Numerical Simulation of the Effect of Urbanization on a Single Extreme-High-Temperature Event in Beijing
-
摘要: 城市化对高温热浪的频次和强度具有重要影响,但目前对于城市化影响高温热浪过程的机理了解还不充分。本文利用WRF模式,对2010年7月2~6日(北京时)北京一次高温过程进行了模拟,分析了城市化对此次高温过程的影响机理。采用优化后的WRF模式,能够模拟出北京连续5日高温的特征和城市热岛强度的变化。城市下垫面的不透水性决定了城区2 m高度处相对湿度低于乡村,削弱了城区通过潜热调节城市气温的能力。日落后,城市感热通量下降缓慢,城区降温速率小于乡村,夜间边界层稳定、高度低,风速小,抑制了城乡之间能量的传输,形成了夜间强的城市热岛强度,造成夜间城市气温明显高于乡村。日出后城乡地面感热通量、潜热通量迅速上升,边界层稳定性下降。午后,城市下垫面分别为地表感热通量和潜热通量的高、低值中心,通过潜热调节气温的能力被削弱;边界层稳定性降低,有利于能量的垂直扩散;此时,城市热岛强度小于夜间。因此,北京城市下垫面形成了明显的城市热岛效应,加重了城区极端高温事件的强度。此外,在这次高温热浪期间,中国东部大部分地区受到大陆暖高压控制,晴空少云,西北气流越山后形成焚风效应,是北京地区高温热浪形成的天气背景。
-
关键词:
- 极端高温 /
- 城市热岛 /
- 数值模拟 /
- WRF(Weather Research and Forecasting) /
- 北京
Abstract: Urbanization has a significant influence on the frequency and intensity of heat waves, but the mechanism of the effect of urbanization on the high-temperature process is not fully understood. In this study, the authors used the Weather Research and Forecasting (WRF) model to simulate a summer high-temperature process on 2–6 July 2010 in Beijing. This paper reports the main results obtained regarding the urbanization effect on the surface air temperature of urban areas during the heat-wave process. The optimized WRF model was able to simulate the temporal characteristics of the five consecutive days of high temperature and the variation in the urban-heat-island intensity (IUHI) in Beijing. The impermeability of the underlying urban surface lowers the 2-m relative humidity of urban areas with respect to that of rural areas, which weakens the ability of urban areas to regulate the surface air temperature via latent heat. After sunset, the urban-sensible-heat flux decreases slowly, and the cooling rate in urban areas is slower than that in rural areas. At night, the structure of the boundary layer is stable, and its height is low, as is the wind speed. In this case, the energy transmitted between urban and rural areas is constrained, and the strong urban heat island is formed, resulting in the temperature in urban area is significantly higher than that in rural area at night. After sunrise, both the sensible and latent heat fluxes of urban and rural land surfaces increase rapidly, and the stability of the boundary layer decreases. In the afternoon, the underlying urban surface favors high and low value centers in the sensible and latent heat fluxes, respectively, with a weakened ability to regulate temperature via latent heat. This is conducive to vertical exchange of energy, which decreases the stability of the boundary layer. The IUHI is lower in the afternoon than in the evening. Therefore, the obvious urban-heat-island effect created by the underlying urban surface in Beijing increases the strength of extreme-high-temperature events. Furthermore, in this heat-wave process, most of the eastern part of China is controlled by continental warm high pressure with clear skies and few clouds, and the northwesterly winds flowing over the Taihang Mountains generate a Fohn effect, which is the synoptic situations of the heat-wave formation in Beijing. -
图 5 2010年7月2~6日平均的北京地区2 m高度处气温(单位:°C):(a)05:00;(b)10:00;(c)16:00;(d)21:00。彩色阴影为模拟值,填色圆圈为观测值
