高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

华南夏季降水两次年代际转折的水汽输送异常成因初探

曲姝霖 苏涛 韩子轩 赵俊虎 封国林

曲姝霖, 苏涛, 韩子轩, 等. 2021. 华南夏季降水两次年代际转折的水汽输送异常成因初探[J]. 大气科学, 45(2): 273−286 doi: 10.3878/j.issn.1006-9895.2005.19231
引用本文: 曲姝霖, 苏涛, 韩子轩, 等. 2021. 华南夏季降水两次年代际转折的水汽输送异常成因初探[J]. 大气科学, 45(2): 273−286 doi: 10.3878/j.issn.1006-9895.2005.19231
QU Shulin, SU Tao, Han Zixuan, et al. 2021. Preliminary Research on Moisture Transport Anomalies in Two Interdecadal Changes in Summer Precipitation in South China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(2): 273−286 doi: 10.3878/j.issn.1006-9895.2005.19231
Citation: QU Shulin, SU Tao, Han Zixuan, et al. 2021. Preliminary Research on Moisture Transport Anomalies in Two Interdecadal Changes in Summer Precipitation in South China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(2): 273−286 doi: 10.3878/j.issn.1006-9895.2005.19231

华南夏季降水两次年代际转折的水汽输送异常成因初探

doi: 10.3878/j.issn.1006-9895.2005.19231
基金项目: 国家重点基础研究发展计划项目2017YFC1502303,国家自然科学基金项目41705053、42075017、41875093、41530531
详细信息
    作者简介:

    曲姝霖,女,1995年出生,硕士研究生,主要从事气候预测研究。E-mail: qsl.ln@163.com

    通讯作者:

    封国林,E-mail: fenggl@cma.gov.cn

  • 中图分类号: P46

Preliminary Research on Moisture Transport Anomalies in Two Interdecadal Changes in Summer Precipitation in South China

Funds: National Key R&D Program of China (Grant 2017YFC1502303), National Natural Science Foundation of China (Grants 41705053, 42075017, 41875093, 41530531)
  • 摘要: 本文利用NCEP/NCAR再分析资料和中国2374站日降水资料,通过水汽收支方程分解方法分析了华南夏季降水在1993~2002年时段年代际增多以及2003~2013年时段年代际减少的水汽输送特征及其成因。结果表明:1993~2002年时段(2003~2013年时段),局地环流导致异常下沉(上升)气流,南亚高压偏东(偏西)和西太平洋副热带高压(简称副高)偏西(偏东),菲律宾及副高西南侧水汽输送加强(减弱),华南地区低层出现强的水汽辐合(辐散),导致降水偏多(偏少)。华南地区夏季降水两次年代际变化主要与风速变化引起的水汽输送动力散度项的异常有关,同时还受到与比湿变化引起的水汽输送热力散度项异常、及天气尺度的涡旋引起的水汽输送涡流散度项异常影响。此外,研究发现水汽输送的异常与环流和海温异常均密切相关。
  • 图  1  华南地区夏季(6月15日至8月15日)降水量气候态(阴影,单位:mm)和站点分布(黑点)

    Figure  1.  Precipitation climate state (shaded, units: mm) and station distribution (black dots) in summer (15 June–15 August) in South China

    图  2  华南地区夏季降水量(红色实线)和降水距平百分率(灰色柱状图)。黑色虚线表示1979~1992(P1)、1993~2002(P2)、2003~2013(P3)三个时段均值

    Figure  2.  Summer precipitation in South China (red line) and percentage of precipitation anomalies(gray histogram). The black dotted line represents the mean value in the three periods of 1979–1992 (P1),1993–2002 (P2), 2003–2013 (P3)

    图  3  华南地区不同时期夏季降水量的差值(单位:mm):(a)P2时期减去P1时期;(b)P3时期减去P2时期。黑点表示通过95%显著性检验

    Figure  3.  Composite difference in the precipitation in summer during different periods in South China (units: mm): (a) P2 minus P1; (b) P3 minus P2. Black dots indicate significance at the 95% confidence level

    图  4  华南地区不同时期夏季水汽输送通量(箭头,单位:kg m−1 s−1)和水汽输送散度(阴影,单位:mm d−1)的差值:(a)P2时期减去P1时期;(b)P3时期减去P2时期。黑色箭头和紫色打点区域表示通过95%显著性检验,黑框表示华南地区

