高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

云粒子的破碎对积层混合云微物理参量测量的影响

黄敏松 雷恒池

黄敏松, 雷恒池. 2021. 云粒子的破碎对积层混合云微物理参量测量的影响[J]. 大气科学, 45(2): 369−378 doi: 10.3878/j.issn.1006-9895.2006.19255
引用本文: 黄敏松, 雷恒池. 2021. 云粒子的破碎对积层混合云微物理参量测量的影响[J]. 大气科学, 45(2): 369−378 doi: 10.3878/j.issn.1006-9895.2006.19255
HUANG Minsong, LEI Hengchi. 2021. Cloud Particle Shattering and Its Impact on Cloud Microphysical Parameters’ Measurement in Stratiform Clouds with Embedded Convection [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(2): 369−378 doi: 10.3878/j.issn.1006-9895.2006.19255
Citation: HUANG Minsong, LEI Hengchi. 2021. Cloud Particle Shattering and Its Impact on Cloud Microphysical Parameters’ Measurement in Stratiform Clouds with Embedded Convection [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(2): 369−378 doi: 10.3878/j.issn.1006-9895.2006.19255

云粒子的破碎对积层混合云微物理参量测量的影响

doi: 10.3878/j.issn.1006-9895.2006.19255
基金项目: 国家重点研发计划项目2018YFC1507900,国家自然科学基金项目41775166、41705142,南京信息工程大学江苏省气象探测与信息处理重点实验室与江苏省气象传感网技术工程中心开放基金项目KDXS1803,中国气象局云雾物理环境重点开放实验室开放课题2020Z007
详细信息
    作者简介:

    黄敏松,男,1983年出生,博士,高级工程师,主要从事云降水物理、大气探测研究。E-mail: mission@mail.iap.ac.cn

  • 中图分类号: P413

Cloud Particle Shattering and Its Impact on Cloud Microphysical Parameters’ Measurement in Stratiform Clouds with Embedded Convection

Funds: National Key R&D Program of China (Grant 2018YFC1507900), National Natural Science Foundation of China (Grants 41775166, 41705142), Joint Program from Jiangsu Key Laboratory of Meteorological Observation and Information Processing, and Jiangsu Technology and Engineering Center of Meteorological Sensor Network, Nanjing University of Information Science and Technology, Nanjing, China (Grant KDXS1803), Program from Key Laboratory for Cloud Physics of China Meteorological Administration (LCP/CMA) (Grant 2020Z007)
  • 摘要: 由层状云和镶嵌在层状云中的对流单体组成的积层混合云系是一种重要的降水系统,为研究云粒子破碎对积层混合云系中对流较强区域和层云区域中的云微物理参量测量影响的差异,本文提出了一个时变阈值的破碎粒子识别方法,并利用该方法研究了破碎云粒子在层云区域与对流区域对云微物理参量测量影响的异同。经研究发现破碎粒子对粒子谱影响在小粒径端(500 μm以下)和大粒径(1000 μm以上)两端都存在,其中在层云区,破碎粒子在小粒径端的主要影响位于300 μm以下,而在对流云区,主要影响的小粒径段位于500 μm以下。就整体平均而言,破碎粒子对对流云区粒子谱的影响要比对层云区的影响高出20%以上。在粒子数浓度测量上,破碎粒子对整个层云区粒子数浓度影响的平均值是4.56倍,对整个对流云区粒子数浓度影响的平均值是8.47。与层云区相比,破碎云粒子对对流云区的粒子数浓度影响更大,其影响程度就平均而言接近2倍的关系。在冰水含量测量上,破碎粒子对整个层云区冰水含量测量影响的平均值是1.34倍,对整个对流云区冰水含量测量影响的平均值是1.74倍。与层云区相比,破碎云粒子对对流云区的冰水含量测量影响大约增加了30%。
  • 图  1  所选时段内云粒子成像仪(CIP)所测云中粒子图像:(a)S1;(b)C1;(c)S2;(d)S3;(e)C2;(f)S4;(g)C3;(h)S5;(i)C4。黑色方框内为测量时所产生的破碎云粒子