Figure 5. Temperature (units: °C) at 2-m height averaged for 2–6 July 2010 in Beijing: (a) 0500 BJT; (b) 1000 BJT; (c) 1600 BJT; (d) 2100 BJT. The shadings indicate the numerical results, shaded circles indicate observations
图 13 2010年7月5日模拟的北京地区(a、b)2 m高度处的相对湿度,(c、d)10 m高度处风场(箭头,单位:m s−1)、2 m高度处温度(彩色阴影,单位:°C):(a、c)05:00;(b、d)17:00
Figure 13. Simulated (a, b) relative humidity at 2-m height, (c, d) wind (arrows, units: m s−1) at 10-m height and temperature (color shadings, units: °C) at 2-m height in Beijing on 5 July 2010: (a, c) 0500 BJT; (b, d) 1700 BJT
图 16 2010年7月5日17时沿40°N的(a)垂直速度(彩色阴影,单位:m s−1)、流线(带箭头的实线);(b)相对湿度(彩色阴影,单位:%)和温度(实线,单位:°C)的垂直剖面。黑色三角形为北京的位置
Figure 16. Vertical cross sections of (a) vertical speed (color shadings, units: m s−1), streamlines (the solid lines with arrows); (b) relative humidity (color shadings, units:%), and temperature (solid lines, units: °C) along 40°N at 1700 BJT on 5 July 2010. The black triangles indicate the location of Beijing
表 1 模式主要参数
Table 1. Major model parameters
类别 设置 区域中心 (40.25°N, 116.25°E) (40.25°N, 116.25°E) (40.25°N, 116.25°E) 垂直方向层数 38 38 38 模式顶 50 hPa 50 hPa 50 hPa 1 km以下的层数 13层 13层 13层 嵌套重数 3重 3重 3重 水平格距 27 km 9 km 3 km 水平网格(x, y) 97×94 79×79 64×70 微物理方案 WSM6 WSM6 WSM6 长波辐射方案 RRTM RRTM RRTM 短波辐射方案 Dudhia Dudhia Dudhia 表面层方案 Monin-Obukhov Monin-Obukhov Monin-Obukhov 陆面方案 Noah Noah Noah 城市冠层方案 UCM UCM UCM 边界层方案 BouLac BouLac BouLac 积云参数化方案 Kain-Fritch 无 无 表 2 北京地区参考站的信息
Table 2. Information of the reference weather stations in Beijing
站名 缩写 经度 纬度 与城区海拔差/m 安定 AD 116.51°E 39.62°N −24.5 南召 NZ 116.11°E 39.61°N −14.5 凤凰岭 FHL 116.10°E 40.11°N 24.5 永乐店 YLD 116.78°E 39.68°N −31.5 庞各庄 PGZ 116.34°E 39.62°N −14.5 东新城 DXC 116.45°E 40.22°N −0.7 龙湾屯 LWT 116.85°E 40.23°N 3.5 大孙各庄 DSGZ 116.92°E 40.09°N −13.5 平均 116.51°E 39.90°N −8.9 表 3 2010年7月2~6日平均的北京地区2 m高度处气温模拟与观测的比较
Table 3. Comparison of simulated and observed temperatures at 2-m height averaged on 2–6 July 2010 in Beijing
模拟/°C 观测/°C BIAS/°C RMSE/°C R 城市站气温 33.25 32.07 1.18 2.60 0.90 参考站气温 31.28 30.43 0.85 2.57 0.90 IUHI 1.97 1.64 0.33 1.99 0.45 注:BIAS是模拟与观测的偏差;RMSE表示均方根误差;R是相关系数。 -
[1] Alexander L V, Zhang X, Peterson T C, et al. 2006. Global observed changes in daily climate extremes of temperature and precipitation [J]. J. Geophys. Res., 111(D5): D05109. doi: 10.1029/2005JD006290 [2] Chen F, Kusaka H, Bornstein R, et al. 2011. The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems [J]. Int. J. Climatol., 31(2): 273−288. doi: 10.1002/joc.2158 [3] 胡小明, 刘树华, 梁福明, 等. 2005. 北京区域近地边界层特征数值模拟 [J]. 北京大学学报(自然科学版), 41(4): 514−522. doi: 10.3321/j.issn:0479-8023.2005.04.003Hu Xiaoming, Liu Shuhua, Liang Fuming, et al. 2005. Numerical simulation of features of surface boundary layer over Beijing area [J]. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 41(4): 514−522. doi: 10.3321/j.issn:0479-8023.2005.04.003 [4] 季崇萍, 刘伟东, 轩春怡. 2006. 北京城市化进程对城市热岛的影响研究 [J]. 地球物理学报, 49(1): 69−77. doi: 10.3321/j.issn:0001-5733.2006.01.010Ji Chongping, Liu Weidong, Xuan Chunyi. 2006. Impact of urban growth on the heat island in Beijing [J]. Chinese J. Geophys. (in Chinese), 49(1): 69−77. doi: 10.3321/j.issn:0001-5733.2006.01.010 [5] 蒋维楣, 苗世光, 张宁, 等. 2010. 