高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

副热带东亚季风区一次穿透性对流过程影响下平流层成分变化的个例分析

孙宁 周天军 郭准 李普曦

孙宁, 周天军, 郭准, 等. 2020. 副热带东亚季风区一次穿透性对流过程影响下平流层成分变化的个例分析[J]. 大气科学, 44(6): 1155−1166 doi:  10.3878/j.issn.1006-9895.2006.19148
引用本文: 孙宁, 周天军, 郭准, 等. 2020. 副热带东亚季风区一次穿透性对流过程影响下平流层成分变化的个例分析[J]. 大气科学, 44(6): 1155−1166 doi:  10.3878/j.issn.1006-9895.2006.19148
SUN Ning, ZHOU Tianjun, GUO Zhun, et al. 2020. Impacts of An Overshooting Deep Convection Process over Subtropical Asian Monsoon Region on the Variation of the Lower Stratospheric Atmospheric Composition [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(6): 1155−1166 doi:  10.3878/j.issn.1006-9895.2006.19148
Citation: SUN Ning, ZHOU Tianjun, GUO Zhun, et al. 2020. Impacts of An Overshooting Deep Convection Process over Subtropical Asian Monsoon Region on the Variation of the Lower Stratospheric Atmospheric Composition [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(6): 1155−1166 doi:  10.3878/j.issn.1006-9895.2006.19148

副热带东亚季风区一次穿透性对流过程影响下平流层成分变化的个例分析

doi: 10.3878/j.issn.1006-9895.2006.19148
基金项目: 中国科学院“国际伙伴计划—国际大科学计划培育专项”项目134111KYSB20160031,国家自然科学基金项目41775091
详细信息
    作者简介:

    孙宁,女,1992年出生,博士研究生,主要从事气候模拟和季风研究。E-mail: sunning@lasg.iap.ac.cn

    通讯作者:

    周天军,E-mail: zhoutj@lasg.iap.ac.cn

  • 中图分类号: P421

Impacts of An Overshooting Deep Convection Process over Subtropical Asian Monsoon Region on the Variation of the Lower Stratospheric Atmospheric Composition

Funds: International Partnership Program of Chinese Academy of Sciences (Grant 134111KYSB20160031), National Natural Science Foundation of China (NSFC) (Grants 41775091)
  • 摘要: 穿透性对流是导致北半球夏季平流层低层南亚高压内水汽极值形成的重要机制之一,关于副热带东亚季风区穿透性对流是否对平流层低层水汽等物质分布存在影响目前尚不清楚。本文选取2016年的武汉暴雨事件,采用Cloudsat和Aura Microwave Limb Sounder(MLS)卫星数据,分析了东亚季风区的穿透性对流活动对上对流层/下平流层物质分布的影响。利用CloudSat卫星资料云分类产品和Aura MLS卫星数据联合分析武汉暴雨过程中捕捉到1次穿透性对流事件,该事件发生于2016年7月4日05时(协调世界时)的穿透性对流,中心位于海上梅雨带区域。分析表明,这次对流穿透事件对上对流层/下平流层物质分布有显著影响,穿透性对流活动影响到对流层顶以上的物质分布,具体表现是:首先,穿透性对流显著减少了局地对流层顶附近的臭氧含量,较之气候态对流层顶臭氧含量偏少32.53%;其次,穿透性对流能够增加局地对流层顶附近的水汽混合比含量,它通过更多的云冰粒子蒸发来增强局地平流层水汽含量,同时通过更强的垂直水汽输送来直接加湿平流层。此次穿透性对流事件对水汽变化影响较之对臭氧含量变化的影响更为显著,它使得对流层顶水汽混合比增加近乎一倍(98.15%)。因此,副热带东亚季风区的穿透性对流活动对于对流层向平流层的物质输送起着重要的作用。
  • 图  1  2016年6月30日至7月5日CloudSat卫星扫过时段的(a1–f1)小时降雨量(单位:mm h−1)的空间分布,(a2–f2)沿着卫星轨道雷达回波强度(单位:dBZ)的纬度—高度分布:(a1、a2)6月30日04:59(协调世界时,下同)、(b1、b2)7月1日05:46、(c1、c2)7月2日04:47、(d1、d2)7月3日05:34、(e1、e2)7月4日04:38、(f1、f2)7月5日05:22。绿色直线表示CloudSat卫星轨道分布

