高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新疆地区未来气候变化的区域气候模式集合预估

王政琪 高学杰 童尧 韩振宇 徐影

王政琪, 高学杰, 童尧, 等. 2021. 新疆地区未来气候变化的区域气候模式集合预估[J]. 大气科学, 45(2): 407−423 doi: 10.3878/j.issn.1006-9895.2006.20108
引用本文: 王政琪, 高学杰, 童尧, 等. 2021. 新疆地区未来气候变化的区域气候模式集合预估[J]. 大气科学, 45(2): 407−423 doi: 10.3878/j.issn.1006-9895.2006.20108
WANG Zhengqi, GAO Xuejie, TONG Yao, et al. 2021. Future Climate Change Projection over Xinjiang based on an Ensemble of Regional Climate Model Simulations [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(2): 407−423 doi: 10.3878/j.issn.1006-9895.2006.20108
Citation: WANG Zhengqi, GAO Xuejie, TONG Yao, et al. 2021. Future Climate Change Projection over Xinjiang based on an Ensemble of Regional Climate Model Simulations [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(2): 407−423 doi: 10.3878/j.issn.1006-9895.2006.20108

新疆地区未来气候变化的区域气候模式集合预估

doi: 10.3878/j.issn.1006-9895.2006.20108
基金项目: 中国科学院战略性先导科技专项(A类)XDA20060401,国家自然科学基金项目 41675103,云南省科技计划项目“气候变化下主要气象对高原特色农业的影响评估及监测预报技术研究”2018BC007
详细信息
    作者简介:

    王政琪,男,1992年出生,博士研究生,主要从事气候变化研究。E-mail: wangzhengqi@mail.iap.ac.cn

    通讯作者:

    高学杰,E-mail: gaoxuejie@mail.iap.ac.cn

  • 中图分类号: P466

Future Climate Change Projection over Xinjiang based on an Ensemble of Regional Climate Model Simulations

Funds: the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDA20060401), the National Natural Science Foundation of China (Grant 41675103), the Science and Technology Program of Yunnan "Impact Assessments and Monitor-Forecasting Technology of Meteorological Disasters for Yunnan Plateau Characteristic Agriculture under Climate Change" (Grant 2018BC007)
  • 摘要: 本文基于一套在5个全球气候模式结果驱动下,RegCM4区域气候模式对东亚25 km水平分辨率的集合预估,分析了中、高温室气体典型排放路径(RCP4.5和RCP8.5)下,21世纪不同时期新疆地区的未来气候变化。对模式当代气候模拟结果的检验表明,区域模式的模拟集合(ensR)总体上能够很好地再现当代新疆平均气温、降水和极端气温、降水分布特征。ensR预估21世纪未来新疆平均气温和降水将不断升高或增加,RCP8.5下的变化大于RCP4.5。在21世纪末期RCP8.5下,区域年平均气温和降水将分别增加4.9°C和28%(102 mm),夏季(6~8月)的升温幅度略高于冬季(12~2月),降水则以冬季增加为主。极端温度以及高温日数同样将不断升高,其中年日最低气温最小值的增幅总体高于年日最高气温最大值,未来新疆地区的极端冷事件将减少,高温、热浪事件将增加。由极端降水指标日最大降水量反应的强降水事件将普遍增加,连续无降水日数总体以减少为主。积雪变化存在一定区域差异,具体表现为除塔里木盆地外的普遍减少。对总径流量和表层土壤湿度的预估分析表明,二者在新疆地区均以增加为主,但水文干旱在北疆会加重。ensR各模拟间无论是在当代模拟还是未来预估中都表现出较好的一致性,但在变化的具体数量及个别情况下符号均存在一定差异。最后,综合考虑ensR对各要素的预估发现,总体而言新疆未来更趋向于“暖湿化”,但这不会改变其干旱、半干旱气候的本质,而且水文干旱频率在一些地区会增加,未来新疆的水资源状况仍不容乐观。
  • 图  1  RegCM4对新疆及境内周边地区地形分布的描述(单位:m)。虚线表示文中划分的五个分区,分别为分区I:包含阿尔泰山、巴尔鲁克山及周边;分区II:整个天山山脉;分区III:昆仑山北部;分区IV:准噶尔盆地及周边;分区V:塔里木盆地、吐鲁番盆地及周边