城市气象与边界层数值模拟研究 [J]. 地球科学进展, 25(5): 463−473. doi: 10.11867/j.issn.1001-8166.2010.05.0463Jiang Weimei, Miao Shiguang, Zhang Ning, et al. 2010. Numerical simulation on urban meteorology and urban boundary layer [J]. Advances in Earth Science (in Chinese), 25(5): 463−473. doi: 10.11867/j.issn.1001-8166.2010.05.0463 [6] Kusaka H, Kimura F. 2004. Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case [J]. J. Meteor. Soc. Japan, 82(1): 67−80. doi: 10.2151/jmsj.82.67 [7] Kusaka H, Kondo H, Kikegawa Y, et al. 2001. A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models [J]. Bound.-Layer Meteor., 101(3): 329−358. doi: 10.1023/A:1019207923078 [8] 李兴荣, 胡非, 舒文军. 2007. 北京夏季强热岛分析及数值模拟研究 [J]. 气象, 33(6): 25−31. doi: 10.7519/j.issn.1000-0526.2007.06.004Li Xingrong, Hu Fei, Shu Wenjun. 2007. Analysis and numerical simulation of summer strong urban heat island in Beijing [J]. Meteorological Monthly (in Chinese), 33(6): 25−31. doi: 10.7519/j.issn.1000-0526.2007.06.004 [9] 刘勇洪, 权维俊. 2014. 北京城市高温遥感指标初探与时空格局分析 [J]. 气候与环境研究, 19(3): 332−342. doi: 10.3878/j.issn.1006-9585.2013.12190Liu Yonghong, Quan Weijun. 2014. Research on high temperature indices of Beijing city and its spatiotemporal pattern based on satellite data [J]. Climatic and Environmental Research (in Chinese), 19(3): 332−342. doi: 10.3878/j.issn.1006-9585.2013.12190 [10] 刘树华, 刘振鑫, 郑辉, 等. 2013. 多尺度大气边界层与陆面物理过程模式的研究进展 [J]. 中国科学: 物理学 力学 天文学, 43(10): 1332−1355. doi: 10.1360/132013-247Liu Shuhua, Liu Zhenxin, Zheng Hui, et al. 2013. Multi-scale atmospheric boundary layer and land surface physics process models [J]. Scientia Sinica Physica, Mechanica & Astronomica (in Chinese), 43(10): 1332−1355. doi: 10.1360/132013-247 [11] 刘伟东, 尤焕苓, 孙丹. 2016. 1971~2010年京津冀大城市热岛效应多时间尺度分析 [J]. 气象, 42(5): 598−606. doi: 10.7519/j.issn.1000-0526.2016.05.009Liu Weidong, You Huanling, Sun Dan. 2016. Multi-time scale analysis of megacities heat island effect in Beijing-Tianjin-Hebei region from 1971 to 2010 [J]. Meteorological Monthly (in Chinese), 42(5): 598−606. doi: 10.7519/j.issn.1000-0526.2016.05.009 [12] Loridan T, Grimmond C S B, Grossman-Clarke S, et al. 2010. Trade-offs and responsiveness of the single-layer urban canopy parametrization in WRF: An offline evaluation using the MOSCEM optimization algorithm and field observations [J]. Quart. J. Roy. Meteor. Soc., 136(649): 997−1019. doi: 10.1002/qj.614 [13] Martilli A, Clappier A, Rotach M W. 2002. An urban surface exchange parameterisation for mesoscale models [J]. Bound.-Layer Meteor., 104(2): 261−304. doi: 10.1023/A:1016099921195 [14] 蒙伟光, 张艳霞, 李江南, 等. 2010. WRF/UCM在广州高温天气及城市热岛模拟研究中的应用 [J]. 热带气象学报, 26(3): 273−282. doi: 10.3969/j.issn.1004-4965.2010.03.003Meng Weiguang, Zhang Yanxia, Li Jiangnan, et al. 2010. Application of WRF/UCM in the simulation of a heat wave event and urban heat island around Guangzhou [J]. Journal of Tropical Meteorology (in Chinese), 26(3): 273−282. doi: 10.3969/j.issn.1004-4965.2010.03.003 [15] 苗世光, Chen F, 李青春, 等. 2010. 北京城市化对夏季大气边界层结构及降水的月平均影响 [J]. 