高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多源陆面通量数据相融合的新资料及其在中国夏季风影响过渡区的应用

李宏宇 张强 王春玲 马贵东 井元元 岳平 张良

李宏宇, 张强, 王春玲, 等. 2020. 基于多源陆面通量数据相融合的新资料及其在中国夏季风影响过渡区的应用[J]. 大气科学, 44(6): 1224−1242 doi:  10.3878/j.issn.1006-9895.2005.19192
引用本文: 李宏宇, 张强, 王春玲, 等. 2020. 基于多源陆面通量数据相融合的新资料及其在中国夏季风影响过渡区的应用[J]. 大气科学, 44(6): 1224−1242 doi:  10.3878/j.issn.1006-9895.2005.19192
LI Hongyu, ZHANG Qiang, WANG Chunling, et al. 2020. New Dataset Based on Multi-Source Land Surface Flux Data and Its Application in the East Asian Summer Monsoon Boundary Area [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(6): 1224−1242 doi:  10.3878/j.issn.1006-9895.2005.19192
Citation: LI Hongyu, ZHANG Qiang, WANG Chunling, et al. 2020. New Dataset Based on Multi-Source Land Surface Flux Data and Its Application in the East Asian Summer Monsoon Boundary Area [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(6): 1224−1242 doi:  10.3878/j.issn.1006-9895.2005.19192

基于多源陆面通量数据相融合的新资料及其在中国夏季风影响过渡区的应用

doi: 10.3878/j.issn.1006-9895.2005.19192
基金项目: 国家自然科学基金项目41705075、41630426、41975016、41875020,中国气象局气候变化专项CCSF201940,河北省湿地生态与保护重点实验室(筹)开放基金项目hklk201901
详细信息
    作者简介:

    李宏宇,男,1987年出生,博士、副高级工程师,主要从事陆面过程研究。E-mail: aridlhy@qq.com

  • 中图分类号: P468

New Dataset Based on Multi-Source Land Surface Flux Data and Its Application in the East Asian Summer Monsoon Boundary Area

Funds: National Natural Science Foundation of China (Grants 41705075, 41630426, 41975016, 41875020), Climate Change Special Fund from China Meteorological Administration (Grant CCSF201940), Open Foundation of Hebei Key Laboratory of Wetland Ecology and Conservation (Grant hklk201901)
  • 摘要: 夏季风影响过渡区是陆面能量交换与区域气候相互作用显著的热点区域。然而,目前缺乏适用于该区域的高精度长期通量数据集,这限制了陆面水热交换与气候相互作用的研究。如何融合目前已有的多源通量资料进行重构建以及应用显得十分必要。本研究综合包括中国北方协同观测试验和中国通量网的多种下垫面通量观测以及多种格点资料,试图重构中国夏季风影响过渡区的陆面能量通量数据集。在筛选具有优良下垫面代表性站点并考察模拟和观测散点分布规律的基础上,利用多元回归模型构建了一套适用于夏季风影响过渡区并且受观测资料约束的月平均感热、潜热和净辐射数据集。交叉验证结果表明构建的数据集相对于几种原始格点数据集精度有一定提高,最大程度上消除了原始格点资料的系统偏差。进一步分析表明在地表能量平衡分量中,陆面湍流通量对夏季风的响应更为显著,并且夏季风影响过渡区陆面湍流热通量对夏季风持续时间呈现对数分布的年际变化规律;当夏季风处于低持续影响状态时陆面湍流热通量年际变化更为显著,偏弱的夏季风系统可能导致陆面过程对气候变化更强的影响。本文基于多源通量数据融合构建的新数据集可以为气候变化研究提供数据支撑,同时增加了对陆面过程与季风系统相互作用的认识。
  • 图  1  夏季风影响过渡区内所选观测站点的地理分布。红线代表夏季风活动的南北边缘,蓝色实框、蓝色空三角形和红色实圆点分别代表草原站、农田站和裸地/荒漠站

    Figure  1.  Geographical distribution of observation sites in EASM (East Asian summer monsoon) boundary area. Red lines represent the north and south edge of summer monsoon. Blue solid frames, blue hollow triangles, and red solid dots represent grassland, cropland, and bare land/desert sites, respectively

    图  2  陆面通量数据构建步骤的框图

    Figure  2.  Flowchart of the procedure of land surface fluxes data construction

    图  3  以站点为圆心、不同距离为半径的圆形区域内观测站点所属下垫面类型所占比例:(a)裸地/戈壁;(b)草原;(c)农田;(d)森林。Spt和Zhy分别代表沙坡头和张掖站,Yuz、Nma、Aro、Tyu、Xil和Dsu分别代表榆中、奈曼、阿柔、通榆、锡林格勒和东苏站,Pli、Jzh、Qya、Miy、Chw、Yke和Dxi分别代表平凉、锦州、庆阳、密云、长武、盈科和定西站,Dyk代表大野口站