    Figure  1.  Topography over Xinjiang and the surround areas (units: m). The dashed line indicates the five subregions used for the present study: I, Altai and Balluk mountains and their surrounding areas; II, Tianshan Mountain; III, northern part of Kunlun Mountain; IV, Junggar Basin and its surrounding areas; V, Tarim and Turpan Basins and their surrounding areas

    图  2  当代(1986~2005年)年平均气温(单位:°C;左列)和降水(单位:mm;右列)分布:(a、b)观测;(c、d)ensG模拟结果;(e、f)ensR模拟结果

    Figure  2.  The distribution of present-day annual mean temperature (units: °C; left column) and precipitation (units: mm; right column) from (a, b) observations, (c, d) ensG model results, and (e, f) ensR model results

    图  3  当代极端气温相关指数TXx(单位:°C;左列)、TNn(单位:°C;中间列)和T35D(单位:d;右列)分布:观测结果(第一行);ensG模拟结果(第二行);ensR模拟结果(第三行)

    Figure  3.  The distribution of present-day TXx (units: °C; left column), TNn (units: °C; middle column), and T35D (units: d; right column) extreme temperature correlation indexes: Observations (top line), ensG (second line), ensR (bottom line)

    图  4  当代极端降水相关指数RX1day(单位:mm;左列)、CDD(单位:d;右列)的分布:(a、b)观测;(c、d)ensG模拟结果;(e、f)ensR模拟结果

    Figure  4.  The distribution of present-day RX1day (units: mm; left column) and CDD (units: d; right column) extreme precipitation correlation indexes: (a, b) Observations; (c, d) ensG; (e, f) ensR

    图  5  (a、c)21世纪中期(2041~2060年)RCP4.5情景和(b、d)21世纪末期(2081~2098年)RCP8.5情景下,年平均气温(单位:°C;第一行)和降水(以变化百分率表示;第二行)相对于当代的变化

    Figure  5.  Future changes in annual mean temperature (units: °C; top line) and precipitation (percent; bottom line) relative to the present day by (a, c) the mid-twenty-first century (2046–2065) under RCP4.5 and by (b, d) the end of the twenty-first century (2081–2098) under RCP8.5

    图  6  新疆区域平均气温(左列,单位:°C)和降水变化(右列)RCP4.5(蓝色)和RCP8.5(红色)情景下(a、b)21世纪的逐年变化以及(c、d)21世纪中期、末期的逐月变化。阴影表示模拟间隔1个标准差的范围

    Figure  6.  Annual mean changes and annual cycle of changes in regional mean temperature (units: °C) and precipitation over Xinjiang relative to historical observations. Temporal evolution of temperature (a) and (b) precipitation during the twenty-first century (blue and red indicate RCP4.5 and RCP8.5, respectively, with values of trend provided in upper-left corner); annual cycle of (c) temperature and (d) precipitation by the mid-twenty-first century under RCP4.5 (blue) and by the end of the twenty-first century under RCP8.5 (red). The shade represents the range of ±1 standard deviation

    图  7  (a、c、e)21世纪中期(2041~2060年)RCP4.5情景和(b、d、f)21世纪末期(2081~2098年)RCP8.5情景下TXx(单位:°C;第一行)和TNn(单位:°C;第二行)及T35D(单位:d;第三行)相对于当代的变化

    Figure  7.  Future changes in TXx (units: °C; top line), TNn (units: °C; middle line) and T35D (units: d; bottom line) relative to the present day by (a, c, e) the mid-twenty-first century (2046–2065) under RCP4.5 and by (b, d, f) the end of the twenty-first century (2081–2098) under RCP8.5

    图  8  (a、c)21世纪中期(2041~2060年)RCP4.5情景和(b、d)21世纪末期(2081~2098年)RCP8.5情景下RX1day(以变化百分率表示;第一行)和CDD(单位:d;第二行)相对于当代的变化

    Figure  8.  Future changes in RX1day (percent; top line) and CDD (units: d; bottom line) relative to the present day by (a, c) the mid-twenty-first century (2046–2065) under RCP4.5 and by (b, d) the end of the twenty-first century (2081–2098) under RCP8.5