地球物理学报, 53(7): 1580−1593. doi: 10.3969/J.ISSN.0001-5733.2010.07.009Miao Shiguang, Chen F, Li Qingchun, et al. 2010. Month-averaged impacts of urbanization on atmospheric boundary layer structure and precipitation in summer in Beijing area [J]. Chinese J. Geophys. (in Chinese), 53(7): 1580−1593. doi: 10.3969/J.ISSN.0001-5733.2010.07.009 [16] Ren Y Y, Ren G Y. 2011. A remote-sensing method of selecting reference stations for evaluating urbanization effect on surface air temperature trends [J]. J. Climate, 24(13): 3179−3189. doi: 10.1175/2010jcli3658.1 [17] Ren G Y, Chu Z Y, Chen Z H, et al. 2007. Implications of temporal change in urban heat island intensity observed at Beijing and Wuhan stations [J]. Geophys. Res. Lett., 34(5): L05711. doi: 10.1029/2006GL027927 [18] Salamanca F, Martilli A. 2010. A new building energy model coupled with an urban canopy parameterization for urban climate simulations—Part II. Validation with one dimension off-line simulations [J]. Theor. Appl. Climatol., 99(3): 345−356. doi: 10.1007/s00704-009-0143-8 [19] 孙建华, 陈红, 赵思雄, 等. 1999. 华北和北京的酷暑天气. II. 模拟实验和机理分析 [J]. 气候与环境研究, 4(4): 334−345. doi: 10.3878/j.issn.1006-9585.1999.04.02Sun Jianhua, Chen Hong, Zhao Sixiong, et al. 1999. A study on the severe hot weather in Beijing and North China. Part II. Simulation and analysis [J]. Climatic and Environmental Research (in Chinese), 4(4): 334−345. doi: 10.3878/j.issn.1006-9585.1999.04.02 [20] 王恪非. 2018. 城市对重庆高温热浪的贡献及冷却屋顶的缓解效应模拟研究 [D]. 南京信息工程大学硕士学位论文.Wang Kefei. 2018. Numerical study of contribution of Chongqing City to high temperature heat wave and mitigation effects of cool roof [D]. M. S. thesis (in Chinese), Nanjing University of Information Science & Technology. [21] 王迎春, 葛国庆, 陶祖钰. 2003. 北京夏季高温闷热天气的气候特征和2008夏季奥运会 [J]. 气象, 29(9): 23−27, 33. doi: 10.3969/j.issn.1000-0526.2003.09.005Wang Yingchun, Ge Guoqing, Tao Zuyu. 2003. Climatic characteristics of estival muggy weather in Beijing related to 2008 Olympics [J]. Meteorological Monthly (in Chinese), 29(9): 23−27, 33. doi: 10.3969/j.issn.1000-0526.2003.09.005 [22] 王宗敏, 丁一汇, 张迎新, 等. 2012. 太行山东麓焚风天气的统计特征和机理分析. Ⅱ: 背风波对焚风产生和传播影响的个例分析 [J]. 高原气象, 31(2): 555−561.Wang Zongmin, Ding Yihui, Zhang Yingxin, et al. 2012. Feature and mechanism of the foehn weather on east slope Taihang Mountains. II: Case analysis of the effects of lee wave on foehn occurring and moving [J]. Plateau Meteorology (in Chinese), 31(2): 555−561. [23] 王咏薇, 王恪非, 陈磊, 等. 2018. 空调系统对城市大气温度影响的模拟研究 [J]. 气象学报, 76(4): 649−662. doi: 10.11676/qxxb2018.020Wang Yongwei, Wang Kefei, Chen Lei, et al. 2018. Numerical study of effect of indoor-outdoor heat exchange on urban atmospheric temperature [J]. Acta Meteor. Sinica (in Chinese), 76(4): 649−662. doi: 10.11676/qxxb2018.020 [24] 谢庄, 崔继良, 刘海涛, 等. 1999. 华北和北京的酷暑天气. I. 历史概况及个例分析 [J]. 气候与环境研究, 4(4): 323−333. doi: 10.3878/j.issn.1006-9585.1999.04.01Xie Zhuang, Cui Jiliang, Liu Haitao, et al. 1999. A study on the severe hot weather in Beijing and North China. Part I. Statistics and synoptic case study [J]. Climatic and Environmental Research (in Chinese), 4(4): 323−333. doi: 10.3878/j.issn.1006-9585.1999.04.01 [25] 徐祥德, 汤绪, 徐大海. 2002. 城市化环境气象学引论 [M]. 北京: 气象出版社, 284pp.Xu Xiangde, Tang Xu, Xu Dahai. 2002. Introduction of Urbanization Environmental Meteorology (in Chinese) [M]. Beijing: China Meteorological Press, 284pp. [26] 杨萍, 刘伟东, 仲跻芹, 等. 2011. 