    Figure  4.  Difference in the moisture transport flux (vector, units: kg m−1 s−1) and divergence (shadow, units: mm d−1) in summer during different periods in South China: (a) P2 minus P1; (b) P3 minus P2. Black vectors and purple dots indicate significance at the 95% confidence level, and the black box indicates the South China region

    图  5  华南地区不同时期夏季水汽输送平流散度(单位:mm d−1)的差值:(a)P2时期减去P1时期;(b)P3时期减去P2时期。打点区域表示通过95%显著性检验,黑框表示华南地区

    Figure  5.  Difference in the mean flow of moisture transport divergence in summer during different periods in South China (units: mm d−1): (a) P2 minus P1; (b) P3 minus P2. Black dots indicate significance at the 95% confidence level, and the black box indicates the South China region

    图  6  图5,为水汽输送涡流项

    Figure  6.  Same as in Fig. 5, but for the subseasonal-scale eddies of moisture transport

    图  7  华南地区不同时期夏季水汽输送通量动力项(箭头,单位:kg m−1 s−1)及其散度(阴影,单位:mm d−1)的差值:(a)P2时期减去P1时期;(b)P3时期减去P2时期。黑色箭头和紫色打点区域表示通过95%显著性检验,黑框表示华南地区

    Figure  7.  Difference in the dynamic component of the moisture transport flow (vector, units: kg m−1 s−1) and divergence (shaded, units: mm d−1) in summer during different periods in South China: (a) P2 minus P1; (b) P3 minus P2. Black vectors and purple dots indicate significance at the 95% confidence level, and the black box indicates the South China region

    图  8  华南地区不同时期夏季水汽输送通量热力项(箭头,单位:kg m−1 s−1)及其散度(阴影,单位:mm d−1)的差值:(a)P2时期减去P1时期;(b)P3时期减去P2时期。黑色箭头和紫色打点区域表示通过95%显著性检验,黑框表示华南地区

    Figure  8.  Difference in the thermodynamic component of the moisture transport flux (vector, units: kg m−1 s−1) and divergence (shaded, units: mm d−1) in summer during different periods in South China: (a) P2 minus P1; (b) P3 minus P2. Black vectors and purple dots indicate significance at the 95% confidence level and the black box indicating the South China region

    图  9  华南地区(a)北部和(b)南部在P1、P2、P3阶段降水量(pre)、蒸发量(evp)、水汽输送散度项(mt)、水汽输送平流散度项(mf)、水汽输送涡流散度项(sse)、水汽输送动力散度项(dy)、水汽输送热力散度项(th)的平均态(单位:mm d−1)以及平均可降水量(pw)(单位:kg m−2)。星标表示变量在该时间段相对于1979~2013年时段的差值通过95%的显著性检验

    Figure  9.  Precipitation (pre), evaporation (evp), moisture transport divergence (mt), mean flow of moisture transport divergence (mf), subseasonal-scale eddies of moisture transport divergence (sse), dynamic component of moisture transport divergence (dy), thermodynamic component of moisture transport divergence (th) in P1, P2, and P3 (units: mm d−1), and the precipitable water (pw) (units: kg m−2) in (a) Northern and (b) Southern South China. The colored stars indicate the difference of the variable in this period and the period from 1979 to 2013 at the 95% confidence level

    图  10  夏季P2时期与P1时期(a)0°~30°N上经向风(箭头;单位:m s−1)和垂直方向上的风(箭头;单位:10−3 Pa s−1)合成的垂直环流以及垂直速度(阴影;单位:10−3 Pa s−1)、(c)500 hPa位势高度场(阴影;单位:gpm)和(e)850 hPa风场差值场(阴影;单位:m s−1);(b)、(d)和(f)分别与(a)、(c)和(e)相同,但为P3时期与P2时期的差值。(c,d)中打点区域以及(e,f)中黑色箭头均表示通过95%显著性检验;(c,d)中黑色实线为气候态的等值线,绿(紫)色等值线分别表示P1(P2)和P2(P3)合成的等值线,(c–f)中黑框表示华南地区。

    Figure  10.  Difference for P2 minus P1 in (a) vertical circulation consisting of meridional winds (vectors; m s−1) and p-vertical velocity (vectors; 10−3 Pa s−1) along 0°–30°E and vertical velocity (shaded; units: 10−3 Pa s−1), (c) 500-hPa geopotential height field (units: gpm), and (e) 850-hPa wind field. (b), (d), and (f) same as (a), (c), and (e), but for the difference for P3 minus P2. The black dots in (c) and (d) and the black vectors in (e) and (f) indicate significance at the 95% confidence level, black solid line represents the climatology contour, green (purple) contour line represents the composite contour in P1 (P2), green (purple) contour line represents the composite contour in P2 (P3), and black box indicates the South China region