    图  9  (a)21世纪中期RCP4.5情景下积雪相对于当代的变化;21世纪后期RCP8.5情景下(b)积雪、(c)总径流(单位:mm)、(d)水文干旱频率、(e)土壤湿度(单位:mm)和(f)农业干旱频率相对于当代的变化

    Figure  9.  (a) Changes in snow cover by the mid-twenty-first century under RCP4.5, changes in (b) snow cover, (c) total runoff (units: mm), (d) runoff P10th, (e) soil moisture (units: mm), and (f) soil moisture P10t by the end of the twenty-first century under RCP8.5h over Xinjiang relative to historical observations

    表  1  用于驱动RegCM4的5个CMIP5全球气候模式信息

    Table  1.   Information for the five CMIP5 driving models

    模式名称 机构 分辨率(以经度×
    纬度格点数表示)
    文献
    CSIRO-MK3-6-0 澳大利亚联邦科学与工业研究组织、
    澳大利亚气象局
    192×96 Rotstayn et al., 2010
    EC-EARTH 欧洲中期天气预报中心 320×160 Hazeleger et al., 2010
    HadGEM2-ES 英国哈德莱中心 192×145 Johns et al., 2006; Martin et al., 2006; Ringer et al., 2006
    MPI-ESM-MR 德国马普气象研究所 192×96 Marsland et al., 2003; Raddatz et al., 2007
    NorESM1-M 挪威气候中心 144×96 Bentsen et al., 2013; Iversen et al., 2013
    下载: 导出CSV

    表  2  ensG/ensR模拟的当代各气候要素与观测结果在新疆地区及各分区区域平均的偏差

    Table  2.   Regional mean bias of the climate variables in the present day over Xinjiang and its subregions between ensG/ensR and observations

    气候要素与观测结果区域平均的偏差(ensG)
    气温/°C 降水偏差/mm(偏差百分比) TXx/°C TNn/°C T35D/d RX1day/mm(偏差百分比) CDD/d
    I 0.7 3 (1%) 3.6 −2.6 2 3 (24%) 10
    II 2.4 12 (4%) 6.0 −1.5 3 0 (1%) 5
    III −1.0 407 (238%) 0.4 −4.6 0 9 (104%) −72
    IV −1.6 −22 (−10%) 0.1 −3.4 −1 −2 (−15%) 19
    V −2.6 156 (218%) −2.1 −4.4 −7 4 (44%) −7
    新疆地区 −1.2 152 (94%) 0.3 −3.8 −3 3 (33%) −14
    气候要素与观测结果区域平均的偏差(ensR)
    气温/°C 降水偏差/mm(偏差百分比) TXx/°C TNn/°C T35D/d RX1day/mm(偏差百分比) CDD/d
    I −0.7 422 (138%) −0.9 −4.4 1 19 (177%) −12
    II −0.5 469 (153%) 0.8 −6.3 1 14 (94%) −25
    III −2.5 477 (279%) −1.6 −9.7 0 11 (122%) −85
    IV 3.0 15 (7%) 2.0 0.7 12 2 (15%) 4
    V 1.6 26 (37%) 1.7 −0.9 11 2 (19%) −21
    新疆地区 0.5 208 (128%) 0.7 −3.6 7 6 (60%) −31
    下载: 导出CSV

    表  3  ensR预估的各气候要素在21世纪中期RCP4.5情景下,新疆及各分区平均变化及最小、最大变化值

    Table  3.   Regional mean and the minimum and maximum values of changes as projected by ensR by the mid-twenty-first century under RCP4.5 scenarioover Xinjiang and its subregions