北京地区自动气象站气温观测资料的质量评估 [J]. 应用气象学报, 22(6): 706−715. doi: 10.3969/j.issn.1001-7313.2011.06.008Yang Ping, Liu Weidong, Zhong Jiqin, et al. 2011. Evaluating the quality of temperature measured at automatic weather stations in Beijing [J]. Journal of Applied Meteorological Science (in Chinese), 22(6): 706−715. doi: 10.3969/j.issn.1001-7313.2011.06.008 [27] Yang P, Ren G Y, Liu W D. 2013. Spatial and temporal characteristics of Beijing urban heat island intensity [J]. Journal of Applied Meteorology and Climatology, 52(8): 1803−1816. doi: 10.1175/JAMC-D-12-0125.1 [28] 易翔, 曾新民, 郑益群, 等. 2016. 高分辨率WRF模式中土壤湿度扰动对短期高温天气模拟影响的个例研究 [J]. 大气科学, 40(3): 604−616. doi: 10.3878/j.issn.1006-9895.1602.15281Yi Xiang, Zeng Xinmin, Zheng Yiqun, et al. 2016. Impact of soil moisture perturbation on high resolution simulation of short-range high temperature weather: A WRF case study [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(3): 604−616. doi: 10.3878/j.issn.1006-9895.1602.15281 [29] 张雷, 任国玉, 刘江, 等. 2011. 城市化对北京气象站极端气温指数趋势变化的影响 [J]. 地球物理学报, 54(5): 1150−1159. doi: 10.3969/j.issn.0001-5733.2011.05.002Zhang Lei, Ren Guoyu, Liu Jiang, et al. 2011. Urban effect on trends of extreme temperature indices at Beijing Meteorological Station [J]. Chinese J. Geophys. (in Chinese), 54(5): 1150−1159. doi: 10.3969/j.issn.0001-5733.2011.05.002 [30] 张雷, 任国玉, 任玉玉. 2015. 单次极端高温过程中城市热岛效应的识别 [J]. 气候与环境研究, 20(2): 167−176. doi: 10.3878/j.issn.1006-9585.2014.13175Zhang Lei, Ren Guoyu, Ren Yuyu. 2015. Identification of urban effect on a single extreme high temperature event [J]. Climatic and Environmental Research (in Chinese), 20(2): 167−176. doi: 10.3878/j.issn.1006-9585.2014.13175 [31] 张亦洲, 苗世光, 戴永久, 等. 2013. 北京夏季晴天边界层特征及城市下垫面对海风影响的数值模拟 [J]. 地球物理学报, 56(8): 2558−2573. doi: 10.6038/cjg20130806Zhang Yizhou, Miao Shiguang, Dai Yongjiu, et al. 2013. Numerical simulation of characteristics of summer clear day boundary layer in Beijing and the impact of urban underlying surface on sea breeze [J]. Chinese J. Geophys. (in Chinese), 56(8): 2558−2573. doi: 10.6038/cjg20130806 [32] 郑祚芳, 范水勇, 王迎春. 2006. 城市热岛效应对北京夏季高温的影响 [J]. 应用气象学报, 17(S1): 48−53. doi: 10.3969/j.issn.1001-7313.2006.z1.007Zheng Zuofang, Fan Shuiyong, Wang Yingchun. 2006. Effects of urban heat island on summer high temperatures in Beijing [J]. Journal of Applied Meteorological Science (in Chinese), 17(S1): 48−53. doi: 10.3969/j.issn.1001-7313.2006.z1.007 [33] 郑祚芳, 高华, 王在文, 等. 2012. 城市化对北京夏季极端高温影响的数值研究 [J]. 生态环境学报, 21(10): 1689−1694. doi: 10.3969/j.issn.1674-5906.2012.10.010Zheng Zuofang, Gao Hua, Wang Zaiwen, et al. 2012. Numerical simulation for the urbanization effects on a heat wave event around Beijing City [J]. Ecology and Environmental Sciences (in Chinese), 21(10): 1689−1694. doi: 10.3969/j.issn.1674-5906.2012.10.010 [34] 郑玉兰, 苗世光, 张崎, 等. 2015. 建筑物能量模式的改进及制冷系统人为热排放研究 [J]. 高原气象, 34(3): 786−796. doi: 10.7522/j.issn.1000-0534.2014.00035Zheng Yulan, Miao Shiguang, Zhang Qi, et al. 2015. Improvements of building energy model and anthropogenic heat release from cooling system [J]. Plateau Meteorology (in Chinese), 34(3): 786−796. doi: 10.7522/j.issn.1000-0534.2014.00035 -