    图  11  三个时段夏季(a)500 hPa西太副高和(b)200 hPa南亚高压的位置变化;南亚高压与西太副高脊点指数的(c)标准差(std)和(d)滑动t检验

    Figure  11.  Variances of (a) 200-hPa South Asia high and (b) 500-hPa western Pacific subtropical high positions in the summer of the three periods; (c) extension index standard deviation (std) and (d) sliding t tests for the South Asia high and western Pacific subtropical high

    图  12  (a)P2时期与P1时期和(b)P3时期与P2时期海表温度的差值(单位:°C)。黑点区域表示通过95%显著性检验,黑框区域分别表示海温关键区热带印度洋(10°S~10°N,55°~90°E)和西北太平洋(20°~35°N,140°~160°E)

    Figure  12.  Difference in the sea surface temperature (SST) for (a) P2 minus P1 and (b) P3 minus P2 (units: °C). The black dots indicate significance at the 95% confidence level, and the black box indicates the key SST areas of the tropical Indian Ocean (10°S–10°N, 55°–90°E) and northwest Pacific Ocean (20°–35°N, 140°–160°E)

    图  13  (a)P2时期与P1时期和(b)P3时期与P2时期蒸发量(阴影;单位:mm d−1)和水汽输送通量矢量(箭头,单位:kg m−1 s−1)的差值。箭头表示为通过95%显著性检验,黑框表示华南地区

    Figure  13.  Difference in the evaporation (shaded, units: mm d−1) and moisture transport flux (vector, units: kg m−1 s−1) for (a) P2 minus P1 and (b) P3 minus P2. The black vectors indicate significance at the 95% confidence level and the black box indicates the South China region

    图  14  华南夏季降水年代际转折可能成因

    Figure  14.  Possible causes of the interdecadal transition of summer precipitation in South China

    表  1  华南地区(21°~30°N,105°~120°E)在P1、P2、P3阶段降水量和最大、最小值

    Table  1.   The maximum, minimum and total precipitation in South China (21°–30°N, 105°–120°E) during P1 (1979–1992), P2 (1993–2002) and P3 (2003–2013) period, respectively

    降水量t检验值
    平均值/mm最大值(最小值)/mm跟前一时段差值(较常年平均偏多/偏少)/mm
    P1时期(1979~1992年)352.4405.0(287.5)
    P2时期(1993~2002年)478.1536.1(353.2)125.7(19.7%)6.64**
    P3时期(2003~2013年)370.3435.6(276.6)−107.8(7.3%)−4.3**
    注:**表示通过99%显著性检验
    下载: 导出CSV
  • [1] 伯忠凯, 曾刚, 武英娇, 等. 2017. 华南夏季降水20世纪90年代初的年代际变化及其与南亚高压关系 [J]. 海洋气象学报, 37(2): 65−73. doi: 10.19513/j.cnki.issn2096-3599.2017.02.008