    Figure  3.  Percentage of land cover types at measurement sites within the circular area with different radii for (a) bare land/desert, (b) grassland, (c) cropland, and (d) forest. Spt and Zhy represent Shapotou and Zhangye sites, respectively; Yuz, Nma, Aro, Tyu, Xil, and Dsu represent Yuzhong, Naiman, Arou, Tongyu, Xilingele, and Dongsu sites, respectively; Pli, Jzh, Qya, Miy, Chw, Yke, and Dxi represent Pingliang, Jinzhou, Qingyang, Miyun, Changwu, Yingke, and Dingxi sites, respectively; Dyk represents Dayekou site

    图  4  草地(蓝色圆圈)、农田(绿色方框)、裸地/荒漠(红色实心圆点)三种下垫面类型净辐射通量(左)、感热通量(中)、潜热通量(右)的模拟值与观测值的散点分布

    Figure  4.  The scatter distributions of net radiation fluxes (NRF, left), sensible heat fluxes (SHF, middle), latent heat fluxes (LHF, right) from simulation (Sim) and observations (Obs) for grassland (blue circles), farmland (green squares), and bare land/desert (solid red points)

    图  5  新构建的(a)净辐射通量、(b)感热通量和(c)潜热通量数据集与观测值的散点图,RMSE、RN分别表示格点资料的均方根误差、格点资料与观测资料的线性相关系数、样本数

    Figure  5.  Scatter plots of newly constructed (a) net radiation fluxes (Rn), (b) sensible heat fluxes (HS), and (c) latent heat fluxes (HL) datasets and observations, RMSE, R, N represent the root mean square error of grid datasets, linear correlation coefficients between grid data and observation, sample number, respectively

    图  6  不同格点资料(a)净辐射通量、(b)感热通量和(c)潜热通量均方差的相关偏差项、标准差偏差项和平均值偏差项贡献分布

    Figure  6.  The distributions of contributions from correlation deviation term, standard deviation term, and mean bias term of the mean square error (MSE) in (a) net radiation fluxes, (b) sensible heat fluxes, and (c) latent heat fluxes for different grid datasets

    图  7  不同格点资料的(a)净辐射通量、(b)感热通量和(c)潜热通量在多个插值网格下的均方根误差分布

    Figure  7.  RMSE distributions of (a) net radiation fluxes, (b) sensible heat fluxes, and (c) latent heat fluxes at multiple grid scales for different grid datasets

    图  8  夏季风影响过渡区(a、b)净辐射通量、(c、d)感热通量和(e、f)潜热通量的夏季气候平均(左,单位:W m−2)和年际变率(右,单位:W m−2)空间分布

    Figure  8.  Spatial distributions of summer climate mean (left, units: W m−2) and interannual variability (right, units: W m−2) of (a, b) net radiation fluxes, (c, d) sensible heat fluxes, and (e, f) latent heat fluxes in the EASM boundary area

    图  9  夏季风影响过渡区(a)西部和(b)东部区域湍流热通量(左侧纵坐标)、夏季风持续时间指数(右侧纵坐标)年际变化以及(c)西部和(d)东部湍流热通量和夏季风持续时间指数的散点分布

    Figure  9.  Interannual variations of turbulent heat fluxes (left y-axis) and duration index of summer monsoon (right y-axis) in (a) west and (b) east regions of the EASM boundary area. Scatter distributions between turbulent heat fluxes and duration index of summer monsoon for (c) west and (d) east regions of the EASM boundary area

    表  1  使用资料简介

    Table  1.   Introduction of data used in the study

    数据类型名称机构名称空间分辨率时间分辨率时间长度
    再分析资料NCEP/DOENCEP/DOET62 (200 km)6 h1979年1月至今
    JRA-25JMAT106 (110 km)3 h1979年1月至2014年2月
    ERA-IntECMWF1.5°×1.5°6 h1979年1月至今
    MERRANASA0.5°×0.67°1 h1979年1月至今
    离线陆面模式数据集GLDAS2-NOAHNASA1°×1°3 h1979年1月至2010年12月
    陆面观测中国北方陆面过程观测中国科学院大气物理研究所/
    地理科学与资源所
    16个站点30 min详见表2
    下载: 导出CSV