    平均变化值
    气温/°C 降水(变化百分比) TXx/°C TNn/°C T35D/d RX1day(变化百分比) CDD/d 雪(变化百分比)
    DJF JJA ANN DJF JJA ANN ANN ANN ANN ANN ANN ANN
    I 1.5 1.9 1.9 25 (17%) 2 (1%) 49 (7%) 1.8 1.9 2 0 (2%) 0 1 (1%)
    II 1.5 1.9 1.9 14 (16%) 22 (7%) 54 (7%) 1.7 1.6 2 1 (3%) −2 −4 (−10%)
    III 2.1 1.6 1.6 17 (21%) 10 (5%) 53 (8%) 1.6 1.8 0 1 (7%) −2 0 (0%)
    IV 1.6 2.0 2.0 11 (22%) 2 (3%) 23 (10%) 1.7 2.1 12 1 (6%) −2 0 (−2%)
    V 1.5 1.9 1.9 7 (44%) 1 (5%) 16 (17%) 1.7 1.5 18 1 (12%) −9 0 (3%)
    新疆地区 1.6 1.8 1.8 12 (22%) 6 (5%) 33 (9%) 1.7 1.7 10 1 (7%) −5 −0.5 (−3%)
    最小变化值(最大变化值)
    气温/°C 降水变化百分比 TXx/°C TNn/°C T35D/d RX1day CDD/d
    DJF JJA ANN DJF JJA ANN ANN ANN ANN ANN ANN ANN
    I 0.9(2.3) 1.1(3.0) 1.1(3.0) 11%(21%) −9%(4%) 1%(11%) 0.6(2.5) 1.0(3.3) 0(4) −24%(11%) −1(2) −15%(14%)
    II 1.0(2.3) 1.2(2.6) 1.2(2.6) 12%(23%) 3%(11%) 4%(8%) 0.7(2.5) 0.5(2.5) 0(4) −14%(11%) −5(0) −18%(−3%)
    III 1.6(3.1) 1.3(1.9) 1.3(1.9) 14%(26%) −7%(11%) 4%(10%) 0.7(2.2) 1.3(2.7) 0(1) 5%(10%) −5(−1) −10%(6%)
    IV 0.9(2.3) 1.2(3.0) 1.2(3.0) 13%(29%) −11%(9%) 3%(19%) 0.7(2.5) 0.6(3.7) 4(21) −5%(16%) −5(1) −14%(26%)
    V 1.2(1.9) 1.4(2.6) 1.4(2.6) 32%(70%) −1%(12%) 11%(23%) 0.8(2.7) 0.5(2.2) 12(23) 5%(26%) −15(−4) −16%(19%)
    新疆地区 1.3(2.3) 1.3(2.5) 1.3(2.5) 18%(31%) 1%(9%) 8%(10%) 0.8(2.5) 0.9(2.5) 6(14) 0(11%) −9(−2) −10%(2%)
    下载: 导出CSV

    表  4  表3,但为21世纪后期RCP8.5情景

    Table  4.   Same as Table 3, but for the end of 21st century under RCP8.5 scenario