    Bo Zhongkai, Zeng Gang, Wu Yingjiao, et al. 2017. The interdecadal variability of summer precipitation over South China in early 1990s and its relationship with South Asia high [J]. J. Mar. Meteor. (in Chinese), 37(2): 65−73. doi: 10.19513/j.cnki.issn2096-3599.2017.02.008
    [2] Brubaker K L, Entekhabi D, Eagleson P S. 1993. Estimation of continental precipitation recycling [J]. J. Climate, 6(6): 1077−1089. doi:10.1175/1520-0442(1993)006<1077:eocpr>2.0.co;2
    [3] Chen J P, Wu R G, Wen Z P. 2012. Contribution of South China Sea tropical cyclones to an increase in southern China summer rainfall around 1993 [J]. Adv. Atmos. Sci., 29(3): 585−598. doi: 10.1007/s00376-011-1181-6
    [4] Chen M, Xie P, Janowiak J E, et al. 2002. Global land precipitation: A 50-yr monthly analysis based on gauge observations [J]. Journal of Hydrometeorology, 3(3): 249−266. doi:10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2
    [5] Ding Y H, Wang Z Y, Sun Y. 2008. Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences [J]. Int. J. Climatol., 28(9): 1139−1161. doi: 10.1002/joc.1615
    [6] Ding Y H, Sun Y, Wang Z Y, et al. 2009. Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon. Part II: Possible causes [J]. Int. J. Climatol., 29(13): 1926−1944. doi: 10.1002/joc.1759
    [7] Ha Y, Zhong Z, Sun Y, et al. 2014. Decadal change of South China Sea tropical cyclone activity in mid-1990s and its possible linkage with intraseasonal variability [J]. J. Geophys. Res., 119(9): 5331−5344. doi: 10.1002/2013JD021286
    [8] Ha Y, Zhong Z, Chen H S, et al. 2016. Out-of-phase decadal changes in boreal summer rainfall between Yellow-Huaihe River valley and southern China around 2002/2003 [J]. Climate Dyn., 47(1): 137−158. doi: 10.1007/s00382-015-2828-2
    [9] Ha Y, Zhong Z, Hu Y J, et al. 2019. Differences between decadal decreases of boreal summer rainfall in southeastern and southwestern China in the early 2000s [J]. Climate Dyn., 52(5-6): 3533−3552. doi: 10.1007/s00382-018-4408-8
    [10] Han Z X, Su T, Huang B C, et al. 2019. Changes in global monsoon precipitation and the related dynamic and thermodynamic mechanisms in recent decades [J]. Int. J. Climatol., 39(3): 1490−1503. doi: 10.1002/joc.5896
    [11] 黄菲, 姜治娜. 2002. 欧亚大陆阻塞高压的统计特征及其与中国东部夏季降水的关系 [J]. 青岛海洋大学学报, 32(2): 186−192. doi: 10.3969/j.issn.1672-5174.2002.02.004

    Huang Fei, Jiang Zhina. 2002. Study on the statistical characteristics of atmospheric blocking in the Eurasia and its relationship with the summer rainfall over the East of China [J]. Periodical of Ocean University of China (in Chinese), 32(2): 186−192. doi: 10.3969/j.issn.1672-5174.2002.02.004
    [12] 黄荣辉, 徐予红, 周连童. 1999. 我国夏季降水的年代际变化及华北干旱化趋势 [J]. 高原气象, 18(4): 465−476. doi: 10.3321/j.issn:1000-0534.1999.04.001

    Huang Ronghui, XuYuhong, Zhou Liantong. 1999. The interdecadal variation of summer precipitations in China and the drought trend in North China [J]. Plateau Meteor.(in Chinese), 18(4): 465−476. doi: 10.3321/j.issn:1000-0534.1999.04.001
    [13] 黄荣辉, 陈际龙, 刘永. 2011. 我国东部夏季降水异常主模态的年代际变化及其与东亚水汽输送的关系 [J]. 大气科学, 35(4): 589−606. doi: 10.3878/j.issn.1006-9895.2011.04.01

    Huang Ronghui, Chen Jilong, Liu Yong. 2011. Interdecadal variation of the leading modes of summertime precipitation anomalies over eastern China and its association with water vapor transport over East Asia [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35(4): 589−606. doi: 10.3878/j.issn.1006-9895.2011.04.01
    [14] 黄荣辉, 刘永, 冯涛. 2013. 20世纪90年代末中国东部夏季降水和环流的年代际变化特征及其内动力成因 [J]. 科学通报, 58(8): 617−628.

    Huang Ronghui, Liu Yong, Feng Tao. 2013. Interdecadal change of summer precipitation over eastern China around the late 1990s and associated circulation anomalies, internal dynamical causes [J]. Chinese Sci. Bull. (in Chinese), 58(8): 617−628.
    [15] Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project [J]. Bull. Amer. Meteor. Soc., 77(3): 437−472. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [16] Li H M, Dai A G, Zhou T J, et al. 2010. Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950-2000 [J]. Climate Dyn., 34(4): 501−514. doi: 10.1007/s00382-008-0482-7
    [17] 廖清海, 高守亭, 王会军, 等. 2004. 北半球夏季副热带西风急流变异及其对东亚夏季风气候异常的影响 [J]. 地球物理学报, 47(1): 10−18. doi: 10.3321/j.issn:0001-5733.2004.01.003