    表  2  所选观测站点基本情况

    Table  2.   Basic information on selected observation sites

    站点名称纬度经度下垫面类型观测时段
    沙坡头37.45°N104.95°S荒漠2008年7~9月;2009年7~9月
    张掖38.86°N100.41°S裸地2008年7~9月;2009年7~9月
    长武35.2°N107.67°S农田2008年7~9月;2009年7~9月
    定西35.56°N104.59°S旱作农田2008年7~9月;2009年7~9月
    锦州41.15°N121.2°S农田(玉米)2008年7~9月;2009年7~9月
    密云40.63°N117.32°S农田/果林2008年7~9月;2009年7~9月
    平凉35.53°N106.94°S农田2009年7月至2010年12月
    庆阳35.66°N107.84°S农田(小麦)2009年5月至2010年12月
    盈科38.86°N100.58°S绿洲农田(玉米)2008年7~9月;2009年7~9月
    大野口38.53°N100.25°S常绿针叶林2008年7~9月;2009年7~9月
    阿柔38.04°N100.46°S亚高山草甸2008年7~9月;2009年7~9月
    东苏44.09°N113.57°S荒漠化草原2008年7~9月;2009年7~9月
    奈曼42.93°N120.7°S荒漠化草原2008年7~9月;2009年7~9月
    通榆44.88°N122.88°S退化草原2003年1月至2008年12月
    榆中35.95°N104.13°S草原2007年1月至2010年12月
    锡林格勒44.13°N116.32°S草原2004年1月至2008年12月
    下载: 导出CSV

    表  3  5种格点资料的误差统计情况

    Table  3.   Errors statistics of five gridded data

    资料名称净辐射通量Rn感热通量HS潜热通量HL
    RMSE/W m−2Bias/W m−2RRMSE/W m−2Bias/W m−2RRMSE/W m−2Bias/W m−2R
    NCEP/DOE34.0612.460.9032.939.230.6920.7611.450.79
    JRA-2523.763.080.9218.774.480.7614.672.210.85
    ERA-Int20.40−0.780.9312.664.980.8315.163.400.86
    MERRA24.4510.550.9222.2114.850.7715.473.500.86
    GLDAS2-NOAH27.9719.940.9332.9226.310.6317.221.040.80
    注:RMSE、Bias、R分别表示格点资料的均方根误差、系统误差以及格点资料与观测资料的线性相关系数。
    下载: 导出CSV

    表  4  三种陆面通量多元回归模型的截距和回归系数

    Table  4.   Interception and regression coefficients of three multiple regression models for land surface fluxes

    陆面
    通量
    截距/
    W m−2
    回归系数
    NCEP/
    DOE
    JRA-25ERA-IntMERRAGLDAS2-
    NOAH
    Rn−8.1894−0.45220.28260.62180.20190.3943
    HS5.1904−0.11130.05960.5940.13960.0093
    HL2.854−0.15120.24010.20570.39720.191
    下载: 导出CSV

    表  5  构建数据集与原始格点数据交叉验证的均方根误差(RMSE_CV)

    Table  5.   Root mean square error of cross-validation (RMSE-CV) between constructed and original gridded datasets

    数据集交叉验证的均方根误差
    Rn/W m−2HS/W m−2HL/W m−2
    构建数据集22.1 9.4 13.8
    NCEP/DOE34.132.920.8
    JRA-2523.818.814.7
    ERA-Int20.4 12.7 15.2
    MERRA24.522.215.5
    GLDAS2-NOAH28.032.917.2
    注:黑色字体数字表示一列中最小的两个数。
    下载: 导出CSV
  • [1] Betts A K, Ball J H, Beljaars A C M, et al. 1996. The land surface-atmosphere interaction: A review based on observational and global modeling perspectives [J]. J. Geophys. Res., 101(D3): 7209−7225. doi: 10.1029/95JD02135
    [2] Chen Y Y, Yang K, Tang W J, et al. 2012. Parameterizing soil organic carbon’s impacts on soil porosity and thermal parameters for eastern Tibet grasslands [J]. Sci. China: Earth Sci., 55(6): 1001−1011. doi: 10.1007/s11430-012-4433-0
    [3] da Rocha H R, Manzi A O, Cabral O M, et al. 2009. Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil [J]. J. Geophys. Res., 114(G1): G00B12. doi: 10.1029/2007JG000640
    [4] Decker M, Zeng X B. 2009. Impact of modified Richards equation on global soil moisture simulation in the Community Land Model (CLM3.5) [J]. J. Adv. Model. Earth Syst., 1(3): 5. doi: 10.3894/JAMES.2009.1.5
    [5] Decker M, Brunke M A, Wang Z, et al. 2012. Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations [J]. J. Climate, 25(6): 1916−1944. doi: 10.1175/JCLI-D-11-00004.1
    [6] 丁一汇, 司东, 柳艳菊, 等. 2018. 论东亚夏季风的特征、驱动力与年代际变化 [J]. 大气科学, 42(3): 533−558. doi:  10.3878/j.issn.1006-9895.1712.17261