    平均变化值
    气温/°C 降水(变化百分比) TXx/°C TNn/°C T35D/d RX1day
    (变化百分比)
    CDD(d) 雪(变化
    百分比)
    总径流(变化百分比) 土壤湿度
    (变化百分比)
    DJF JJA ANN DJF JJA ANN ANN ANN ANN ANN ANN ANN ANN ANN
    I 4.4 5.3 4.8 68(45%) −9(−4%) 110(15%) 5.3 6.5 9 4(14%) 1 −7(−9%) 87(14%) 2(12%)
    II 4.6 5.1 4.8 41(46%) 55(17%) 170(22%) 4.9 5.4 9 5(19%) −4 −10(−27%) 154(22%) 2(15%)
    III 5.9 4.5 5.1 49(62%) 37(17%) 175(27%) 4.5 4.5 2 6(33%) −5 0(−1%) 162(28%) 2(18%)
    IV 4.5 5.6 4.9 30(57%) −1(−2%) 61(27%) 5.2 7.3 39 3(24%) −2 −2(−29%) 14(26%) 2(16%)
    V 4.4 5.4 4.9 21(125%) 5(17%) 55(56%) 4.9 5.6 52 4(41%) −18 0(−5%) 3(27%) 2(18%)
    新疆地区 4.8 5.2 4.3 34(63%) 18(14%) 102(28%) 4.9 5.8 30 5(29%) −10 −2(−13%) 66(24%) 2(17%)
    最小变化值(最大变化值)
    气温/°C 降水变化百分比 TXx/°C TNn/°C T35D/d RX1day CDD/d 总径流 土壤湿度
    DJF JJA ANN DJF JJA ANN ANN ANN ANN ANN ANN ANN ANN ANN
    I 2.9
    (5.4)
    4.3
    (6.5)
    4.0
    (5.8)
    28%
    (65%)
    −15%
    (2%)
    2%
    (24%)
    4.3
    (6.3)
    3.8
    (7.4)
    2
    (14)
    −10%
    (26%)
    −2
    (2)
    −23%
    (11%)
    −9%
    (33%)
    5%
    (18%)
    II 3.5
    (5.8)
    4.4
    (6.0)
    4.2
    (5.6)
    31%
    (59%)
    8%
    (32%)
    15%
    (31%)
    4.0
    (5.4)
    4.0
    (6.5)
    3
    (14)
    2%
    (34%)
    −9
    (−2)
    −35%
    (−17%)
    14%
    (29%)
    12%
    (19%)
    III 4.7
    (7.4)
    4.0
    (4.8)
    4.6
    (5.7)
    45%
    (73%)
    5%
    (38%)
    13%
    (37%)
    3.7
    (5.0)
    4.3
    (6.6)
    1
    (4)
    20%
    (46%)
    −9
    (−2)
    −34%
    (15%)
    5%
    (41%)
    16%
    (22%)
    IV 3.3
    (5.5)
    4.6
    (6.8)
    4.2
    (5.9)
    30%
    (83%)
    −11%
    (9%)
    12%
    (41%)
    4.3
    (6.1)
    4.3
    (8.4)
    24
    (54)
    1%
    (42%)
    −9
    (4)
    −45%
    (11%)
    0
    (53%)
    9%
    (22%)
    V 3.6
    (5.2)
    4.7
    (6.2)
    4.3
    (5.6)
    88%
    (146%)
    −5%
    (45%)
    38%
    (72%)
    4.1
    (5.4)
    4.5
    (6.2)
    44
    (63)
    36%
    (54%)
    −33
    (−6)
    −17%
    (13%)
    −10%
    (47%)
    15%
    (22%)
    新疆地区 3.8
    (5.8)
    4.5
    (6.0)
    4.3
    (5.7)
    49%
    (76%)
    4%
    (32%)
    19%
    (39%)
    4.0
    (5.4)
    4.4
    (6.7)
    23
    (38)
    14%
    (43%)
    −17
    (−3)
    −26%
    (−4%)
    12%
    (35%)
    13%
    (21%)
    下载: 导出CSV
  • [1] Bentsen M, Bethke I, Debernard J B, et al. 2013. The Norwegian earth system model, NorESM1-M—Part 1: Description and basic evaluation of the physical climate [J]. Geosci. Model Dev., 6(3): 687−720. doi: 10.5194/gmd-6-687-2013
    [2] Chen H P. 2013. Projected change in extreme rainfall events in China by the end of the 21st century using CMIP5 models [J]. Chinese Sci. Bull., 58(12): 1462−1472. doi: 10.1007/s11434-012-5612-2
    [3] Chen L, Frauenfeld O W. 2014. Surface air temperature changes over the twentieth and twenty-first centuries in China simulated by 20 CMIP5 models [J]. J. Climate, 27(11): 3920−3937. doi: 10.1175/JCLI-D-13-00465.1
    [4] Chen H P, Sun J Q, Chen X L. 2014. Projection and uncertainty analysis of global precipitation‐related extremes using CMIP5 models [J]. Int. J. Climatol., 34(8): 2730−2748. doi: 10.1002/joc.3871
    [5] Dong S Y, Xu Y, Zhou B T, et al. 2015. Assessment of indices of temperature extremes simulated by multiple CMIP5 models over China [J]. Adv. Atmos. Sci., 32(8): 1077−1091. doi: 10.1007/s00376-015-4152-5
    [6] Gao X J, Giorgi F. 2017. Use of the RegCM system over East Asia: Review and perspectives [J]. Engineering, 3(5): 766−772. doi: 10.1016/J.ENG.2017.05.019
    [7] 高学杰, 赵宗慈, 丁一汇. 2003. 区域气候模式对温室效应引起的中国西北地区气候变化的数值模拟 [J]. 冰川冻土, 25(2): 165−169. doi: 10.3969/j.issn.1000-0240.2003.02.008