    Liao Qinghai, Gao Shouting, Wang Huijun, et al. 2004. Anomalies of the extratropical westerly Jet in the North Hemisphere and their impacts on East Asian summer monsoon climate anomalies [J]. Chinese J. Geophys. (in Chinese), 47(1): 10−18. doi: 10.3321/j.issn:0001-5733.2004.01.003
    [18] 吕俊梅, 祝从文, 琚建华, 等. 2014. 近百年中国东部夏季降水年代际变化特征及其原因 [J]. 大气科学, 38(4): 782−794. doi: 10.3878/j.issn.1006-9895.1401.13227

    Lü Junmei, Zhu Congwen, Ju Jianhua, et al. 2014. Interdecadal variability in summer precipitation over East China during the past 100 years and its possible causes [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(4): 782−794. doi: 10.3878/j.issn.1006-9895.1401.13227
    [19] Qian C, Zhou T J. 2014. Multidecadal variability of North China aridity and its relationship to PDO during 1900–2010 [J]. J. Climate, 27(3): 1210−1222. doi: 10.1175/JCLI-D-13-00235.1
    [20] Seager R, Naik N, Vecchi G A. 2010. Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming [J]. J. Climate, 23(17): 4651−4668. doi: 10.1175/2010JCLI3655.1
    [21] Seager R, Vecchi G A. 2010. Greenhouse warming and the 21st century hydroclimate of southwestern North America [J]. Proc. Natl. Acad. Sci. USA, 107(50): 21277−21282. doi: 10.1073/pnas.0910856107
    [22] Simmonds I, Bi D H, Hope P. 1999. Atmospheric water vapor flux and its association with rainfall over China in summer [J]. J. Climate, 12(5): 1353−1367. doi:10.1175/1520-0442(1999)012<1353:AWVFAI>2.0.CO;2
    [23] 谭晶, 杨辉, 孙淑清, 等. 2005. 夏季南亚高压东西振荡特征研究 [J]. 南京气象学院学报, 28(4): 452−460. doi: 10.3969/j.issn.1674-7097.2005.04.003

    Tan Jing, Yang Hui, Sun Shuqing, et al. 2005. Characteristics of the longitudinal oscillation of South Asia high during summer [J]. Journal of Nanjing Institute of Meteorology (in Chinese), 28(4): 452−460. doi: 10.3969/j.issn.1674-7097.2005.04.003
    [24] 陶诗言, 朱福康. 1964. 夏季亚洲南部100毫巴流型的变化及其与西太平洋副热带高压进退的关系 [J]. 气象学报, 34(4): 385−396. doi: 10.11676/qxxb1964.039

    Tao Shiyan, Zhu Fukang. 1964. The 100-mb flow patterns in southern Asia in summer and its relation to the advance and retreat of the West-Pacific subtropical anticyclone over the Far East [J]. Acta Meteor. Sinica (in Chinese), 34(4): 385−396. doi: 10.11676/qxxb1964.039
    [25] Tao S Y, Chen L X. 1987. A review of recent research on the East Asian Summer monsoon in China [M]//Chang C P, Krishnamurti T N. Monsoon Meterology. Oxford: Oxford University Press, 60-92.
    [26] Wang B, Huang F, Wu ZW, et al. 2009. Multi-scale climate variability of the South China Sea monsoon: A review [J]. Dyn. Atmos. Oceans, 47(1-3): 15−37. doi: 10.1016/j.dynatmoce.2008.09.004
    [27] Wang H J. 2001. The weakening of the Asian monsoon circulation after the end of 1970’s [J]. Adv. Atmos. Sci., 18(3): 376−386. doi: 10.1007/BF02919316
    [28] Wu B, Li T, Zhou T J. 2010a. Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer [J]. J. Climate, 23(11): 2974−2986. doi: 10.1175/2010JCLI3300.1
    [29] Wu R G, Wen Z P, Yang S, et al. 2010b. An interdecadal change in southern China summer rainfall around 1992/93 [J]. J. Climate, 23(9): 2389−2403. doi: 10.1175/2009JCLI3336.1
    [30] Xin X G, Yu R C, Zhou T J, et al. 2006. Drought in late spring of South China in recent decades [J]. J. Climate, 19(13): 3197−3206. doi: 10.1175/JCLI3794.1
    [31] Xu S B, Wang B. 2013. Enhanced western North Pacific tropical cyclone activity in May in recent years [J]. Climate Dyn., 42(9): 2555−2563. doi: 10.1007/s00382-013-1921-7
    [32] 杨柳, 赵俊虎, 封国林. 2018. 中国东部季风区夏季四类雨型的水汽输送特征及差异 [J]. 大气科学, 42(1): 81−95. doi: 10.3878/j.issn.1006-9895.1706.16273