    Ding Y H, Si D, Liu Y J, et al. 2018. On the characteristics, driving forces and inter-decadal variability of the East Asian summer monsoon [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(3): 533−558. doi: 10.3878/j.issn.1006-9895.1712.17261
    [7] Finnigan J J, Clement R, Malhi Y, et al. 2003. A re-evaluation of long-term flux measurement techniques. Part I: Averaging and coordinate rotation [J]. Bound.-Layer Meteorol., 107(1): 1−48. doi: 10.1023/A:1021554900225
    [8] Fisher J B, Tu K P, Baldocchi D D. 2008. Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites [J]. Remote Sens. Environ., 112(3): 901−919. doi: 10.1016/j.rse.2007.06.025
    [9] Foken T, Wimmer F, Mauder M, et al. 2006. Some aspects of the energy balance closure problem [J]. Atmos. Chem. Phys., 6(12): 4395−4402. doi: 10.5194/acp-6-4395-2006
    [10] Foken T. 2008. The energy balance closure problem: An overview [J]. Ecol. Appl., 18(6): 1351−1367. doi: 10.1890/06-0922.1
    [11] 符淙斌, 马柱国. 2008. 全球变化与区域干旱化 [J]. 大气科学, 32(4): 752−760. doi:  10.3878/j.issn.1006-9895.2008.04.05

    Fu C B, Ma Z G. 2008. Global change and regional aridification [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(4): 752−760. doi: 10.3878/j.issn.1006-9895.2008.04.05
    [12] Gupta H V, Kling H, Yilmaz K K, et al. 2009. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling [J]. J. Hydrol., 377(1-2): 80−91. doi: 10.1016/j.jhydrol.2009.08.003
    [13] 胡豪然, 钱维宏. 2007. 东亚夏季风北边缘的确认 [J]. 自然科学进展, 17(1): 57−65. doi:  10.3321/j.issn:1002-008X.2007.01.009

    Hu H R, Qian W H. 2007. Identifying the northernmost summer monsoon location in East Asia [J]. Prog. Nat. Sci. (in Chinese), 17(1): 57−65. doi: 10.3321/j.issn:1002-008X.2007.01.009
    [14] 胡隐樵, 高由禧, 王介民, 等. 1994. 黑河实验(HEIFE)的一些研究成果 [J]. 高原气象, 13(3): 225−236. doi:  10.3321/j.issn:1000-0534.1994.03.019

    Hu Y Q, Gao Y X, Wang J M, et al. 1994. Some achievements in scientific research during HEIFE [J]. Plateau Meteor. (in Chinese), 13(3): 225−236. doi: 10.3321/j.issn:1000-0534.1994.03.019
    [15] 黄菲, 李栋梁, 汤绪, 等. 2009. 用过程透雨量确定的东亚夏季风北边缘特征 [J]. 应用气象学报, 20(5): 530−538. doi:  10.3969/j.issn.1001-7313.2009.05.003

    Huang F, Li D L, Tang X, et al. 2009. Determination on the north boundary of summer monsoon in East Asian with soaking rainfall [J]. Journal of Applied Meteorological Science (in Chinese), 20(5): 530−538. doi: 10.3969/j.issn.1001-7313.2009.05.003
    [16] 姜大膀, 田芝平. 2013. 21世纪东亚季风变化: CMIP3和CMIP5模式预估结果 [J]. 科学通报, 58(8): 707−716. doi:  10.1007/s11434-012-5533-0

    Jiang D B, Tian Z P. 2013. East Asian monsoon change for the 21st century: Results of CMIP3 and CMIP5 models [J]. Chinese Science Bulletin (in Chinese), 58(8): 707−716. doi: 10.1007/s11434-012-5533-0
    [17] Jiménez C, Prigent C, Mueller B, et al. 2011. Global intercomparison of 12 land surface heat flux estimates [J]. J. Geophys. Res., 116(D2): D02102. doi: 10.1029/2010JD014545
    [18] Jung M, Reichstein M, Bondeau A. 2009. Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model [J]. Biogeosciences, 6(10): 2001−2013. doi: 10.5194/bg-6-2001-2009
    [19] Jung M, Reichstein M, Ciais P, et al. 2010. Recent decline in the global land evapotranspiration trend due to limited moisture supply [J]. Nature, 467(7318): 951−954. doi: 10.1038/nature09396
    [20] 柯宗建, 张培群, 董文杰, 等. 2009. 最优子集回归方法在季节气候预测中的应用 [J]. 大气科学, 33(5): 994−1002. doi:  10.3878/j.issn.1006-9895.2009.05.10

