高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

六盘山地区一次低槽低涡云系结构及其降水机制的数值模拟研究

高亮书 姚展予 贾烁 张沛 安琳 常倬林 桑建人 赵文慧 王伟健

高亮书, 姚展予, 贾烁, 等. 2021. 六盘山地区一次低槽低涡云系结构及其降水机制的数值模拟研究[J]. 大气科学, 45(2): 257−272 doi: 10.3878/j.issn.1006-9895.2005.19225
引用本文: 高亮书, 姚展予, 贾烁, 等. 2021. 六盘山地区一次低槽低涡云系结构及其降水机制的数值模拟研究[J]. 大气科学, 45(2): 257−272 doi: 10.3878/j.issn.1006-9895.2005.19225
GAO Liangshu, YAO Zhanyu, JIA Shuo, et al. 2021. A Numerical Study of Cloud Structure and Precipitation Mechanism of Low-Trough Low-Vortex Weather Process over the Liupan Mountain Area [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(2): 257−272 doi: 10.3878/j.issn.1006-9895.2005.19225
Citation: GAO Liangshu, YAO Zhanyu, JIA Shuo, et al. 2021. A Numerical Study of Cloud Structure and Precipitation Mechanism of Low-Trough Low-Vortex Weather Process over the Liupan Mountain Area [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(2): 257−272 doi: 10.3878/j.issn.1006-9895.2005.19225

六盘山地区一次低槽低涡云系结构及其降水机制的数值模拟研究

doi: 10.3878/j.issn.1006-9895.2005.19225
基金项目: 国家自然科学基金项目41775139,科技部战略性国际科技创新合作重点专项2016YFE0201900,公益性行业(气象)科研专项GYHY201406033
详细信息
    作者简介:

    高亮书,女,1997年出生,硕士研究生,主要从事云降水与人工影响天气研究。E-mail: cherrygls@163.com

    通讯作者:

    姚展予,E-mail: yaozy@cma.gov.cn

  • 中图分类号: P481

A Numerical Study of Cloud Structure and Precipitation Mechanism of Low-Trough Low-Vortex Weather Process over the Liupan Mountain Area

Funds: National Natural Science Foundation of China (Grant 41775139), Key Project of Strategic International Scientific and Technological Innovation Cooperation of the Ministry of Science and Technology (Grant 2016YFE0201900), Specialized Scientific Research Project in Public Welfare Profession (Meteorology) of the Ministry of Science and Technology (Grant GYHY201406033)
  • 摘要: 六盘山是西北重要的水源涵养林基地,干旱少雨制约了该地区农业和经济发展。作为该地区人工增雨技术研究的基础,本文利用WRF模式对2018年8月21日发生在宁夏南部六盘山区的一次降水天气过程进行了数值模拟。根据模拟结果结合实测资料,分析了造成此次强降水过程的有利环流形势场,重点讨论了山区降水云系的微物理结构以及降水形成机制。结果表明:降水是在高空槽配合低涡的动力场作用下形成的,受六盘山地形的阻挡作用,低层低涡系统移速落后于高空槽;垂直方向上云系呈现“催化—供给”的分层结构,但在云系不同部位,各层水凝物配置不同,导致冷暖云过程对降水的贡献差异;六盘山东部迎风坡降水强于西坡。霰粒子融化和云水碰并是地面降水的主要来源;碰冻过冷雨水是霰增长的主要过程。迎风坡云水层深厚,含水量高,一方面促进过冷层中霰粒子的碰冻增长过程,一方面为雨滴碰并增长提供充沛的云水条件,即同时增强了冷暖云降水过程。地形对云的发展和降水的形成有明显影响,当降低地形高度后,云水量减少,暖云过程减弱,同时也影响了霰粒子的增长过程。
  • 图  4  三层嵌套模拟区域(彩色阴影:地形高度)

    Figure  4.  Three-nested simulation domains (color shadings indicate the terrain height)

