高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2019年4~6月云南持续性高温天气的大气环流异常成因

马双梅 祝从文 刘伯奇

马双梅, 祝从文, 刘伯奇. 2021. 2019年4~6月云南持续性高温天气的大气环流异常成因[J]. 大气科学, 45(1): 165−180 doi: 10.3878/j.issn.1006-9895.2004.19226
引用本文: 马双梅, 祝从文, 刘伯奇. 2021. 2019年4~6月云南持续性高温天气的大气环流异常成因[J]. 大气科学, 45(1): 165−180 doi: 10.3878/j.issn.1006-9895.2004.19226
MA Shuangmei, ZHU Congwen, LIU Boqi. 2021. Possible Causes of Persistently Extreme-Hot-Days-Related Circulation Anomalies in Yunnan from April to June 2019 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(1): 165−180 doi: 10.3878/j.issn.1006-9895.2004.19226
Citation: MA Shuangmei, ZHU Congwen, LIU Boqi. 2021. Possible Causes of Persistently Extreme-Hot-Days-Related Circulation Anomalies in Yunnan from April to June 2019 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(1): 165−180 doi: 10.3878/j.issn.1006-9895.2004.19226

2019年4~6月云南持续性高温天气的大气环流异常成因

doi: 10.3878/j.issn.1006-9895.2004.19226
基金项目: 国家重点研发计划项目2018YFC1505904,国家自然科学基金项目41830969、41705052,中国气象科学研究院基本科研业务费重点项目2018Z006
详细信息
    作者简介:

    马双梅,女,1988年出生,副研究员,主要从事极端天气事件研究。E-mail: masm@cma.gov.cn

    通讯作者:

    祝从文,E-mail: zhucw@cma.gov.cn

  • 中图分类号: P467

Possible Causes of Persistently Extreme-Hot-Days-Related Circulation Anomalies in Yunnan from April to June 2019

Funds: National Key R&D Program (Grant 2018YFC1505904), National Natural Science Foundation of China (Grants 41830969, 41705052), Basic Scientific Research and Operation Foundation of CAMS (Grant 2018Z006)
  • 摘要: 2019年4~6月云南省发生了历史罕见的持续性极端高温天气,并引发了严重气象干旱。本文利用1961~2019年逐日温度和大气再分析等资料以及CESM-LE计划(Community Earth System Model Large Ensemble Project)模式模拟结果,分析了历史同期云南极端高温天气发生的环流特征,探讨了2019年云南破纪录持续性高温的成因。历史极端高温日的合成分析表明,云南地区对流层上层显著异常反气旋伴随的强下沉异常和到达地表太阳辐射增加,是引发该区域极端高温天气的主要成因。该异常反气旋的形成主要源自北大西洋经东欧平原、西西伯利亚平原向东亚传播的高纬度罗斯贝波和经北非、黑海、伊朗高原向东亚传播的中纬度罗斯贝波之间的相互作用。2019年极端高温的强度和与之相应异常反气旋出现自1961年以来的最强。外强迫导致的增暖对2019年极端暖异常强度的贡献约为37.51%,同时对类似2019年以及更强极端暖事件发生概率的贡献为56.32%,内部变率对该事件也具有重要贡献。2019年4~6月北极涛动(Arctic Oscillation,AO)和ENSO事件分别处于历史极端负位相和暖位相。一方面,在AO强负位相影响下,极地上空深厚的位势高度正异常向南伸至东欧平原,有利于高纬度波列和云南上空的反气旋异常增强。另一方面,ENSO事件暖位相加强了西北太平洋异常反气旋环流,令西北太平洋副热带高压增强西伸至我国内陆地区,维持了云南上空反气旋异常。两者的共同作用,造成了2019年4~6月云南上空持续的深厚异常反气旋,云南地区继而出现持续性极端高温事件。
  • 图  1  (a)2019年4~6月全国极端高温事件站点分布,红点表示日最高气温超历史极值,蓝点表示日最高气温达极端阈值(参考期日最高气温的95%分位数),填色为海拔高度(单位:m)。(b)2019年4~6月平均日最高气温异常分布(单位:°C)。(c)4月1日至6月30日云南省平均日最高气温逐日演变序列,红线表示2019年,灰线代表1961~2018年逐年时间序列变化,黑线代表气候平均时间序列演变。