    Yang Liu, Zhao Junhu, Feng Guolin. 2018. Characteristics and differences of summertime moisture transport associated with four rainfall patterns over eastern China monsoon region [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(1): 81−95. doi: 10.3878/j.issn.1006-9895.1706.16273
    [33] Ye H, Lu R Y. 2012. Dominant patterns of summer rainfall anomalies in East China during 1951–2006 [J]. Adv. Atmos. Sci., 29(4): 695−704. doi: 10.1007/s00376-012-1153-5
    [34] 叶敏, 封国林. 2015. 长江中下游地区夏季降水的水汽路径的客观定量化研究 [J]. 大气科学, 39(4): 777−788. doi: 10.3878/j.issn.1006-9895.1409.14208

    Ye Min, Feng Guolin. 2015. Objective quantification of moisture transport that influences summer rainfall in the middle and lower reaches of the Yangtze River [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(4): 777−788. doi: 10.3878/j.issn.1006-9895.1409.14208
    [35] Yu L, Furevik T, Otterå O H, et al. 2015. Modulation of the Pacific Decadal Oscillation on the summer precipitation over East China: A comparison of observations to 600-years control run of Bergen Climate Model [J]. Climate Dyn., 44(1-2): 475−494. doi: 10.1007/s00382-014-2141-5
    [36] Zhang Y S, Li T, Wang B. 2004. Decadal change of the spring snow depth over the Tibetan Plateau: The associated circulation and influence on the East Asian summer monsoon [J]. J. Climate, 17(14): 2780−2793. doi:10.1175/1520-0442(2004)017<2780:DCOTSS>2.0.CO;2
    [37] 周连童, 黄荣辉. 2003. 关于我国夏季气候年代际变化特征及其可能成因的研究 [J]. 气候与环境研究, 8(3): 274−290. doi: 10.3878/j.issn.1006-9585.2003.03.03

    Zhou Liantong, Huang Ronghui. 2003. Research on the characteristics of interdecadal variability of summer climate in China and its possible cause [J]. Climatic and Environmental Research (in Chinese), 8(3): 274−290. doi: 10.3878/j.issn.1006-9585.2003.03.03
    [38] 周天军, 张学洪, 王绍武. 1999. 全球水循环的海洋分量研究 [J]. 气象学报, 57(3): 264−282. doi: 10.11676/qxxb1999.026

    Zhou Tianjun, Zhang Xuehong, Wang Shaowu. 1999. The air–sea freshwater exchange derived from NCEP/NCAR reanalysis data [J]. Acta Meteor. Sinica (in Chinese), 57(3): 264−282. doi: 10.11676/qxxb1999.026
    [39] 周天军, 宇如聪, 张学洪, 等. 2001. 海气耦合气候模式对大气中水汽输送、辐散辐合与海气间水通量交换的模拟 [J]. 大气科学, 25(5): 596−608. doi: 10.3878/j.issn.1006-9895.2001.05.03

    Zhou Tianjun, Yu Rucong, Zhang Xuehong, et al. 2001. Features of atmospheric moisture transport, convergence and air–sea freshwater flux simulated by the coupled climate models [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 25(5): 596−608. doi: 10.3878/j.issn.1006-9895.2001.05.03
    [40] Zhu Y L, Wang H J, Zhou W, et al. 2011. Recent changes in the summer precipitation pattern in East China and the background circulation [J]. Climate Dyn., 36(7-8): 1463−1473. doi: 10.1007/s00382-010-0852-9
    [41] 朱益民, 杨修群. 2003. 太平洋年代际振荡与中国气候变率的联系 [J]. 气象学报, 61(6): 641−654. doi: 10.11676/qxxb2003.065

    Zhu Yimin, Yang Xiuqun. 2003. Relationships between Pacific decadal oscillation (PDO) and climate variabilities in China [J]. Acta Meteor. Sinica (in Chinese), 61(6): 641−654. doi: 10.11676/qxxb2003.065
    [42] Zhu Z W, Li T, He J H. 2014. Out-of-phase relationship between boreal spring and summer decadal rainfall changes in southern China [J]. J. Climate, 27(3): 1083−1099. doi: 10.1175/JCLI-D-13-00180.1
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  28
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-20
  • 录用日期:  2020-06-11
  • 网络出版日期:  2020-06-18
  • 刊出日期:  2021-03-18

目录

    /

    返回文章
    返回