    Figure  1.  Cloud particle images measured by Cloud Imaging Probe (CIP) in the selected time (a) S1, (b) C1, (c) S2, (d) S3, (e) C2, (f) S4, (g) C3, (h) S5, (i) C4. The shattered particles produced during measurement are highlighted in the black box

    图  2  20090418航次两个时段的粒子到达时间间隔统计:(a)S1;(b)C1

    Figure  2.  Statistics of the cloud particle inter-arrival time in the two selected times of the 20090418 flight: (a) S1; (b) C1

    图  3  (a)S1时段和(b)C1时段内第一个短周期的到达时间间隔统计和曲线拟合结果

    Figure  3.  Inter-arrival time statistics and curve fit result of the first short period in (a) S1 and (b) C1

    图  4  不同云区时段破碎云粒子剔除前后粒子数浓度半径分布函数比值分布:(a)层云区;(b)对流云区

    Figure  4.  Ratio distribution of the cloud particle number concentration with diameter in different cloud types before and after the shattered rejection: (a) Stratus; (b) convective

    图  5  破碎云粒子剔除前后粒子谱平均比值分布

    Figure  5.  Ratio average distribution of the cloud particle spectrum distribution in different cloud types before and after the shattered rejection

    图  6  所选云区时段内破碎粒子剔除前后的粒子数浓度比值(${R_{\rm{d}}}$)的统计结果:(a)层云区;(b)对流云区

    Figure  6.  Statistics ofthe cloud particle number concentration ratio (${R_{\rm{d}}}$) in the selected cloud area before and after the shattered rejection: (a) Stratus; (b) convective

    图  7  所选云区时段内破碎粒子剔除前后的冰水含量比值(${R_{{\rm{IWC}}}}$)的统计结果:(a)层云区;(b)对流云区

    Figure  7.  Statistics of the ice water content ratio(${R_{{\rm{IWC}}}}$) in the selected area before and after the shattered rejection: (a) Stratus; (b) convective

    表  1  所选时间内所对应的云区属性

    Table  1.   Cloud type in the selected time

    航次 时间 云区属性 代号
    20090418 17:44:30~17:46:30 层云 S1
    20090418 17:48:00~17:50:00 对流云 C1
    20090418 17:51:00~17:54:00 层云 S2
    20090501 09:23:00~09:25:00 层云 S3
    20090501 09:28:00~09:45:00 对流云 C2
    20090501 09:46:00~09:51:00 层云 S4
    20090501 09:52:00~10:15:00 对流云 C3
    20090501 10:15:30~10:23:30 层云 S5
    20090501 10:25:00~10:26:30 对流云 C4
    下载: 导出CSV
  • [1] Brown P R A, Francis P N. 1995. Improved measurements of the ice water content in cirrus using a total-water probe [J]. J. Atmos. Oceanic Technol., 12: 410−414. doi: 10.1175/1520-0426(1995)0122.0.CO;2
    [2] Field P R, Wood R, Brown P R A, et al. 2003. Ice particle interarrival times measured with a fast FSSP [J]. J. Atmos. Oceanic Technol., 20(2): 249−261. doi:10.1175/1520-0426(2003)020<0249:IPITMW>2.0.CO;2
    [3] Field P R, Heymsfield A J, Bansemer A. 2006. Shattering and particle interarrival times measured by optical array probes in ice cloud [J]. J. Atmos. Oceanic Technol., 23(10): 1357−1371. doi: 10.1175/JTECH1922.1
    [4] Hallett J, Mossop S C. 1974. Production of secondary ice particles during the riming process [J]. Nature, 249(5452): 26−28. doi: 10.1038/249026a0
    [5] Hobbs P V, Locatelli J D. 1978. Rainbands, precipitation cores and generating cells in a cyclonic storm [J]. J. Atmos. Sci., 35(2): 230−241. doi:10.1175/1520-0469(1978)035<0230:RPCAGC>2.0.CO;2
    [6] Hobbs P V, Rangno A L. 1990. Rapid development of high ice particle concentrations in small polar maritime cumuliform clouds [J]. J. Atmos. Sci., 47(22): 2710−2722. doi:10.1175/1520-0469(1990)047<2710:RDOHIP>2.0.CO;2
    [7] 洪延超. 1996. 积层混合云数值模拟研究(I)——模式及其微物理过程参数化 [J]. 气象学报, 54(5): 544−557. doi: 10.11676/qxxb1996.057