    Ke Z J, Zhang P Q, Dong W J, et al. 2009. An application of optimal subset regression in seasonal climate prediction [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33(5): 994−1002. doi: 10.3878/j.issn.1006-9895.2009.05.10
    [21] Koster R D, Dirmeyer P A, Guo Z C, et al. 2004. Regions of strong coupling between soil moisture and precipitation [J]. Science, 305(5687): 1138−1140. doi: 10.1126/science.1100217
    [22] Kumar S, Merwade V. 2011. Evaluation of NARR and CLM3.5 outputs for surface water and energy budgets in the Mississippi River basin [J]. J. Geophys. Res., 116(D8): D08115. doi: 10.1029/2010JD014909
    [23] 李栋梁, 邵鹏程, 王慧, 等. 2013. 中国东亚副热带夏季风北边缘带研究进展 [J]. 高原气象, 32(1): 305−314. doi:  10.7522/j.issn.1000-0534.2012.00030

    Li D L, Shao P C, Wang H, et al. 2013. Advances in research of the north boundary belt of East Asia subtropical summer monsoon in China [J]. Plateau Meteor. (in Chinese), 32(1): 305−314. doi: 10.7522/j.issn.1000-0534.2012.00030
    [24] Li H Y, Fu C B, Guo W D. 2017. An integrated evaluation of land surface energy fluxes over China in seven reanalysis/modeling products [J]. J. Geophys. Res., 122(16): 8543−8566. doi: 10.1002/2016JD026166
    [25] 李杉, 符淙斌. 2015. 中美半干旱区长期地表通量序列的构建及检验 [J]. 气象科学, 35(1): 1−8. doi:  10.3969/2013jms.0041

    Li S, Fu C B. 2015. Reconstruction and validation of a long-term surface flux sequence in the semi-arid region of China and North America [J]. Journal of the Meteorological Sciences (in Chinese), 35(1): 1−8. doi: 10.3969/2013jms.0041
    [26] 李正泉, 于贵瑞, 温学发, 等. 2004. 中国通量观测网络(ChinaFLUX)能量平衡闭合状况的评价 [J]. 中国科学D: 地球科学, 34(S2): 46−56.

    Li Z Q, Yu G R, Wen X F, et al. 2004. Energy balance closure at ChinaFLUX sites [J]. Science in China (Earth Sciences), 34(S2): 46−56.
    [27] 林祥, 钱维宏. 2012. 全球季风和季风边缘研究 [J]. 地球科学进展, 27(1): 26−34.

    Lin X, Qian W H. 2012. Review of the global monsoon and monsoon marginal zones [J]. Adv. Earth Sci. (in Chinese), 27(1): 26−34.
    [28] 吕达仁, 陈佐忠, 陈家宜, 等. 2002. 内蒙古半干旱草原土壤—植被—大气相互作用(IMGRASS)综合研究 [J]. 地学前缘, 9(2): 295−306. doi:  10.3321/j.issn:1005-2321.2002.02.007

    Lü D R, Chen Z Z, Chen J Y, et al. 2002. Composite study on Inner Mongolia semi-arid grassland soil–vegetation–atmosphere interaction (IMGRASS) [J]. Earth Sci. Front. (in Chinese), 9(2): 295−306. doi: 10.3321/j.issn:1005-2321.2002.02.007
    [29] Onogi K, Tsutsui J, Koide H, et al. 2007. The JRA-25 reanalysis [J]. J. Meteor. Soc. Japan, 85: 369−432. doi: 10.2151/jmsj.85.369
    [30] 欧廷海, 钱维宏. 2006. 东亚季风边缘带上的植被变化 [J]. 地球物理学报, 49(3): 698−705. doi:  10.3321/j.issn:0001-5733.2006.03.012