    Gao X J, Zhao Z C, Ding Y H. 2003. Climate change due to greenhouse effects in Northwest China as simulated by a regional climate model [J]. Journal of Glaciology and Geocryology (in Chinese), 25(2): 165−169. doi: 10.3969/j.issn.1000-0240.2003.02.008
    [8] Gao X J, Shi Y, Giorgi F. 2016. Comparison of convective parameterizations in RegCM4 experiments over China with CLM as the land surface model [J]. Atmos. Oceanic Sci. Lett., 9(4): 246−254. doi: 10.1080/16742834.2016.1172938
    [9] Gao X J, Shi Y, Han Z Y, et al. 2017. Performance of RegCM4 over major river basins in China [J]. Adv. Atmos. Sci., 34(4): 441−455. doi: 10.1007/s00376-016-6179-7
    [10] Gao X J, Wu J, Shi Y, et al. 2018. Future changes in thermal comfort conditions over China based on multi-RegCM4 simulations [J]. Atmos. Oceanic Sci. Lett., 11(4): 291−299. doi: 10.1080/16742834.2018.1471578
    [11] Giorgi F, Jones C and Asrar G R. 2009. Addressing climate information needs at the regional level: The CORDEX framework [J]. WMO Bulletin, 58(3): 175−183.
    [12] Giorgi F, Coppola E, Solmon F, et al. 2012. RegCM4: Model description and preliminary tests over multiple CORDEX domains [J]. Climate Res., 52: 7−29. doi: 10.3354/cr01018
    [13] Hazeleger W, Severijns C, Semmler T, et al. 2010. EC-Earth: A seamless earth–system prediction approach in action [J]. Bull. Amer. Meteor. Soc., 91(10): 1357−1364. doi: 10.1175/2010BAMS2877.1
    [14] Hui P H, Tang J P, Wang S Y, et al. 2018. Climate change projections over China using regional climate models forced by two CMIP5 global models. Part I: Evaluation of historical simulations [J]. Int. J. Climatol., 38(S1): e57−e77. doi: 10.1002/joc.5351
    [15] Iversen T, Bentsen M, Bethke I, et al. 2013. The Norwegian earth system model, NorESM1-M-part 2: Climate response and scenario projections [J]. Geosci. Model Dev., 6(2): 389−415. doi: 10.5194/gmd-6-389-2013
    [16] 姜大膀, 苏明峰, 魏荣庆, 等. 2009. 新疆气候的干湿变化及其趋势预估 [J]. 大气科学, 33(1): 90−98. doi: 10.3878/j.issn.1006-9895.2009.01.08

    Jiang D B, Su M F, Wei R Q, et al. 2009. Variation and projection of drought and wet conditions in Xinjiang [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33(1): 90−98. doi: 10.3878/j.issn.1006-9895.2009.01.08
    [17] Jiang D B, Tian Z P, Lang X M. 2016. Reliability of climate models for China through the IPCC Third to Fifth Assessment Reports [J]. Int. J. Climatol., 36(3): 1114−1133. doi: 10.1002/joc.4406
    [18] Johns T C, Durman C F, Banks H T, et al. 2006. The new Hadley centre climate model (HadGEM1): Evaluation of coupled simulations [J]. J. Climate, 19(7): 1327−1353. doi: 10.1175/JCLI3712.1
    [19] Li Q, Wang S Y, Lee D K, et al. 2016. Building Asian climate change scenario by multi-regional climate models ensemble. Part II: Mean precipitation [J]. Int. J. Climatol., 36(13): 4253−4264. doi: 10.1002/joc.4633
    [20] 李东欢, 周天军, 邹立维, 等. 2017. RegCM3 CORDEX东亚试验模拟和预估的中国夏季温度变化 [J]. 大气科学, 41(3): 544−560. doi: 10.3878/j.issn.1006-9895.1607.16153

    Li D H, Zhou T J, Zou L W, et al. 2017. Simulated and projected surface air temperature over China in RegCM3 CORDEX East Asia experiments [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 41(3): 544−560. doi: 10.3878/j.issn.1006-9895.1607.16153
    [21] Li Y Z, Yu W J, Wang K W, et al. 2019. Comparison of the aridity index and its drivers in eight climatic regions in China in recent years and in future projections [J]. Int. J. Climatol., 39(14): 5256−5272. doi: 10.1002/joc.6137
    [22] Marsland S J, Haak H, Jungclaus J H, et al. 2003. The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates [J]. Ocean Model., 5(2): 91−127. doi: 10.1016/S1463-5003(02)00015-X
    [23] Martin G M, Ringer M A, Pope V D, et al. 2006. The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part I: Model description and global climatology [J]. J. Climate, 19(7): 1274−1301. doi: 10.1175/JCLI3636.1
    [24] 秦大河. 2002. 中国西部环境演变评估综合报告 [M]. 北京: 科学出版社, 1–80.