    Hong Y C. 1996. The numerical simulation study of convective-stratiform mixed clouds. Part (I)—The model and parameterization of microphysical processes [J]. Acta Meteor. Sinica (in Chinese), 54(5): 544−557. doi: 10.11676/qxxb1996.057
    [8] 黄敏松, 雷恒池. 2018. 部分状粒子处理方法及其对云微物理参数测量的影响 [J]. 物理学报, 67(24): 249202. doi: 10.7498/aps.67.20181412

    Huang M S, Lei H C. 2018. Processing method for the partial particles and its influence on the cloud microphysical parameters measured by the airborne cloud and precipitation image probe [J]. Acta Phys. Sinica (in Chinese), 67(24): 249202. doi: 10.7498/aps.67.20181412
    [9] 黄敏松, 雷恒池, 金玲. 2017. 机载云降水粒子成像仪所测数据中伪粒子的识别 [J]. 大气科学, 41(5): 1113−1124. doi: 10.3878/j.issn.1006-9895.1703.16259

    Huang M S, Lei H C, Jin L. 2017. Pseudo Particle identification in the image data from the airborne cloud and precipitation particle image probe [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 41(5): 1113−1124. doi: 10.3878/j.issn.1006-9895.1703.16259
    [10] 黄美元, 洪延超, 徐华英, 等. 1987. 层状云对积云发展和降水的影响——一种云与云之间影响的数值模拟 [J]. 气象学报, 45(1): 72−77. doi: 10.11676/qxxb1987.009

    Huang M Y, Hong Y C, Xu H Y, et al. 1987. The effects of the existence of stratiform cloud on the development of cumulus cloud and its precipitation [J]. Acta Meteor. Sinica (in Chinese), 45(1): 72−77. doi: 10.11676/qxxb1987.009
    [11] 黄敏松, 雷恒池, 陈家田, 等. 2016. 机载光阵探头探测期间云粒子的破碎 [J]. 大气科学, 40(3): 647−656. doi: 10.3878/j.issn.1006-9895.1505.15106

    Huang M S, Lei H C, Chen J T, et al. 2016. Cloud particle shattering during sampling by airborne optical array probes [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(3): 647−656. doi: 10.3878/j.issn.1006-9895.1505.15106
    [12] Jackson R C, McFarquhar G M, Stith J, et al. 2014. An assessment of the impact of antishattering tips and artifact removal techniques on cloud ice size distributions measured by the 2D cloud probe [J]. J. Atmos. Oceanic Technol., 31(12): 2567−2590. doi: 10.1175/JTECH-D-13-00239.1
    [13] Jackson R C, McFarquhar G M. 2014. An assessment of the Impact of antishattering tips and artifact removal techniques on bulk cloud ice microphysical and optical properties measured by the 2D cloud probe [J]. J. Atmos. Oceanic Technol., 31(10): 2131−2144. doi: 10.1175/JTECH-D-14-00018.1
    [14] Jiang F Y, Zhang Y, Bu L B, et al. 2019. Calibration and measurement analysis of a cloud particle detection system based on polarization detection [J]. Appl. Opt., 58(36): 9777−9785. doi: 10.1364/AO.58.009777
    [15] Korolev A, Isaac G A. 2005. Shattering during sampling by OAPs and HVPS. Part I: Snow particles [J]. J. Atmos. Oceanic Technol., 22(5): 528−542. doi: 10.1175/JTECH1720.1
    [16] Korolev A, Emery E, Creelman K. 2013a. Modification and tests of particle probe tips to mitigate effects of ice shattering [J]. J. Atmos. Oceanic Technol., 30(4): 690−708. doi: 10.1175/JTECH-D-12-00142.1
    [17] Korolev A V, Emery E F, Strapp J W., et al 2011. Small ice particles in tropospheric clouds: Fact or artifact? Airborne icing instrumentation evaluation experiment [J]. Bull. Amer. Meteor. Soc., 92(8): 967−973. doi: 10.1175/2010BAMS3141.1
    [18] Korolev A V, Emery E F, Strapp J W., et al 2013b. Quantification of the effects of shattering on airborne ice particle measurements [J]. J. Atmos. Oceanic Technol., 30(11): 2527−2553. doi: 10.1175/JTECH-D-13-00115.1
    [19] Morrison H, McCoy R B, Klein S A, et al. 2009. Intercomparison of model simulations of mixed-phase clouds observed during the ARM mixed-phase arctic cloud experiment. II: Multilayer cloud [J]. Quart. J. Roy. Meteor. Soc., 135(641): 1003−1019. doi: 10.1002/qj.415
    [20] 秦彦硕, 蔡淼, 刘世玺, 等. 2017. 华北秋季一次低槽冷锋积层混合云宏微物理特征与催化响应分析 [J]. 气象学报, 75(5): 835−849. doi: 10.11676/qxxb2017.049