    Ou T H, Qian W H. 2006. Vegetation variations along the monsoon boundary zone in East Asia [J]. Chinese J. Geophys. (in Chinese), 49(3): 698−705. doi: 10.3321/j.issn:0001-5733.2006.03.012
    [31] Roberts J B, Robertson F R, Clayson C A, et al. 2012. Characterization of turbulent latent and sensible heat flux exchange between the atmosphere and ocean in MERRA [J]. J. Climate, 25(3): 821−838. doi: 10.1175/jcli-d-11-00029.1
    [32] Rodell M, Houser P R, Jambor U, et al. 2004. The global land data assimilation system [J]. Bull. Amer. Meteor. Soc., 85(3): 381−394. doi: 10.1175/BAMS-85-3-381
    [33] Seneviratne S I, Corti T, Davin E L, et al. 2010. Investigating soil moisture–climate interactions in a changing climate: A review [J]. Earth-Science Reviews, 99(3-4): 125−161. doi: 10.1016/j.earscirev.2010.02.004
    [34] Sheffield J, Wood E F, Munoz-Arriola F. 2010. Long-term regional estimates of evapotranspiration for Mexico based on downscaled ISCCP data [J]. J. Hydrometeor., 11(2): 253−275. doi: 10.1175/2009jhm1176.1
    [35] Shi Q Q, Liang S L. 2014. Surface-sensible and latent heat fluxes over the Tibetan Plateau from ground measurements, reanalysis, and satellite data [J]. Atmos. Chem. Phys., 14(11): 5659−5677. doi: 10.5194/acp-14-5659-2014
    [36] Shi Q Q, Liang S L. 2013. Characterizing the surface radiation budget over the Tibetan Plateau with ground-measured, reanalysis, and remote sensing data set. 1: Methodology [J]. J. Geophys. Res., 118(17): 9642−9657. doi: 10.1002/jgrd.50720
    [37] 史正涛. 1996. 中国季风边缘带自然灾害的区域特征 [J]. 干旱区资源与环境, 10(4): 1−7.

    Shi Z T. 1996. Regional characters of natural disaster in marginal monsoon belt of China [J]. J. Arid Land Resour. Environ. (in Chinese), 10(4): 1−7.
    [38] Simmons A, Uppala S, Dee D, et al. 2006. ERA-Interim: New ECMWF reanalysis products from 1989 onwards [J]. ECMWF Newsl., 110: 25−35.
    [39] Steinfeld G, Letzel M O, Raasch S, et al. 2007. Spatial representativeness of single tower measurements and the imbalance problem with eddy-covariance fluxes: Results of a large-eddy simulation study [J]. Bound.-Layer Meteor., 123(1): 77−98. doi: 10.1007/s10546-006-9133-x
    [40] Stephens G L, Li J L, Wild M, et al. 2012. An update on Earth’s energy balance in light of the latest global observations [J]. Nature Geoscience, 5(10): 691−696. doi: 10.1038/ngeo1580
    [41] 汤绪, 陈葆德, 梁萍, 等. 2009. 有关东亚夏季风北边缘的定义及其特征 [J]. 气象学报, 67(1): 83−89. doi:  10.3321/j.issn:0577-6619.2009.01.009

    Tang X, Chen B D, Liang P, et al. 2009. Definition and features of the north edge of Asian summer monsoon [J]. Acta Meteor. Sinica (in Chinese), 67(1): 83−89. doi: 10.3321/j.issn:0577-6619.2009.01.009
    [42] Tramontana G, Jung M, Schwalm C R, et al. 2016. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms [J]. Biogeosciences, 13(14): 4291−4313. doi: 10.5194/bg-13-4291-2016
    [43] Trenberth K E, Stepaniak D P. 2004. The flow of energy through the Earth’s climate system [J]. Quart. J. Roy. Meteor. Soc., 130(603): 2677−2701. doi: 10.1256/qj.04.83
    [44] Twine T E, Kustas W P, Norman J M, et al. 2000. Correcting eddy-covariance flux underestimates over a grassland [J]. Agric. For. Meteor., 103(3): 279−300. doi: 10.1016/s0168-1923(00)00123-4
    [45] 王澄海, 王蕾迪. 2010. 西北半干旱区感、潜热通量特征及近50年来的变化趋势 [J]. 高原气象, 29(4): 849−854.

    Wang C H, Wang L D. 2010. Characteristics of sensible and latent heat fluxes in semi-arid region of northwest China and change trend in recent 50 years [J]. Plateau Meteor. (in Chinese), 29(4): 849−854.
    [46] Wang K C, Liang S L. 2008. An improved method for estimating global evapotranspiration based on satellite determination of surface net radiation, vegetation index, temperature, and soil moisture [J]. J. Hydrometeor., 9(4): 712−727. doi: 10.1175/2007JHM911.1
    [47] Yang K, Koike T, Ishikawa H, et al. 2008. Turbulent flux transfer over bare-soil surfaces: Characteristics and parameterization [J]. J. Appl. Meteor. Climatol., 47(1): 276−290. doi: 10.1175/2007JAMC1547.1
    [48] Yao Y J, Liang S L, Li X L, et al. 2016. Assessment and simulation of global terrestrial latent heat flux by synthesis of CMIP5 climate models and surface eddy covariance observations [J]. Agricultural and Forest Meteorology, 223: 151−167. doi: 10.1016/j.agrformet.2016.03.016
    [49] 曾剑, 张强, 王胜. 2011. 中国北方不同气候区晴天陆面过程区域特征差异 [J]. 大气科学, 35(3): 483−494. doi:  10.3878/j.issn.1006-9895.2011.03.09