    Figure  1.  (a1–f1) The spatial distributions of hourly precipitation (units: mm h−1) and (a2–f2) the latitude–height distributions of radar echoes (units: dBZ) along the satellite CloudSat orbits at (a1, a2) 0459 UTC 30 June, (b1, b2) 0546 UTC July, (c1, c2) 0447 UTC 2 July, (d1, d2) 0534 UTC 3 July, (e1, e2) 0438 UTC 4 July, (f1, f2) 0522 UTC 5 July 2016. The green lines represent the orbits of satellite CloudSat

    图  2  2016年(a)6月30日04:59、(b)7月1日05:46、(c)7月2日04:47、(d)7月3日05:34、(e)7月4日04:38、(f)7月5日05:22沿卫星CloudSat轨道方向的云类型分布图像。红色:深对流云(Dc);浅蓝色:高卷云(As);深蓝色:卷云(Ci);橙色:高积云(Ac);灰色:层云(St);淡紫色:层积云(Sc);深紫色:积云(Cu);深粉色:积雨云(Ns)。黑色实线之间区域表示降水主雨带区域;黑色虚线代表微波临边雷达(MLS)扫过主雨带深对流云区的位置。浅橙色实线代表动力学对流层顶高度;浅橙色虚线代表热力学对流层顶高度

    Figure  2.  Distributions of cloud types (shown in different colors) along satellite CloudSat orbits at (a) 0459 UTC 30 June, (b) 05461 UTC July, (c) 0447 UTC 2 July, (d) 0534 UTC 3 July, (e) 0438 UTC 4 July, (f) 0522 UTC 5 July 2016. Red: deep convective clouds (Dc); light blue: altostratus (As); dark blue: cirrus clouds (Ci); orange: altocumulus (Ac); gray: stratus (St); light purple: stratocumulus (Sc); dark purple: cumulus (Cu); dark pink: nimbostratus (Ns). The areas between the black solid lines represent the main rain belt range; black dashed lines indicate locations that the MLS (Microwave Limb Sounder) swept over the deep convective clouds region over the main rain belt. The orange solid and dashed lines show the dynamic and thermodynamic tropopause heights, respectively

    图  3  MLS轨道分布。直线C–H分别为2016年6月30日到7月5日的MLS轨道分布,灰色框标注区域为主雨带区域,黑色点表示卫星扫描位置

    Figure  3.  Orbital maps based on the MLS. Lines C-H indicate the MLS orbits from 30 June to 5 July 2016, gray box marks main rain belt area, black dots represent the position scanned by the satellite

    图  4  2016年6月30日至7月6日基于MLS数据的主雨带区域(图3中灰色框标注区域)平均的(a)水汽体积混合比(单位:10−6)、(b)臭氧体积混合比(单位:10−6)、(c)冰水含量(单位:10−3 g m−3)随时间的演变

    Figure  4.  Time evolutions of (a) water vapor volume mixing ratio (WVVMR, units: 10−6), (b) ozone volume mixing ratio (OVMR, units: 10−6), and (c) ice water content (IWC, units: 10−3 g m−3) based on the MLS data averaged over the main rain band (gray frame in Fig. 3) from 30 June to 6 July 2016

    图  5  2016年7月4日沿轨道剖面MLS数据的(a)臭氧体积混合比(单位:10−6)、(b)水汽体积混合比(单位:10−6)、(c)相对于冰的相对湿度、(d)冰水含量(单位:10−3 g m−3)、(e)温度(单位:K)的纬度—高度分布。箭头代表垂直速度(单位:10−3 Pa s−1)。橙色直线包围区域为深对流区域。黑色实线表示动力学对流层顶高度;黑色虚线表示热力学对流层顶高度

    Figure  5.  The latitude–height distributions of (a) OVMR (units: 10−6), (b) WVVRM (units: 10−6), (c) relative humidity relative to ice (RHI), (d) IWC (units: 10−3 g m−3), and (e) temperature (units: K) based on the MLS data along the orbit on 4 July 2016. The black arrows indicate vertical velocity (units: 10−3 Pa s−1). The areas between the orange lines are deep convection areas. The black solid and dashed lines show the dynamic and thermodynamic tropopause heights, respectively

    图  6  MLS数据中个例A(黑色实线)、B(灰色实线)中(a)臭氧体积混合比变化率、(b)水汽体积混合比变化率(相对2005~2012年6~7月气候态)的垂直廓线。红色实线代表动力学对流层顶高度,紫色实线表示热力学对流层顶高度