    Figure  1.  (a) Stations with a daily maximum surface air temperature (SAT) from April to June 2019 that broke historical records (red dots) and exceeded the threshold of extreme temperature (blue dots) over China. The threshold of extreme temperature is defined as the 95th percentile of the daily maximum SATs for the base period. Shadings indicate altitude (units: m). (b) April–June mean daily maximum SAT anomalies (units: °C) for 2019. (c) Daily maximum SAT averaged for Yunnan from April 1 to June 30. The red curve corresponds to 2019, gray curves show results for 1961–2018, and black curve is the daily climatology

    图  2  (a)云南省1961~2019年平均的高温发生天数分布(彩色实心点,单位:d a−1),填色为海拔高度(单位:m),黑色圆圈、正方形、三角形分别代表昆明、元江和元阳站。(b)云南省1961~2019年区域性总极端高温日数的逐候分布。红线和蓝线分别代表全省日最高气温和降水的气候平均的逐候分布

    Figure  2.  (a) Mean frequency of hot days (color dots; units: d a−1) over Yunnan during 1961–2019. Shadings indicate altitude (units: m), the black circle, square, and triangle denote the Kunming, Yuanjiang, and Yuanyang stations, respectively. (b) Pentad frequency of accumulated occurrence of regionally extreme hot days during 1961–2019 in Yunnan. Red and blue lines indicate the pentad climatology of daily maximum SAT and precipitation averaged in Yunnan

    图  3  (a,b)台站和(c,d)JRA-55再分析资料中,云南区域性极端高温日对应的日平均气温异常(单位:°C)。(a,c)为1961~2018年4~6月306个极端高温日的异常的合成结果,(b,d)为2019年4~6月39个极端高温日的异常的合成结果。(a,b)中的实心圆和(c,d)中的白色打点表示通过0.01显著性水平检验

    Figure  3.  Anomalies of daily mean SAT (units: °C) for regionally extreme hot days in Yunnnan derived from (a, b) stations and (c, d) JRA55 reanalysis data. (a, c) Composite anomalies for 306 regionally extreme hot days from April to June during1961–2018; (b, d) composite anomalies for 39 regionally extreme hot days from April to June 2019. Solid circles in (a, b) and white dots in (c, d) indicate significance at the 0.01level

    图  4  云南区域性极端高温日大气环流配置特征:(a,c,e)1961~2018年4~6月306个极端高温日的异常的合成结果;(b,d,f)2019年4~6月39个极端高温日的异常的合成结果。(a,b)200 hPa位势高度(填色,单位:gpm)、水平风(矢量,单位:m s−1);(c,d)500 hPa位势高度(填色,单位:gpm)、水平风(矢量,单位:m s−1);(e,f)海平面气压场(填色,单位:hPa)、850 hPa水平风(矢量,单位:m s−1)。黑色矢量表示经向风或者纬向风异常通过0.01显著性水平检验

    Figure  4.  Atmospheric circulation structure for regionally extreme hot days in Yunnan: (a, c, e) Composite anomalies for 306 regionally extreme hot days from April to June 1961–2018; (b, d, f) composite anomalies for 39 regionally extreme hot days from April to June 2019. (a, b) 200-hPa geopotential height (shading, units: gpm) and horizontal wind (vector, units: m s−1); (c, d) 500-hPa geopotential height (shading, units: gpm) and horizontal wind (vector, units: m s−1); (e, f) sea level pressure (shading, units: hPa) and 850-hPa horizontal wind (vector, units: m s−1). Vectors are shown in black when significant at the 0.01 level in at least one direction