    Qin Y S, Cai M, Liu S X, et al. 2017. A study on macro and micro physical structures of convective−stratiform mixed clouds associated with a cold front in autumn and their catalytic responses in North China [J]. Acta Meteor. Sinica (in Chinese), 75(5): 835−849. doi: 10.11676/qxxb2017.049
    [21] Rangno A L, Hobbs P V. 2005. Microstructures and precipitation development in cumulus and small cumulonimbus clouds over the warm pool of the tropical Pacific Ocean [J]. Quart. J. Roy. Meteor. Soc., 131(606): 639−673. doi: 10.1256/qj.04.13
    [22] Yang J F, Lei H C, Hou T J. 2017. Observational evidence of high ice concentration in a shallow convective cloud embedded in stratiform cloud over North China [J]. Adv. Atmos. Sci., 34(4): 509−520. doi: 10.1007/s00376-016-6079-x
    [23] 张佃国, 姚展予, 龚佃利, 等. 2011. 环北京地区积层混合云微物理结构飞机联合探测研究 [J]. 大气科学学报, 34(1): 109−121. doi: 10.3969/j.issn.1674-7097.2011.01.014

    Zhang D G, Yao Z Y, Gong D L, et al. 2011. Microphysical structures of stratocumulus mixed cloud detected by aircraft around Beijing area [J]. Trans. Atmos. Sci. (in Chinese), 34(1): 109−121. doi: 10.3969/j.issn.1674-7097.2011.01.014
    [24] Zhao Z, Lei H C. 2014a. Observed microphysical structure of nimbostratus in northeast cold vortex over China [J]. Atmos. Res., 142: 91−99. doi: 10.1016/j.atmosres.2013.09.008
    [25] Zhao Z, Lei H C. 2014b. Aircraft observations of liquid and ice in midlatitude mixed-phase clouds [J]. Adv. Atmos. Sci., 31(3): 604−610. doi: 10.1007/s00376-013-3083-2
    [26] 朱士超, 郭学良. 2014. 华北积层混合云中冰晶形状、分布与增长过程的飞机探测研究 [J]. 气象学报, 72(2): 366−389. doi: 10.11676/qxxb2014.013

    Zhu S C, Guo X L. 2014. Ice crystal habits, distribution and growth process in stratiform clouds with embedded convection in North China: Aircraft measurements [J]. Acta Meteor. Sinica (in Chinese), 72(2): 366−389. doi: 10.11676/qxxb2014.013
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  22
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-30
  • 录用日期:  2020-08-19
  • 网络出版日期:  2020-08-21
  • 刊出日期:  2021-03-18

目录

    /

    返回文章
    返回