    Figure  6.  Vertical profiles of (a) OVMR change ratio, (b) WVVRM change ratio (relative to climatology on June–July 2005–2016) during overshooting deep convection case A (black solid line) and B (gray solid line) based on the MLS data. The red and purple solid lines indicate the dynamic and thermodynamic tropopause heights, respectively

    图  7  图5,但为2016年7月2日各物理量的纬度—高度分布

    Figure  7.  As in Fig. 5, but for the latitude–height distributions of different physical quantities on 2 July 2016

  • [1] Chaboureau J P, Cammas J P, Duron J, et al. 2007. A numerical study of tropical cross–tropopause transport by convective overshoots [J]. Atmos. Chem. Phys., 7: 1731−1740. doi: 10.5194/acp-7-1731-2007
    [2] Chemel C, Russo M R, Pyle J A, et al. 2009. Quantifying the imprint of a severe hector thunderstorm during ACTIVE/SCOUT-O3 onto the water content in the upper troposphere/lower stratosphere [J]. Mon. Wea. Rev., 137: 2493−2514. doi: 10.1175/2008MWR2666.1
    [3] Corti T, Luo B P, Fu Q, et al. 2006. The impact of cirrus clouds on tropical troposphere-to-stratosphere transport [J]. Atmospheric Chemistry and Physics, 6: 2539−2547. doi: 10.5194/acp-6-2539-2006
    [4] Corti T, Luo B P, de Reus M, et al. 2008. Unprecedented evidence for deep convection hydrating the tropical stratosphere [J]. Geophys. Res. Lett., 35: L10810. doi: 10.1029/2008GL033641
    [5] Danielsen E F. 1993. In situ evidence of rapid, vertical, irreversible transport of lower tropospheric air into the lower tropical stratosphere by convective cloud turrets and by larger-scale upwelling in tropical cyclones [J]. J. Geophys. Res., 98: 8665−8681. doi: 10.1029/92JD02954
    [6] de F. Forster P M, Shine K P 2002. Assessing the climate impact of trends in stratospheric water vapor [J]. Geophys. Res. Lett., 29: 1086. doi: 10.1029/2001GL013909
    [7] Dee D P, Uppala S M, Simmons A J, et al. 2011. The ERA-interim reanalysis: Configuration and performance of the data assimilation system [J]. Quart. J. Roy. Meteor. Soc., 137: 553−597. doi: 10.1002/qj.828
    [8] Dessler A E, Sherwood S C. 2004. Effect of convection on the summertime extratropical lower stratosphere [J]. J. Geophys. Res., 109: D23301. doi: 10.1029/2004JD005209
    [9] Dethof A, O’ Neill A, Slingo J. 2000. Quantification of the isentropic mass transport across the dynamical tropopause [J]. J. Geophys. Res., 105: 12279−12293. doi: 10.1029/2000JD900127
    [10] Devasthale A, Fueglistaler S. 2010. A climatological perspective of deep convection penetrating the TTL during the Indian summer monsoon from the AVHRR and MODIS instruments [J]. Atmos. Chem. Phys., 10: 4573−4582. doi: 10.5194/acp-10-4573-2010
    [11] Folkins I, Martin R. 2005. The vertical structure of tropical convection and its impact on the budgets of water vapor and ozone [J]. J. Atmos. Sci., 62: 1560−1573. doi: 10.1175/JAS3407.1
    [12] Fu R, Hu Y L, Wright J S, et al. 2006. Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau [J]. Proc. Natl. Acad. Sci., 103: 5664−5669. doi: 10.1073/pnas.0601584103
    [13] 傅云飞, 张爱民, 刘勇, 等. 2008. 基于星载测雨雷达探测的亚洲对流和层云降水季尺度特征分析 [J]. 气象学报, 66: 730−746. doi:  10.3321/j.issn:0577-6619.2008.05.007