    图  1  2018年08月21日08:00(北京时,下同)(a)500 hPa和(b)700 hPa高度场(蓝线,单位:dagpm)、温度场(红线,单位:°C)、流场(黑色箭头)分布以及(c)750 hPa水汽通量场(阴影,单位:g s−1 cm−1 hPa−1)和流场(黑色箭头)分布

    Figure  1.  Geopotential height (blue lines, units: dagpm), temperature (red lines, units: °C) and wind field (black barb) at (a) 500 hPa and (b)700 hPa and (c) vapor flux (shaded, units: g s−1 cm−1 hPa−1) and wind field (black barb) at 750 hPa at 0800 BJT (Beijing time) on August 21, 2018

    图  2  2018年8月21日(a)12:00、(b)15:00、(c)18:00 FY-2G卫星观测的TBB(Black-Body Temperature;阴影,单位:°C)分布。“+”代表六盘山自动气象站位置,红色方框为六盘山区域,下同

    Figure  2.  TBB (Black-Body Temperature; shaded, units: °C) observed by satellite FY-2G at (a) 1200 BJT, (b) 1500 BJT, and (c) 1800 BJT on August 21, 2018. The symbol “+” indicates the location of Liupan Mountain station, red box is Liupan Mountain area, similarly hereinafter

    图  3  2018年8月21日12 h(08:00~20:00)研究区域累积降水分布(单位:mm,“+”代表六盘山自动气象站位置):(a)观测降水;(b)模拟降水(降低地形前);(c)模拟降水(降低地形后)。黑色虚线为1900米以上地形高度

    Figure  3.  12-h cumulative rainfall (units: mm) (a) observed, (b) simulated, and (c) simulated with lower altitude from 0800 BJT to 2000 BJT on August 21, 2018. The black dotted line indicates altitude over 1900 m

    图  5  2018年08月21日(a、d)12:00、(b、e)15:00、(c、f)18:00观测(第一行)和模拟(第二行)的雷达组合反射率(阴影,单位:dBZ)对比

    Figure  5.  Observed (top line) and simulated (bottom line) combined reflectivity (shaded, units: dBZ) at (a, d) 1200 BJT, (b, e) 1500 BJT, and (c, f) 1800 BJT on August 21, 2018

    图  6  2018年08月21日(a)08:00和(b)20:00崆峒(53915)站探空曲线对比(黑色代表观测,红色代表模拟,实线为温度,虚线为露点温度)

    Figure  6.  Observed (black) and simulated (red) sounding profiles (solid lines: temperature, dotted lines: dew point temperature) of Kongtong (53915) station at (a) 0800 BJT, (b) 2000 BJT on August 21, 2018

    图  7  2018年08月21日(a、b)12:00、(c、d)14:30、(e、f)17:00、(g、h)20:00模拟的500 hPa(左列)和700 hPa(右列)的风场(单位:m s−1)和水凝物混合比(阴影,单位:g kg−1)空间分布。黑色虚线为1900米以上地形高度,黑色粗实线表示槽线,字母“D”表示低涡位置

    Figure  7.  Space distribution of simulated wind (units: m s−1) and hydrometeors mixing ratio (shaded, units: g kg−1) field of 500 hPa (left column) and 700 hPa (right column) at (a, b) 1200 BJT, (c, d) 1430 BJT, (e, f) 1700 BJT, and (g, h) 2000 BJT on August 21, 2018. The black dotted line indicates altitude over 1900 m, and black heavy lines indicates trough-lines, and “D” indicates the location of vortex

    图  8  2018年08月21日(a、b)12:00和(c、d)17:00水凝物含水量(单位:g kg−1)沿六盘山站(35.67°N)的纬向—垂直剖面:(a、c)冰晶(红线)和云水(阴影);(b、d)雨水(绿线)、霰(红线)和雪(阴影)。黑色虚线:温度(单位:°C);箭头:风场(单位:m s−1