    Zeng J, Zhang Q, Wang S. 2011. Regional differences in the characteristics of clear-sky land surface processes in distinct climatic zones over northern China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35(3): 483−494. doi: 10.3878/j.issn.1006-9895.2011.03.09
    [50] 曾剑, 张强, 王春玲. 2016. 东亚夏季风边缘摆动区陆面能量时空分布规律及其与气候环境的关系 [J]. 气象学报, 74(6): 876−888. doi:  10.11676/qxxb2016.064

    Zeng J, Zhang Q, Wang C L. 2016. Spatial–temporal pattern of surface energy fluxes over the East Asian summer monsoon edge area in China and its relationship with climate [J]. Acta Meteor. Sinica (in Chinese), 74(6): 876−888. doi: 10.11676/qxxb2016.064
    [51] Zeng J, Zhang Q. 2019. A humidity index for the summer monsoon transition zone in East Asia [J]. Climate Dyn., 53(9): 5511−5527. doi: 10.1007/s00382-019-04876-0
    [52] 张强, 胡向军, 王胜, 等. 2009. 黄土高原陆面过程试验研究 (LOPEX) 有关科学问题 [J]. 地球科学进展, 24(4): 363−371. doi:  10.3321/j.issn:1001-8166.2009.04.002

    Zhang Q, Hu X J, Wang S, et al. 2009. Some technological and scientific issues about the experimental study of land surface processes in Chinese Loess Plateau (LOPEX) [J]. Adv. Earth Sci. (in Chinese), 24(4): 363−371. doi: 10.3321/j.issn:1001-8166.2009.04.002
    [53] 张强, 黄菁, 张良. 2013. 黄土高原区域气候暖干化对地表能量交换特征的影响 [J]. 物理学报, 62(13): 139202. doi:  10.7498/aps.62.139202

    Zhang Q, Huang J, Zhang L. 2013. Warming and drying climate over Loess Plateau area in China and its effect on land surface energy exchange [J]. Acta Phys. Sinica (in Chinese), 62(13): 139202. doi: 10.7498/aps.62.139202
    [54] Zhang Q, Zeng J, Zhang L Y. 2012. Characteristics of land surface thermal-hydrologic processes for different regions over North China during prevailing summer monsoon period [J]. Sci. China Earth Sci., 55(11): 1872−1880. doi: 10.1007/s11430-012-4373-8
    [55] Zhang H L, Zhang Q, Yue P, et al. 2016. Aridity over a semiarid zone in northern China and responses to the East Asian summer monsoon [J]. J. Geophys. Res., 121(23): 13901−13918. doi: 10.1002/2016JD025261
    [56] 张强, 岳平, 张良, 等. 2019. 夏季风过渡区的陆—气相互作用: 述评与展望 [J]. 气象学报, 77(4): 758−773. doi:  10.11676/qxxb2019.038

    Zhang Q, Yue P, Zhang L, et al. 2019. Land–Atmosphere over the summer monsoon transition zone in China: A review and prospects [J]. Acta Meteor. Sinica (in Chinese), 77(4): 758−773. doi: 10.11676/qxxb2019.038
    [57] Zhang Q, Lin J J, Liu W C, et al. 2019. Precipitation seesaw phenomenon and its formation mechanism in the eastern and western parts of Northwest China during the flood season [J]. Sci. China: Earth Sci., 62(12): 2083−2098. doi: 10.1007/s11430-018-9357-y
    [58] 周兵, 赵翠光, 赵声蓉. 2006. 多模式集合预报技术及其分析与检验 [J]. 应用气象学报, 17(S1): 104−109. doi:  10.3969/j.issn.1001-7313.2006.z1.015