    Fu Yunfei, Zhang Aimin, Liu Yong, et al. 2008. Characteristics of seasonal scale convective and stratiform precipitation in Asia based on measurements by TRMM precipitation radar [J]. Acta Meteorologica Sinica (in Chinese), 66: 730−746. doi: 10.3321/j.issn:0577-6619.2008.05.007
    [14] Fueglistaler S, Haynes P H. 2005. Control of interannual and longer-term variability of stratospheric water vapor [J]. J. Geophys. Res., 110: D24108. doi: 10.1029/2005JD006019
    [15] Gettelman A, Kinnison D E, Dunkerton T J, et al. 2004. Impact of monsoon circulations on the upper troposphere and lower stratosphere [J]. J. Geophys. Res., 109: D22101. doi: 10.1029/2004JD004878
    [16] Grosvenor D P, Choularton T W, Coe H, et al. 2007. A study of the effect of overshooting deep convection on the water content of the TTL and lower stratosphere from cloud resolving model simulations [J]. Atmos. Chem. Phys., 7: 4977−5002. doi: 10.5194/acp-7-4977-2007
    [17] Hoinka K P. 1998. Statistics of the global tropopause pressure [J]. Mon. Wea. Rev., 126: 3303−3325. doi:10.1175/1520-0493(1998)126<3303:SOTGTP>2.0.CO;2
    [18] Holton J R, Gettelman A. 2001. Horizontal transport and the dehydration of the stratosphere [J]. Geophys. Res. Lett., 28: 2799−2802. doi: 10.1029/2001GL013148
    [19] Holton J R, Haynes P H, McIntyre M E, et al. 1995. Stratosphere–troposphere exchange [J]. Rev. Geophys., 33: 403−439. doi: 10.1029/95RG02097
    [20] Hurst D F, Lambert A, Read W G, et al. 2014. Validation of Aura Microwave Limb Sounder stratospheric water vapor measurements by the NOAA frost point hygrometer [J]. J. Geophys. Res., 119: 1612−1625. doi: 10.1002/2013JD020757
    [21] James R, Bonazzola M, Legras B, et al. 2008. Water vapor transport and dehydration above convective outflow during Asian monsoon [J]. Geophys. Res. Lett., 35: L20810. doi: 10.1029/2008GL035441
    [22] Jensen E, Pfister L. 2004. Transport and freeze-drying in the tropical tropopause layer [J]. J. Geophy. Res., 109: D02207. doi: 10.1029/2003JD004022
    [23] Jensen E J, Ackerman A S, Smith J A. 2007. Can overshooting convection dehydrate the tropical tropopause layer? [J]. J. Geophys. Res., 112: D11209. doi: 10.1029/2006JD007943
    [24] Khaykin S, Pommereau J P, Korshunov L, et al. 2009. Hydration of the lower stratosphere by ice crystal geysers over land convective systems [J]. Atmospheric Chemistry and Physics, 9: 2275−2287. doi: 10.5194/acp-9-2275-2009
    [25] Konopka P, Grooß J U, Günther G, et al. 2010. Annual cycle of ozone at and above the tropical tropopause: Observations versus simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) [J]. Atmos. Chem. Phys., 10: 121−132. doi: 10.5194/acp-10-121-2010
    [26] Kunze M, Braesicke P, Langematz U, et al. 2016. Interannual variability of the boreal summer tropical UTLS in observations and CCMVal-2 simulations [J]. Atmos. Chem. Phys., 16: 8695−8714. doi: 10.5194/acp-16-8695-2016
    [27] Lane T P, Reeder M J, Clark T L. 2001. Numerical modeling of gravity wave generation by deep tropical convection [J]. J. Atmos. Sci., 58: 1249−1274. doi:10.1175/1520-0469(2001)058<1249:NMOGWG>2.0.CO;2
    [28] Li Q B, Jiang J H, Wu D L, et al. 2005. Convective outflow of South Asian pollution: A global CTM simulation compared with EOS MLS observations [J]. Geophys. Res. Lett., 32: L14826. doi: 10.1029/2005GL022762
    [29] 刘鹏, 傅云飞. 2010. 利用星载测雨雷达探测结果对夏季中国南方对流和层云降水气候特征的分析 [J]. 大气科学, 34: 802−814. doi:  10.3878/j.issn.1006-9895.2010.04.12