    图  5  云南区域性极端高温日异常风场的垂直剖面图:(a,c)1961~2018年4~6月306个极端高温日的异常的合成结果;(b,d)2019年4~6月39个极端高温日的异常的合成结果。(a,b)21°N~30°N平均纬向风和垂直运动的合成结果;(c,d)97°E~107°E平均经向风和垂直运动的合成结果。填色代表垂直运动(单位:10−2 Pa s−1),黑色矢量代表垂直速度或者水平速度异常通过0.01显著性水平检验,绿线代表云南所处的经纬度范围

    Figure  5.  Vertical cross-section of anomalous winds for regionally extreme hot days in Yunnan: (a, c) Composite anomalies for 306 regionally extreme hot days from April to June 1961–2018; (b, d) composite anomalies for 39 regionally extreme hot days from April to June 2019. (a, b) Composite anomalies ofzonal wind and vertical velocity averaged along 21°N–30°N. (c, d) Composite anomalies of meridional wind and vertical velocity averaged along 97°E–107°E. Shaded area is vertical velocity (units: 10−2 Pa s−1), vectors are shown in black when significant at the 0.01 level in at least one direction, green lines in (a–d) indicate the latitude and longitude of Yunnan

    图  6  (a)1961~2018年4~6月306和(b)2019年4~6月39个云南区域性极端高温日到达地面的总的向下太阳辐射通量(单位:W m−2)的合成结果。白色打点表示异常通过0.01显著性水平检验

    Figure  6.  Composite anomalies (units: W m−2) of the downward solar radiation flux reaching the Earth’s surface (a) for 306 regionally extreme hot days from April to June during 1961–2018 and (b) for 39 regionally extreme hot days from April to June 2019. Shading is stippled with white dots when significant at the 0.01 level

    图  7  1961~2018年4~6月(a)气候平均的垂直积分水汽通量分布,(b)306个云南区域性极端高温日垂直积分水汽通量(矢量)和水汽含量(填色)异常的合成结果,(c)2019年4~6月39个云南区域性极端高温日垂直积分水汽通量和水汽异常的合成结果。图中垂直积分水汽通量和水汽行两的单位分别为kg m−1 s−1和kg m−2。(b)和(c)中的白色打点表示水汽异常通过0.01显著性水平检验;黑色矢量代表纬向或经向水汽通量异常通过0.01显著性水平检验

    Figure  7.  (a) April–June climatological distribution of the vertical integration of moisture flux during 1961–2018. (b) Composite anomalies of the vertical integration of moisture flux and moisture content for 306 regionally extreme hot days from April to June during 1961–2018 period. (c) Composite anomalies of the vertical integration of moisture flux and moisture content for 39 regionally extreme hot days from April to June 2019. Units of the vertical integration of atmospheric column moisture flux (vector) and moisture (shading) are kg m−1 s−1 and kg m−2, respectively. In (b) and (c), shading is stippled with white dots when significant at the 0.01 level and vectors are shown in black when significant at the 0.01 level in at least one direction

    图  8  1961~2019年4~6月云南区域性极端高温日前期200 hPa位势高度异常(填色,单位:gpm)和相应的波活动作用通量(单位:m2 s−2):(a)−7~−6天;(b)−5~−4天;(c)−3~−2天;(d)−1~0天。白色打点代表通过0.01显著性水平,矢量为相应的波活动作用通量

    Figure  8.  200-hPa geopotential height anomalies (shading, units: gpm) and the associated wave activity flux (vectors, units: m2 s−2) on lag days from (a) −7 to −6 d, (b) −5 to −4 d, (c) −3 to −2 d, and (d) −1 to 0 d of regionally extreme hot day from April to June during 1961–2019 period. Shading is stippled with white dots when significant at the 0.01 level

    图  9  2019年4~6月(a)200 hPa和(b)500 hPa位势高度的百分位数(绿线和黑线分别为2019年和气候态5870 gpm等值线)。(c)2019年4~6月海表面温度(填色,单位:°C)和850 hPa水平风(矢量,单位:m s−1)的异常。(d)2019年4~6月云南上空(21°~30°N, 97°~107°E)200 hPa位势高度异常的逐日演变(单位:gpm)