    Figure  8.  Vertical sections of the water content (units: g kg−1) of hydrometeors in simulated cloud along Liupan Mountain station (35.67°N) at (a, b) 1200 BJT and (c, d) 1700 BJT: (a, c) Ice crystal (red solid line) and cloud water (shaded); (b, d) rain (green solid line), graupel (red solid line), and snow (shaded). Black line: isotherm (units: °C); arrow: wind field

    图  9  2018年08月21日六盘山区云系不同部位(图8中的ABC三点)水凝物含水量(单位:g kg−1,红色虚线为零度层)廓线分布:(a)点A(35.67°N,105.75°E);(b)点B(35.67°N,106.3°E);(c)点C(35.67°N,106.25°E)

    Figure  9.  Vertical profiles of total water content (units: g kg−1) of hydrometeors in different places of Liupan Mountain cloud system (A, B, and C in Fig. 8, red dotted line: 0°C): (a) Point A (35.67°N, 105.75°E); (b) point B (35.67°N, 106.3°E); (c) point C (35.67°N, 106.25°E)

    图  10  2018年08月21日(a)12:00 C点上空、17:00(b)C点上空和(c)A点上空雨水源项(单位:10−3 g kg−1 s−1)廓线分布

    Figure  10.  Vertical profiles of rain sources (units: 10−3 g kg−1 s−1) in the air above point C (a) at 1200 BJT, point C (b) and point A (c) at 1700 BJT on August 21, 2018

    图  11  2018年08月21日17:00 A点上空(左列)和C点上空(右列)(a、b)霰胚源项和(c、d)霰增长源项(单位:10−3 g kg−1 s−1)廓线分布

    Figure  11.  Vertical profiles of (a, b) graupel formation sources and (c, d) graupel growth sources (units: 10−3 g kg−1 s−1) in the air above point point A (left column) and point C (right column) at 1700 BJT on August 21, 2018

    图  12  2018年08月20日(a)降低地形前、(b)降低地形后17:00总的水凝物含水量(单位:g kg−1,阴影)、温度(单位:°C,黑色虚线)和风矢量(u, w×50)沿六盘山站(35.67°N)的纬向—垂直剖面

    Figure  12.  Vertical sections of total water content (units: g kg−1, shaded) of hydrometeors, temperature(units: °C, black line) and wind (u, w×50) in simulated cloud along Liupan Mountain station (35.67°N) at 1700 BJT on August 21, 2018: (a) Original altitude; (b) lower altitude

    图  13  2018年08月21日17:00 C点(降低地形后)上空(a)水凝物含水量(单位:g kg−1,红色虚线为零度层)和(b)雨水源汇项垂直廓线分布(单位:10−3 g kg−1 s−1

    Figure  13.  Vertical profiles of (a) total water content (units: g kg−1) of hydrometeors and (b) rain sources (units: 10−3 g kg−1 s−1) in the air above point C with lower altitude at 1700 BJT on August 21, 2018

  • [1] Buzzi A, Tartaglione N, Malguzzi P. 1998. Numerical simulations of the 1994 piedmont flood: Role of orography and moist processes [J]. Mon. Wea. Rev., 126(9): 2369−2383. doi:10.1175/1520-0493(1998)126<2369:NSOTPF>2.0.CO;2
    [2] Ćurić M, Janc D, Vujovic D, et al. 2003. The effects of a river valley on an isolated cumulonimbus cloud development [J]. Atmospheric Research, 66(1–2): 123−139. doi: 10.1016/S0169-8095(02)00144-8
    [3] 郭欣, 郭学良, 付丹红, 等. 2013. 钟形地形动力抬升和重力波传播与地形云和降水形成关系研究 [J]. 大气科学, 37(4): 786−800. doi: 10.3878/j.issn.1006-9895.2012.12114

    Guo Xin, Guo Xueliang, Fu Danhong, et al. 2013. Relationship between bell-shaped terrain dynamic forcing, mountain wave propagation, and orographic clouds and precipitation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(4): 786−800. doi: 10.3878/j.issn.1006-9895.2012.12114
    [4] 洪延超, 周非非. 2005. “催化—供给”云降水形成机理的数值模拟研究 [J]. 大气科学, 29(6): 885−896. doi: 10.3878/j.issn.1006-9895.2005.06.05

    Hong Yanchao, Zhou Feifei. 2005. A numerical simulation study of precipitation formation mechanism of "Seeding-Feeding" cloud system [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 29(6): 885−896. doi: 10.3878/j.issn.1006-9895.2005.06.05
    [5] 洪延超, 李宏宇. 2011. 一次锋面层状云云系结构、降水机制及人工增雨条件研究 [J]. 高原气象, 30(5): 1308−1323.