    Liu Peng, Fu Yunfei. 2010. Climatic characteristics of summer convective and stratiform precipitation in southern China based on measurements by TRMM precipitation radar [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34: 802−814. doi: 10.3878/j.issn.1006-9895.2010.04.12
    [30] Livesey N J, Filipiak M J, Froidevaux L, et al. 2008. Validation of Aura Microwave Limb Sounder O3 and CO observations in the upper troposphere and lower stratosphere [J]. J. Geophys. Res., 113: D15S02. doi: 10.1029/2007JD008805
    [31] Livesey N J, Read W G, Wagner P A, et al. 2011. EOS MLS version 3.3 level 2 data quality and description document [R]. JPL D-33509. http://mls.jpl.nasa.gov/. [2020-08-30]
    [32] Livesey N J, Read W G, Wagner P A, et al. 2015. Version 4.2x Level 2 and 3 data quality and description document [R]. JPL D-33509 Rev. E. http://mls.jpl.nasa.gov/. [2020-08-30]
    [33] 马占山, 刘奇俊, 秦琰琰, 等. 2008. 云探测卫星CloudSat [J]. 气象, 34(8): 104−111. doi:  10.7519/j.issn.1000-0526.2008.08.016

    Ma Zhanshan, Liu Qijun, Qin Yanyan, et al. 2008. Introductions to a new type cloud detecting satellite—CloudSat [J]. Meteorological Monthly (in Chinese), 34(8): 104−111. doi: 10.7519/j.issn.1000-0526.2008.08.016
    [34] Milz M, von Clarmann T, Fischer H, et al. 2005. Water vapor distributions measured with the Michelson Interferometer for Passive Atmospheric Sounding on board Envisat (MIPAS/Envisat) [J]. J. Geophys. Res., 110: D24307. doi: 10.1029/2005JD005973
    [35] 潘旸, 沈艳, 宇婧婧, 等. 2012. 基于最优插值方法分析的中国区域地面观测与卫星反演逐时降水融合试验 [J]. 气象学报, 70: 1381−1389. doi:  10.11676/qxxb2012.116

    Pan Yang, Shen Yan, Yu Jingjing, et al. 2012. Analysis of the combined gauge–satellite hourly precipitation over China based on the OI technique [J]. Acta Meteor. Sinica (in Chinese), 70: 1381−1389. doi: 10.11676/qxxb2012.116
    [36] Park M, Randel W J, Gettelman A, et al. 2007. Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers [J]. J. Geophys. Res., 112: D16309. doi: 10.1029/2006JD008294
    [37] Ploeger F, Günther G, Konopka P, et al. 2013. Horizontal water vapor transport in the lower stratosphere from subtropics to high latitudes during boreal summer [J]. J. Geophys. Res., 118: 8111−8127. doi: 10.1002/jgrd.50636
    [38] Randel W J, Park M. 2006. Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS) [J]. J. Geophys. Res., 111: D12314. doi: 10.1029/2005JD006490
    [39] Randel W J, Wu F, Gettelman A, et al. 2001. Seasonal variation of water vapor in the lower stratosphere observed in Halogen Occultation Experiment data [J]. J. Geophys. Res., 106: 14313−14325. doi: 10.1029/2001JD900048
    [40] Randel W J, Zhang K, Fu R. 2015. What controls stratospheric water vapor in the NH summer monsoon regions? [J]. J. Geophys. Res., 120: 7988−8001. doi: 10.1002/2015JD023622
    [41] Read W G, Wu D L, Waters J W, et al. 2004. Dehydration in the tropical tropopause layer: Implications from the UARS Microwave Limb Sounder [J]. J. Geophys. Res., 109: D06110. doi: 10.1029/2003JD004056
    [42] Read W G, Lambert A, Bacmeister J, et al. 2007. Aura Microwave Limb Sounder upper tropospheric and lower stratospheric H2O and relative humidity with respect to ice validation [J]. J. Geophys. Res., 112: D24S35. doi: 10.1029/2007JD008752
    [43] Rosenlof K H, Tuck A F, Kelly K K, et al. 1997. Hemispheric asymmetries in water vapor and inferences about transport in the lower stratosphere [J]. J. Geophys. Res., 102: 13213−13234. doi: 10.1029/97JD00873
    [44] Sassen K, Wang Z E. 2008. Classifying clouds around the globe with the CloudSat radar: 1-year of results [J]. Geophys. Res. Lett., 35: L04805. doi: 10.1029/2007GL032591
    [45] Shen Y, Zhao P, Pan Y, et al. 2014. A high spatiotemporal gauge–satellite merged precipitation analysis over China [J]. J. Geophys. Res., 119: 3063−3075. doi: 10.1002/2013JD020686
    [46] Sherwood S C, Dessler A E. 2001. A model for transport across the tropical tropopause [J]. J. Atmos. Sci., 58: 765−779. doi:10.1175/1520-0469(2001)058<0765:AMFTAT>2.0.CO;2
    [47] Simmons A, Uppala S, Dee D, et al. 2007. ERA-interim: New ECMWF reanalysis products from 1989 onwards [J]. ECMWF Newsletter, 110: 25−35.
    [48] Solomon S. 1999. Stratospheric ozone depletion: A review of concepts and history [J]. Reviews of Geophysics, 37: 275−316. doi: 10.1029/1999RG900008
    [49] Stephens G L, Vane D G, Boain R J, et al. 2002. The CloudSat mission and the A-train: A new dimension of space-based observations of clouds and precipitation [J]. Bull. Amer. Meteor. Soc., 83: 1771−1790. doi: 10.1175/BAMS-83-12-1771
    [50] Vömel H, Oltmans S J, Kley D, et al. 1995. New evidence for the stratospheric dehydration mechanism in the equatorial Pacific [J]. Geophys. Res. Lett., 22: 3235−3238. doi: 10.1029/95GL02940
    [51] Wang P K. 2003. Moisture plumes above thunderstorm anvils and their contributions to cross–tropopause transport of water vapor in midlatitudes [J]. J. Geophys. Res., 108: 4194. doi: 10.1029/2002JD002581
    [52] Wang P K, Setvak M, Lyons W, et al. 2009. Further evidences of deep convective vertical transport of water vapor through the tropopause [J]. Atmospheric Research, 94: 400−408. doi: 10.1016/j.atmosres.2009.06.018
    [53] Wernli H, Bourqui M. 2002. A Lagrangian “1-year climatology” of (deep) cross–tropopause exchange in the extratropical Northern Hemisphere [J]. J. Geophys. Res., 107: 4021. doi: 10.1029/2001JD000812
    [54] World Meteorological Organization. 1986. Atmospheric ozone 1985. WMO global ozone research and monitoring rep [R]. No. 16. World Meteorological Organization, Geneva.
    [55] 冼桃. 2014. 穿透性对流活动特征及其对上对流层/下平流层臭氧分布的影响 [D]. 中国科学技术大学博士学位论文.