    Figure  9.  Percentile of (a) 200-hPa and (b) 500-hPa geopotential height during April–June 2019. Green and black lines in (b) are the 5870-pgm contour for 2019 and the climatological status, respectively. (c) April–June mean anomalies of sea surface temperature (SST) (shading, units: °C) and 850-hPa horizonal wind (vector, units: m s−1) in 2019. (d) Daily 200-hPa geopotential height anomalies (units: gpm) averaged for Yunnan (21°–30°N, 97°–107°E) from April 1 to June 30

    图  10  云南省1961~2019年4~6月平均地表气温异常(单位:°C)的时间序列。黑线为观测数据;红线为CESM-LE集合成员平均模拟结果;橙色为CESM-LE各个集合成员模拟结果。内插图表示云南省4~6月平均地表气温异常频率分布的直方图,其中红线代表CESM-LE的40个集合成员在1961~2019年的历史模拟结果,标记为His,蓝线代表工业革命前控制试验模拟结果,标记为PIC,黑色五角星代表2019年的观测结果

    Figure  10.  Time series of April–June mean SAT anomalies (SATA, units: °C) averaged over Yunnan during 1961–2019. The black line depicts the observed anomalies, red line depicts the ensemble mean anomalies of 40 ensembles of CESM-LE simulations, and orange lines are individual ensemble members of the CESM-LE simulations. Histograms of April–June mean SAT anomalies (units: °C) averaged over Yunnan are shown in the inset plot. The red curve indicates 40 ensembles of CESM-LE simulations for 1961–2019; denoted as “His”; blue curve, indicates preindustrial control simulations (denoted as “PIC”). The black star indicates the observed 2019 April–June mean SAT anomalies averaged over Yunnan.

    图  11  (a)云南省1961~2019年4~6月平均日最高气温(Tmax)、区域性极端高温日数异常序列和AO、Niño3.4指数的标准化异常序列,黑线为Tmax和高温日数的线性趋势。(b)1961~2019年4~6月Niño3.4指数与AO指数的标准化异常的散点图(蓝点代表2019年)。蓝色☆代表Tmax异常大于0.5个标准差的年份

    Figure  11.  (a) Time series of anomalies of April–June mean daily maximum SAT (Tmax) and hot days averaged over Yunnan, normalized anomalies AO index, and Niño 3.4 index. Black lines denote the linear trends of Tmax and hot days. (b) Scatterplot of normalized anomalies of April–June mean Niño 3.4 index and AO index, blue dot indicates that for 2019. Blue stars in (a) and (b) indicate years with April–June mean daily maximum SAT values warmer than norm 0.5 standard deviation

  • [1] Chen X L, Zhou T J. 2018. Relative contributions of external SST forcing and internal atmospheric variability to July–August heat waves over the Yangtze River valley [J]. Climate Dyn., 51(11–12): 4403−4419. doi: 10.1007/s00382-017-3871-y
    [2] Christidis N, Stott P A, Scaife A A, et al. 2013. A new HadGEM3-A-based system for attribution of weather- and climate-related extreme events [J]. J. Climate, 26(9): 2756−2783. doi: 10.1175/JCLI-D-12-00169.1
    [3] Dai A G, Trenberth K E, Karl T R. 1999. Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range [J]. J. Climate, 12(8): 2451−2473. doi:10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO;2
    [4] 龚道溢, 王绍武, 朱锦红. 2004. 北极涛动对我国冬季日气温方差的显著影响 [J]. 科学通报, 49(5): 487–492.

    Gong D Y, Wang S W, Zhu J H. 2004. Arctic Oscillation influence on daily temperature variance in winter over China [J]. Chinese Science Bulletin, 49(6): 637–642. doi: 10.1360/03wd0481
    [5] 韩兰英, 张强, 姚玉璧, 等. 2014. 近60年中国西南地区干旱灾害规律与成因 [J]. 地理学报, 69(5): 632−639. doi: 10.11821/dlxb201405006