    Zhou B, Zhao C G, Zhao S R. 2006. Multi-model ensemble forecast technology with analysis and verification of the results [J]. Journal of Applied Meteorological Science (in Chinese), 17(S1): 104−109. doi: 10.3969/j.issn.1001-7313.2006.z1.015
    [59] Zhou C L, Wang K C. 2016. Evaluation of surface fluxes in ERA-interim using flux tower data [J]. J. Climate, 29(4): 1573−1582. doi: 10.1175/JCLI-D-15-0523.1
    [60] Zuo H C, Xiao X, Yang Q D, et al. 2012. On the atmospheric movement and the imbalance of observed and calculated energy in the surface layer [J]. Sci. China Earth Sci., 55(9): 1518−1532. doi: 10.1007/s11430-012-4378-3
  • [1] 李昀英, 寇雄伟, 孙国荣.  对比云和降水表征的东亚夏季风活动, 大气科学. doi: 10.3878/j.issn.1006-9895.1805.17285
    [2] 黄思洁, 李秀珍, 温之平.  中国东部夏季风北界年际变化的东西差异及其影响因子, 大气科学. doi: 10.3878/j.issn.1006-9895.1812.18173
    [3] 庞轶舒, 祝从文, 马振峰, 秦宁生.  东亚夏季环流多齿轮耦合特征及其对中国夏季降水异常的影响分析, 大气科学. doi: 10.3878/j.issn.1006-9895.1808.18164
    [4] 陈文, 丁硕毅, 冯娟, 陈尚锋, 薛旭, 周群.  不同类型ENSO对东亚季风的影响和机理研究进展, 大气科学. doi: 10.3878/j.issn.1006-9895.1801.17248
    [5] 周天军, 吴波, 郭准, 何超, 邹立维, 陈晓龙, 张丽霞, 满文敏, 李普曦, 李东欢, 姚隽琛, 黄昕, 张文霞, 左萌, 陆静文, 孙宁.  东亚夏季风变化机理的模拟和未来变化的预估:成绩和问题、机遇和挑战, 大气科学. doi: 10.3878/j.issn.1006-9895.1802.17306
    [6] 罗连升, 段春锋, 杨玮, 徐敏, 程智, 丁小俊.  MRI-CGCM模式对东亚夏季风的模拟评估及订正, 大气科学. doi: 10.3878/j.issn.1006-9895.1602.15188
    [7] 寇雄伟, 李昀英, 方乐锌, 孙国荣, 高翠翠.  东亚夏季风活动与不同类型云的相关性研究, 大气科学. doi: 10.3878/j.issn.1006-9895.1511.14293
    [8] 徐霈强, 冯娟, 陈文.  ENSO冷暖位相影响东亚冬季风与东亚夏季风联系的非对称性, 大气科学. doi: 10.3878/j.issn.1006-9895.1509.15192
    [9] 黄燕玲, 陈海山, 蒋薇, 许蓓, 李忠贤.  东亚夏季风异常活动的多模态特征:不同再分析资料的比较分析, 大气科学. doi: 10.3878/j.issn.1006-9895.1404.13326
    [10] 刘鹏, 陈海山, 于华英, 秦怡, 钱永甫.  东亚海陆表面温度季节性增温差异对东亚夏季风强度的影响, 大气科学. doi: 10.3878/j.issn.1006-9895.1502.14228
    [11] 陈红, 薛峰.  东亚夏季风和中国东部夏季降水年代际变化的模拟, 大气科学. doi: 10.3878/j.issn.1006-9895.2012.12130
    [12] 华维, 范广洲, 王炳赟.  近几十年青藏高原夏季风变化趋势及其对中国东部降水的影响, 大气科学. doi: 10.3878/j.issn.1006-9895.2012.11173
    [13] 宋丰飞, 周天军.  20CR再分析资料在东亚夏季风区的质量评估, 大气科学. doi: 10.3878/j.issn.1006-9895.2012.12005
    [14] 许立言, 武炳义.  欧亚大陆春季融雪量与东亚夏季风的可能联系, 大气科学. doi: 10.3878/j.issn.1006-9895.2012.12001
    [15] 吕俊梅, 琚建华, 张庆云, 陶诗言.  热带西太平洋海温距平与Rossby波传播对1993和1994年东亚夏季风异常影响的差异, 大气科学. doi: 10.3878/j.issn.1006-9895.2006.05.25
    [16] 刘长征, 王会军, 姜大膀.  东亚季风区夏季风强度和降水的配置关系, 大气科学. doi: 10.3878/j.issn.1006-9895.2004.05.05
    [17] 孙颖, 丁一汇.  青藏高原热源异常对1999年东亚夏季风异常活动的影响, 大气科学. doi: 10.3878/j.issn.1006-9895.2002.06.10
    [18] 陈文.  El Ni?o和La Ni?a事件对东亚冬、夏季风循环的影响, 大气科学. doi: 10.3878/j.issn.1006-9895.2002.05.02
    [19] 徐建军, 朱乾根.  印度与东亚夏季风环流对ENSO及其年代际异常响应的数值研究, 大气科学. doi: 10.3878/j.issn.1006-9895.1999.02.10
    [20] 魏和林, 符淙斌, 王维强.  区域气候模式侧边界的处理对东亚夏季风降水模拟的影响, 大气科学. doi: 10.3878/j.issn.1006-9895.1998.05.13
  • 加载中
图(9) / 表ll (5)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  1
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-26
  • 网络出版日期:  2020-05-26
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回