    Xian Tao. 2014. Characteristics of penetrating convection and its impacts on ozone variation in the UTLS [D]. Ph. D. dissertation (in Chinese), University of Science and Technology of China.
    [56] Yasunari T, Miwa T. 2006. Convective cloud systems over the Tibetan Plateau and their impact on meso-scale disturbance in the Meiyu/Baiu frontal zone [J]. J. Meteor. Soc. Japan, 87: 783−803.
    [57] 易明建, 傅云飞, 刘鹏, 等. 2012. 我国东部夏季一次强对流活动过程中对流层上部大气成分变化的分析 [J]. 大气科学, 36: 901−911. doi:  10.3878/j.issn.1006-9895.2012.11124

    Yi Mingjian, Fu Yunfei, Liu Peng, et al. 2012. Analysis of the variation of atmospheric composition in the upper troposphere during a strong convection in eastern China in summer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36: 901−911. doi: 10.3878/j.issn.1006-9895.2012.11124
    [58] Zhan R F, Wang Y Q. 2012. Contribution of tropical cyclones to stratosphere–troposphere exchange over the Northwest Pacific: Estimation based on AIRS satellite retrievals and ERA-Interim data [J]. J. Geophys. Res., 117: D12112. doi: 10.1029/2012JD017494
    [59] 张端禹, 崔春光, 廖移山. 2018. 武汉市一次对流梅雨暴雨过程诊断分析 [J]. 气象科技, 46: 594−604. doi:  10.19517/j.1671-6345.20170329