    Han L Y, Zhang Q, Yao Y B, et al. 2014. Characteristics and origins of drought disasters in Southwest China in nearly 60 years [J]. Acta Geographica Sinica (in Chinese), 69(5): 632−639. doi: 10.11821/dlxb201405006
    [6] Harada Y, Kamahori H, Kobayashi C, et al. 2016. The JRA-55 Reanalysis: Representation of atmospheric circulation and climate variability [J]. J. Meteor. Soc. Japan Ser. II, 94(3): 269−302. doi: 10.2151/jmsj.2016-015
    [7] Huang B Y, Thorne P W, Banzon V F, et al. 2017. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and Intercomparisons [J]. J. Climate, 30(20): 8179−8205. doi: 10.1175/JCLI-D-16-0836.1
    [8] 黄荣辉, 刘永, 王林, 等. 2012. 2009年秋至2010年春我国西南地区严重干旱的成因分析 [J]. 大气科学, 36(3): 443−457. doi: 10.3878/j.issn.1006-9895.2011.11101

    Huang R H, Liu Y, Wang L, et al. 2012. Analyses of the causes of severe drought occurring in Southwest China from the fall of 2009 to the spring of 2010 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36(3): 443−457. doi: 10.3878/j.issn.1006-9895.2011.11101
    [9] IPCC. 2013. Summary for policymakers [M]//Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker T F, Qin D, Plattner G K, et al., Eds. Cambridge: Cambridge University Press. 29pp
    [10] 解明恩, 程建刚, 范菠, 等. 2005. 2003年云南夏季罕见高温干旱的诊断研究 [J]. 气象, 31(7): 32−37. doi: 10.3969/j.issn.1000-0526.2005.07.008

    Xie M E, Cheng J G, Fan B, et al. 2005. Diagnosis of high temperature and drought event in summer 2003 in Yunnan [J]. Meteorological Monthly (in Chinese), 31(7): 32−37. doi: 10.3969/j.issn.1000-0526.2005.07.008
    [11] Kay J E, Deser C, Phillips A, et al. 2015. The community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability [J]. Bull. Amer. Meteor. Soc., 96(8): 1333−1349. doi: 10.1175/BAMS-D-13-00255.1
    [12] Knutson T R, Zeng F R, Wittenberg A T. 2013. The extreme March–May 2012 warm anomaly over the eastern United States: Global context and multimodel trend analysis [in “Explaining extreme events of 2012 from a climate perspective”] [J]. Bull. Amer. Meteor. Soc., 94(9): S13−S17.
    [13] Kobayashi S, Ota Y, Harada Y, et al. 2015. The JRA-55 Reanalysis: General specifications and basic characteristics [J]. J. Meteor. Soc. Japan Ser. II, 93(1): 5−48. doi: 10.2151/jmsj.2015-001
    [14] Li C X, Tian Q H, Yu R, et al. 2017. Attribution of extreme precipitation in the lower reaches of the Yangtze River during May 2016 [J]. Environ. Res. Lett., 13(1): 014015. doi: 10.1088/1748-9326/aa9691
    [15] Li Y H, Xu H M, Liu D. 2011. Features of the extremely severe drought in the east of Southwest China and anomalies of atmospheric circulation in summer 2006 [J]. Acta Meteor. Sinica, 25(2): 176−187. doi: 10.1007/s13351-011-0025-8
    [16] Liu B Q, Zhu C W, Su J Z, et al. 2019. Record-breaking northward shift of the western North Pacific subtropical high in July 2018 [J]. J Meteor Soc Japan Ser. II., 97(4): 913−925. doi: 10.2151/jmsj.2019-047
    [17] 刘瑜, 赵尔旭, 黄玮, 等. 2007. 2005年初夏云南严重干旱的诊断分析 [J]. 热带气象学报, 23(1): 35−40. doi: 10.3969/j.issn.1004-4965.2007.01.006

    Liu Y, Zhao E X, Huang W, et al. 2007. Diagnostic analysis of the severe drought over Yunnan area in the early summer of 2005 [J]. Journal of Tropical Meteorology (in Chinese), 23(1): 35−40. doi: 10.3969/j.issn.1004-4965.2007.01.006
    [18] 吕俊梅, 琚建华, 任菊章, 等. 2012. 热带大气MJO活动异常对2009~2010年云南极端干旱的影响 [J]. 中国科学: 地球科学, 42(4): 599–613.

