisture sources and quantitative analyses of source contributions of precipitation associated with Rammasun (1409) [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(2): 341−355. doi: 10.3878/j.issn.1006-9895.1903.18245
    [48] Yang M J, Braun S A, Chen D S. 2011. Water budget of typhoon Nari (2001) [J]. Mon. Wea. Rev., 139(12): 3809−3828. doi: 10.1175/MWR-D-10-05090.1
    [49] Yu Z F, Yu H, Chen P Y, et al. 2009. Verification of tropical cyclone-related satellite precipitation estimates in Mainland of China [J]. J. Appl. Meteor. Climatol., 48(11): 2227−2241. doi: 10.1175/2009JAMC2143.1
    [50] 郑艳, 蔡亲波, 程守长, 等. 2014. 超强台风“威马逊”(1409)强度和降水特征及其近海急剧加强原因 [J]. 暴雨灾害, 33(4): 333−341. doi:  10.3969/j.issn.1004-9045.2014.04.005

    Zheng Yan, Cai Qinbo, Cheng Shouchang, et al. 2014. Characteristics on intensity and precipitation of super typhoon Rammasun (1409) and reason why it rapidly intensified offshore [J]. Torrential Rain and Disasters (in Chinese), 33(4): 333−341. doi: 10.3969/j.issn.1004-9045.2014.04.005
  • [1] 方欢, 原韦华, 徐幼平.  长江中下游地区夏季强降水前期的三维环流结构特征分析, 大气科学. doi: 10.3878/j.issn.1006-9895.1905.19119
    [2] 卜松, 李英.  华东登陆热带气旋降水不同分布的对比分析, 大气科学. doi: 10.3878/j.issn.1006-9895.1906.18180
    [3] 张沛, 姚展予, 贾烁, 常倬林, 桑建人, 高亮书, 赵文慧, 王伟健, 祝晓芸.  六盘山地区空中水资源特征及水凝物降水效率研究, 大气科学. doi: 10.3878/j.issn.1006-9895.1904.19104
    [4] 王晓慧, 崔晓鹏, 郝世峰.  热带气旋“苏迪罗”(2015)海上活动时段降水物理过程模拟诊断研究, 大气科学. doi: 10.3878/j.issn.1006-9895.1804.18118
    [5] 王晓慧, 崔晓鹏, 郝世峰, 姜嘉俊.  热带气旋“苏迪罗”(2015)海上活动时段降水物理过程模拟诊断研究——海表温度敏感性试验, 大气科学. doi: 10.3878/j.issn.1006-9895.1812.18204
    [6] 孙建华, 卫捷, 傅慎明, 张元春, 汪汇洁.  江淮流域持续性强降水过程的多尺度物理模型, 大气科学. doi: 10.3878/j.issn.1006-9895.1803.17246
    [7] 王坚红, 姜云雁, 崔晓鹏, 沈新勇, 任福民.  1956~2012年浙闽登陆热带气旋降水精细化观测统计分析, 大气科学. doi: 10.3878/j.issn.1006-9895.1705.16253
    [8] 梁莉, 崔晓鹏, 王成鑫, 白莉娜.  我国登陆热带气旋引起的大陆地面风场分布, 大气科学. doi: 10.3878/j.issn.1006-9895.1708.16224
    [9] 刘圣楠, 崔晓鹏.  “碧利斯”(2006)暴雨过程降水强度和降水效率分析, 大气科学. doi: 10.3878/j.issn.1006-9895.1704.17148
    [10] 麦子, 李英, 魏娜.  登陆热带气旋在鄱阳湖区的活动特征及原因分析, 大气科学. doi: 10.3878/j.issn.1006-9895.1605.16129
    [11] 陶玥, 李军霞, 党娟, 李宏宇, 孙晶.  北京一次积层混合云系结构和水分收支的数值模拟分析, 大气科学. doi: 10.3878/j.issn.1006-9895.1412.13209
    [12] 徐国强, 陈德辉, 张红亮, 等.  GRAPES模式中物理过程时间计算精度对降水预报的影响, 大气科学. doi: 10.3878/j.issn.1006-9895.2010.05.03
    [13] 崔晓鹏.  地面降水诊断方程对降水过程的定量诊断, 大气科学. doi: 10.3878/j.issn.1006-9895.2009.02.15
    [14] 何会中, 程明虎, 周凤仙.  0302号(鲸鱼)台风降水和水粒子空间分布的三维结构特征, 大气科学. doi: 10.3878/j.issn.1006-9895.2006.03.12
    [15] 李宏宇, 王华, 洪延超.  锋面云系降水中的增雨潜力数值研究, 大气科学. doi: 10.3878/j.issn.1006-9895.2006.02.16
    [16] 李英, 陈联寿, 王继志.  热带气旋登陆维持和迅速消亡的诊断研究, 大气科学. doi: 10.3878/j.issn.1006-9895.2005.03.16
    [17] 李英, 陈联寿, 徐祥德.  水汽输送影响登陆热带气旋维持和降水的数值试验, 大气科学. doi: 10.3878/j.issn.1006-9895.2005.01.11
    [18] 肖辉, 王孝波, 周非非, 洪延超, 黄美元.  强降水云物理过程的三维数值模拟研究, 大气科学. doi: 10.3878/j.issn.1006-9895.2004.03.06
    [19] 郭学良, 黄美元, 徐华英, 周玲.  层状云降水微物理过程的雨滴分档数值模拟#, 大气科学. doi: 10.3878/j.issn.1006-9895.1999.06.11
    [20] 冯业荣, 王作述.  梅雨静止锋积云群整体属性的诊断研究, 大气科学. doi: 10.3878/j.issn.1006-9895.1995.05.09
  • 加载中
图(9)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  3
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-10
  • 网络出版日期:  2020-03-30
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回