    Hong Yanchao, Li Hongyu. 2011. Cloud structure, precipitation mechanism and artificial enhancement precipitation condition for a frontal stratiform cloud system [J]. Plateau Meteorology (in Chinese), 30(5): 1308−1323.
    [6] 侯瑞钦, 景华, 陈小雷, 等. 2010. 太行山迎风坡降水云微物理结构数值模拟分析 [J]. 气象科学, 30(3): 351−357. doi: 10.3969/j.issn.1009-0827.2010.03.010

    Hou Ruiqin, Jing Hua, Chen Xiaolei, et al. 2010. Numerical simulation and analysis of cloud microphysics structure of windward slope rainfall in Taihang Mountain [J]. Scientia Meteorologica Sinica (in Chinese), 30(3): 351−357. doi: 10.3969/j.issn.1009-0827.2010.03.010
    [7] Houze R A Jr. 2012. Orographic effects on precipitating clouds [J]. Reviews of Geophysics, 50(1): RG1001. doi: 10.1029/2011RG000365
    [8] Jing X Q, Geerts B, Boe B. 2016. The extra-area effect of orographic cloud seeding: Observational evidence of precipitation enhancement downwind of the target mountain [J]. Journal of Applied Meteorology and Climatology, 55(6): 1409−1424. doi: 10.1175/JAMC-D-15-0188.1
    [9] Kirshbaum D J, Bryan G H, Rotunno R, et al. 2007. The triggering of orographic rainbands by small-scale topography [J]. J. Atmos. Sci., 64(5): 1530−1549. doi: 10.1175/JAS3924.1
    [10] 廖菲, 洪延超, 郑国光. 2007. 地形对降水的影响研究概述 [J]. 气象科技, 35(3): 309−316. doi: 10.3969/j.issn.1671-6345.2007.03.001

    Liao Fei, Hong Yanchao, Zheng Guoguang. 2007. Review of orographic influences on surface precipitation [J]. Meteorological Science and Technology (in Chinese), 35(3): 309−316. doi: 10.3969/j.issn.1671-6345.2007.03.001
    [11] 廖菲, 胡娅敏, 洪延超. 2009. 地形动力作用对华北暴雨和云系影响的数值研究 [J]. 高原气象, 28(1): 115−126.

    Liao Fei, Hu Yamin, Hong Yanchao. 2009. Numerical study for the influences of orographic dynamic on cloud and precipitation in North China [J]. Plateau Meteorology (in Chinese), 28(1): 115−126.
    [12] 楼小凤, 胡志晋, 王广河. 2001. 对流云降水过程中地形作用的数值模拟 [J]. 应用气象学报, 12(S1): 113−121. doi: 10.3969/j.issn.1001-7313.2001.z1.015

    Lou Xiaofeng, Hu Zhijin, Wang Guanghe. 2001. Numerical simulation of orographic effects of convective precipitation [J]. Quarterly Journal of Applied Meteorology (in Chinese), 12(S1): 113−121. doi: 10.3969/j.issn.1001-7313.2001.z1.015
    [13] 刘黎平, 楚荣忠, 宋新民, 等. 1999. GAME-TIBET青藏高原云和降水综合观测概况及初步结果 [J]. 高原气象, 18(3): 441−450. doi: 10.3321/j.issn:1000-0534.1999.03.021