    Lü J M, Ju J H, Ren J Z, et al. 2012. The influence of the Madden-Julian Oscillation activity anomalies on Yunnan’ s extreme drought of 2009–2010 [J]. Science China Earth Sciences, 55(1): 98–112. doi: 10.1007/s11430-011-4348-1
    [19] Ma S M, Zhou T J, Stone D A, et al. 2017a. Attribution of the July–August 2013 heat event in central and eastern China to anthropogenic greenhouse gas emissions [J]. Environ. Res. Lett., 12(5): 054020. doi: 10.1088/1748-9326/aa69d2
    [20] Ma S M, Zhou T J, Angélil O, et al. 2017b. Increased chances of drought in southeastern periphery of the Tibetan Plateau induced by anthropogenic warming [J]. J. Climate, 30(16): 6543−6560. doi: 10.1175/JCLI-D-16-0636.1
    [21] 毛政旦. 1977. 云南的“四季如春” [J]. 气象, 3(2): 30−32. doi: 10.7519/j.issn.1000-0526.1977.02.025

    Mao Z D. 1977. Four spring-like seasons in Yunnan [J]. Meteorological Monthly (in Chinese), 3(2): 30−32. doi: 10.7519/j.issn.1000-0526.1977.02.025
    [22] Takaya K, Nakamura H. 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow [J]. J. Atmos. Sci., 58(6): 608−627. doi:10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2
    [23] Wang L, Chen W, Zhou W, et al. 2015. Drought in Southwest China: A review [J]. Atmos. Oceanic Sci. Lett., 8(6): 339−344.
    [24] 谢应齐, 黄华秋, 赵华柱. 1994. 云南干旱灾害初步研究 [J]. 云南大学学报(自然科学版), 16(S1): 69−73.

    Xie Y Q, Huang H Q, Zhao H Z. 1994. An analysis of drought in Yunnan [J]. Journal of Yunnan University (Natural Sciences) (in Chinese), 16(S1): 69−73.
    [25] Xu K, Lu R Y, Kim B J, et al. 2019. Large-scale circulation anomalies associated with extreme heat in South Korea and Southern–Central Japan [J]. J. Climate, 32(10): 2747−2759. doi: 10.1175/JCLI-D-18-0485.1
    [26] 杨辉, 宋洁, 晏红明, 等. 2012. 2009/2010年冬季云南严重干旱的原因分析 [J]. 气候与环境研究, 17(3): 315−326. doi: 10.3878/j.issn.1006-9585.2011.10134

    Yang H, Song J, Yan H M, et al. 2012. Cause of the severe drought in Yunnan Province during winter of 2009 to 2010 [J]. Climatic and Environmental Research (in Chinese), 17(3): 315−326. doi: 10.3878/j.issn.1006-9585.2011.10134
    [27] Yang J, Gong D Y, Wang W S, et al. 2012. Extreme drought event of 2009/2010 over southwestern China [J]. Meteor. Atmos. Phys., 115(3-4): 173−184. doi: 10.1007/s00703-011-0172-6
    [28] 云南省气象局. 2017. 云南省气象预警信息分类发布指导意见(试行)[R]. 24–26.

    Yunnan Meteorological Bureau. 2017. The guidelines for the issuing of the levels of meteorogical early warning information in Yunnan Province (trial implementation) [R]. 24–26
    [29] 中国气象局. 2015. 2014年中国气候公报 [R]. 35pp.

    China Meteorological Administration. 2015. China Climate Bulletin for 2014 (in Chinese) [R]. 35pp.
    [30] Zhou T J, Ma S M, Zou L W. 2014. Understanding a hot summer in central eastern China: Summer 2013 in context of multimodel trend analysis [in "Explaining extremes of 2013 from a climate perspective"] [J]. Bull. Amer. Meteor. Soc., 95(9): S54−S57.
  • 加载中
图(11)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  1
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-14
  • 录用日期:  2020-05-12
  • 网络出版日期:  2020-05-14

目录

    /

    返回文章
    返回