    Zhang Duanyu, Cui Chunguang, Liao Yishan. 2018. Diagnostic analysis of a convective Meiyu rainstorm in Wuhan [J]. Meteorological Science and Technology (in Chinese), 46: 594−604. doi: 10.19517/j.1671-6345.20170329
    [60] Zhou C L, Wang K C, Qi D. 2018. Attribution of the July 2016 extreme precipitation event over China’s Wuhan [J]. Bull. Amer. Meteor. Soc., 99: S107−S112. doi: 10.1175/BAMS-D-17-0090.1
  • [1] 唐南军, 任荣彩, 吴国雄, 虞越越.  夏季青藏高原及周边上对流层水汽质量及其向平流层传输年际异常. I:水汽质量异常主导型, 大气科学. doi: 10.3878/j.issn.1006-9895.1905.18267
    [2] 唐南军, 任荣彩, 吴国雄, 虞越越.  夏季青藏高原及周边上对流层水汽质量及其向平流层传输年际异常. II:向平流层的绝热和非绝热传输, 大气科学. doi: 10.3878/j.issn.1006-9895.1905.18268
    [3] 吴嘉蕙, 任荣彩.  冬季全国性持续低温事件过程中的平流层—对流层相互作用, 大气科学. doi: 10.3878/j.issn.1006-9895.2007.20125
    [4] 赵恺辉, 包云轩, 黄建平, 张潇艳, 刘诚, 戚慧雯, 许玮.  华南地区春季平流层入侵对对流层低层臭氧影响的模拟研究, 大气科学. doi: 10.3878/j.issn.1006-9895.1801.17224
    [5] 黄荣辉, 陈文, 魏科, 王林, 皇甫静亮.  平流层大气动力学及其与对流层大气相互作用的研究:进展与问题, 大气科学. doi: 10.3878/j.issn.1006-9895.1802.17250
    [6] 曹治强, 吕达仁.  两次强对流背景下的对流层向平流层输送特征模拟与分析?, 大气科学. doi: 10.3878/j.issn.1006-9895.1411.14175
    [7] 刘鹏, 王雨, 冯沙, 李崇银, 傅云飞.  冬、夏季热带及副热带穿透性对流气候特征分析, 大气科学. doi: 10.3878/j.issn.1006-9895.2011.11109
    [8] 于超越, 周天军, 李博, 等.  对流层和平流层温度中ENSO信号的多种资料比较, 大气科学. doi: 10.3878/j.issn.1006-9895.2011.06.03
    [9] 陈斌, 徐祥德, 卞建春, 等.  夏季亚洲季风区对流层向平流层输送的源区、路径及其时间尺度的模拟研究, 大气科学. doi: 10.3878/j.issn.1006-9895.2010.03.03
    [10] 占瑞芬, 李建平.  青藏高原地区大气红外探测器(AIRS)资料质量检验及揭示的上对流层水汽特征, 大气科学. doi: 10.3878/j.issn.1006-9895.2008.02.05
    [11] 吕达仁, 陈泽宇, 卞建春, 等.  平流层-对流层相互作用的多尺度过程特征及其与天气气候关系—研究进展, 大气科学. doi: 10.3878/j.issn.1006-9895.2008.04.07
    [12] 王旻燕, 吕达仁.  东亚强对流云的季节变化及其与对流层顶关系初探, 大气科学. doi: 10.3878/j.issn.1006-9895.2007.05.17
    [13] 李崇银, 程胜, 潘静.  冬季北半球平流层季节内振荡与对流层季节内振荡的关系, 大气科学. doi: 10.3878/j.issn.1006-9895.2006.05.03
    [14] 王庚辰, 孔琴心, 陈洪滨.  北京地区对流层顶变化及其对上对流层/下平流层区域臭氧变化的影响, 大气科学. doi: 10.3878/j.issn.1006-9895.2006.04.05
    [15] 陈洪滨, 卞建春, 吕达仁.  上对流层-下平流层交换过程研究的进展与展望, 大气科学. doi: 10.3878/j.issn.1006-9895.2006.05.10
    [16] 杨健, 吕达仁.  2000年北半球平流层、对流层质量交换的季节变化, 大气科学. doi: 10.3878/j.issn.1006-9895.2004.02.12
    [17] 杨健, 吕达仁.  东亚地区平流层、对流层交换对臭氧分布影响的模拟研究, 大气科学. doi: 10.3878/j.issn.1006-9895.2004.04.10
    [18] 杨健, 吕达仁.  东亚地区一次切断低压引起的平流层、对流层交换数值模拟研究, 大气科学. doi: 10.3878/j.issn.1006-9895.2003.06.07
    [19] 吴国雄, 张永生.  青藏高原的热力和机械强迫作用以及亚洲季风的爆发 II.爆发时间, 大气科学. doi: 10.3878/j.issn.1006-9895.1999.01.07
    [20] 雷孝恩, 张时禹.  对流层物质垂直交换模式中的参数化处理, 大气科学. doi: 10.3878/j.issn.1006-9895.1992.06.11
  • 加载中
图(7)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  33
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-19
  • 网络出版日期:  2020-04-09
  • 刊出日期:  2020-11-15

目录

    /

    返回文章
    返回