    Liu Liping, Chu Rongzhong, Song Xinmin, et al. 1999. Summary and preliminary results of cloud and precipitation observation in Qinghai–Xizang Plateau in GAME-TIBET [J]. Plateau Meteorology (in Chinese), 18(3): 441−450. doi: 10.3321/j.issn:1000-0534.1999.03.021
    [14] 刘卫国, 刘奇俊. 2007a. 祁连山夏季地形云结构和云微物理过程的模拟研究(Ⅰ): 模式云物理方案和地形云结构 [J]. 高原气象, 26(1): 1−15. doi: 10.3321/j.issn:1000-0534.2007.01.001

    Liu Weiguo, Liu Qijun. 2007a. The Numerical simulation of orographic cloud structure and cloud microphysical processes in Qilian Mountains in summer. Part (Ⅰ): Cloud microphysical scheme and orographic cloud stucture [J]. Acta Meteor. Sinica (in Chinese), 26(1): 1−15. doi: 10.3321/j.issn:1000-0534.2007.01.001
    [15] 刘卫国, 刘奇俊. 2007b. 祁连山夏季地形云结构和云微物理过程的模拟研究(Ⅱ): 云微物理过程和地形影响 [J]. 高原气象, 26(1): 16−29. doi: 10.3321/j.issn:1000-0534.2007.01.002

    Liu Weiguo, Liu Qijun. 2007b. The numerical simulation of orographic cloud structure and cloud microphysical processes in Qilian Mountains in summer. Part (Ⅱ): Cloud microphysical processes and orographic influence [J]. Plateau Meteorology (in Chinese), 26(1): 16−29. doi: 10.3321/j.issn:1000-0534.2007.01.002
    [16] 刘玉宝, 胡志晋, 何观芳, 等. 1995. 中尺度山脉对流群的动力和微物理数值模拟 [J]. 气象学报, 53(2): 157−167. doi: 10.11676/qxxb1995.018

    Liu Yubao, Hu Zhijin, He Guanfang, et al. 1995. A numerical simulation on dynamics and microphysics of convective precipitation over meso-scale mountain [J]. Acta Meteor. Sinica (in Chinese), 53(2): 157−167. doi: 10.11676/qxxb1995.018
    [17] 马玉芬, 赵玲, 赵勇. 2012. 一次强天气过程天山地形方案的敏感性试验研究 [J]. 中国沙漠, 32(4): 1127−1134. doi: 10.3760/cma.j.issn.0254-1432.2016.05.012

    Ma Yufen, Zhao Ling, Zhao Yong. 2012. A sensitive experiment of impact of Tianshan mountains landform on a rainstorm process [J]. Journal of Desert Research (in Chinese), 32(4): 1127−1134. doi: 10.3760/cma.j.issn.0254-1432.2016.05.012
    [18] Pokharel B, Geerts B, Jing X Q. 2014. The impact of ground-based glaciogenic seeding on orographic clouds and precipitation: A multisensor case study [J]. Journal of Applied Meteorology and Climatology, 53(4): 890−909. doi: 10.1175/JAMC-D-13-0290.1
    [19] 邵元亭, 刘奇俊, 荆志娟. 2013. 祁连山夏季地形云和降水宏微观结构的数值模拟 [J]. 干旱气象, 31(1): 18−23. doi: 10.11755/j.issn.1006-7639(2013)-01-0018

    Shao Yuanting, Liu Qijun, Jing Zhijuan. 2013. Numerical simulation on macrophysics and microphysics structure of the orographic cloud and precipitation in summer of the Qilian mountains [J]. Journal of Arid Meteorology (in Chinese), 31(1): 18−23. doi: 10.11755/j.issn.1006-7639(2013)-01-0018
    [20] 孙晶, 楼小凤, 胡志晋. 2009a. 祁连山冬季降雪个例模拟分析(Ⅱ): 人工催化试验 [J]. 高原气象, 28(3): 485−495.

    Sun Jing, Lou Xiaofeng, Hu Zhijin. 2009a. Numerical simulation of snowfall in winter of Qilian Mountains. Part (I): Snowfall process and orographic influence [J]. Plateau Meteorology (in Chinese), 28(3): 485−495.
    [21] 孙晶, 楼小凤, 史月琴, 等. 2009b. 祁连山冬季降雪个例模拟分析(Ⅰ): 降雪过程和地形影响 [J]. 高原气象, 28(3): 496−506.

    Sun Jing, Lou Xiaofeng, Shi Yueqin, et al. 2009b. Numerical simulation of snowfall in winter of Qilian Mountains. Part (II): Seeding Test [J]. Plateau Meteorology (in Chinese), 28(3): 496−506.
    [22] 唐洁, 郭学良, 常祎, 等. 2018. 青藏高原那曲地区夏季一次对流云降水过程的云微物理及区域水分收支特征 [J]. 大气科学, 42(6): 1327−1343. doi: 10.3878/j.issn.1006-9895.1801.17202

    Tang Jie, Guo Xueliang, Chang Yi, et al. 2018. Cloud microphysics and regional water budget of a summer precipitation process at Naqu over the Tibetan Plateau [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(6): 1327−1343. doi: 10.3878/j.issn.1006-9895.1801.17202
    [23] 王凌梓, 苗峻峰, 韩芙蓉. 2018. 近10年中国地区地形对降水影响研究进展 [J]. 气象科技, 46(1): 64−75. doi: 10.19517/j.1671-6345.20170081

    Wang Lingzi, Miao Junfeng, Han Furong. 2018. Overview of impact of topography on precipitation in China over last 10 years [J]. Meteorological Science and Technology (in Chinese), 46(1): 64−75. doi: 10.19517/j.1671-6345.20170081
    [24] Xue L L, Chu X, Rasmussen R, et al. 2016. A case study of radar observations and WRF LES simulations of the impact of ground-based glaciogenic seeding on orographic clouds and precipitation. Part II: AgI dispersion and seeding signals simulated by WRF [J]. Journal of Applied Meteorology and Climatology, 55(2): 445−464. doi: 10.1175/JAMC-D-15-0115.1
    [25] 于晓晶, 赵勇. 2016. 地形对天山夏季降水影响的模拟 [J]. 中国沙漠, 36(4): 1133−1143. doi: 10.7522/j.issn.1000-694X.2015.00116

    Yu Xiaojing, Zhao Yong. 2016. Simulation of orographic effects on summer rain in the Tianshan Mountains [J]. Journal of Desert Research (in Chinese), 36(4): 1133−1143. doi: 10.7522/j.issn.1000-694X.2015.00116
    [26] Zängl G. 2007. Interaction between dynamics and cloud microphysics in orographic precipitation enhancement: A high-resolution modeling study of two north alpine heavy-precipitation events [J]. Mon. Wea. Rev., 135(8): 2817−2840. doi: 10.1175/MWR3445.1
    [27] 朱素行, 徐海明, 徐蜜蜜. 2010. 亚洲夏季风区中尺度地形降水结构及分布特征 [J]. 大气科学, 34(1): 71−82. doi: 10.3878/j.issn.1006-9895.2010.01.07

    Zhu Suxing, Xu Haiming, Xu Mimi. 2010. Structure and distribution of rainfall over mesoscale mountains in the Asian summer monsoon region [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34(1): 71−82. doi: 10.3878/j.issn.1006-9895.2010.01.07
    [28] 朱士超, 银燕, 金莲姬, 等. 2011. 青藏高原一次强对流过程对水汽垂直输送的数值模拟 [J]. 大气科学, 35(06): 1057−1068. doi: 10.3878/j.issn.1006-9895.2011.06.06

    Zhu Shichao, Yin Yan, Jin Lianji, et al. 2011. A numerical study of the vertical transport of water vapor by intense convection over the Tibetan Plateau [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35(06): 1057−1068. doi: 10.3878/j.issn.1006-9895.2011.06.06
  • 加载中
图(13)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  33
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-10
  • 录用日期:  2020-05-06
  • 网络出版日期:  2020-11-24
  • 刊出日期:  2021-03-18

目录

    /

    返回文章
    返回