    Qin D H. 2002. Comprehensive Report of Environmental Evolution Assessment (in Chinese) [M]. Beijing: Science Press, 1–80.
    [25] Raddatz T J, Reick C H, Knorr W, et al. 2007. Will the tropical land biosphere dominate the climate–carbon cycle feedback during the twenty-first century? [J]. Climate Dyn., 29(6): 565−574. doi: 10.1007/s00382-007-0247-8
    [26] Ringer M A, Martin G M, Greeves C Z, et al. 2006. The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part II: Aspects of variability and regional climate [J]. J. Climate, 19(7): 1302−1326. doi: 10.1175/JCLI3713.1
    [27] Rotstayn L D, Collier M A, Dix M R, et al. 2010. Improved simulation of Australian climate and ENSO‐related rainfall variability in a global climate model with an interactive aerosol treatment [J]. Int. J. Climatol., 30(7): 1067−1088. doi: 10.1002/joc.1952
    [28] 施雅风, 沈永平, 胡汝骥. 2002. 西北气候由暖干向暖湿转型的信号、影响和前景初步探讨 [J]. 冰川冻土, 24(3): 219−226. doi: 10.3969/j.issn.1000-0240.2002.03.001

    Shi Y F, Shen Y P, Hu R J. 2002. Preliminary study on signal, impact and foreground of climatic shift from warm-dry to warm-humid in Northwest China [J]. Journal of Glaciology and Geocryology (in Chinese), 24(3): 219−226. doi: 10.3969/j.issn.1000-0240.2002.03.001
    [29] 石英, 高学杰, 吴佳, 等. 2010. 全球变暖对中国区域积雪变化影响的数值模拟 [J]. 冰川冻土, 32(2): 215−222.

    Shi Y, Gao X J, Wu J, et al. 2010. Simulation of the changes in snow cover over China under global warming by a high resolution RCM [J]. Journal of Glaciology and Geocryology (in Chinese), 32(2): 215−222.
    [30] Shi Y, Gao X J, Wu J, et al. 2011. Changes in snow cover over China in the 21st century as simulated by a high resolution regional climate model [J]. Environ. Res. Lett., 6(4): 045401. doi: 10.1088/1748-9326/6/4/045401
    [31] Shi Y, Gao X J, Xu Y, et al. 2016. Effects of climate change on heating and cooling degree days and potential energy demand in the household sector of China [J]. Climate Res., 67(2): 135−149. doi: 10.3354/cr01360
    [32] Tang J P, Li Q, Wang S Y, et al. 2016. Building Asian climate change scenario by multi-regional climate models ensemble. Part I: Surface air temperature [J]. Int. J. Climatol., 36(13): 4241−4252. doi: 10.1002/joc.4628
    [33] Van Vuuren D P, Edmonds J A, Kainuma M, et al. 2011. A special issue on the RCPs [J]. Climatic Change, 109(1–2): 1. doi: 10.1007/s10584-011-0157-y
    [34] Wang L, Chen W. 2014. A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China [J]. Int. J. Climatol., 34(6): 2059−2078. doi: 10.1002/joc.3822
    [35] 王澄海, 王芝兰, 沈永平. 2010. 新疆北部地区积雪深度变化特征及未来50 a的预估 [J]. 冰川冻土, 32(6): 1059−1065.

    Wang C H, Wang Z L, Shen Y P. 2010. A prediction of snow cover depth in the northern Xinjiang in the next 50 years [J]. J. Glaciol. Geocryol. (in Chinese), 32(6): 1059−1065.
    [36] Wang Y J, Zhou B T, Qin D H, et al. 2017. Changes in mean and extreme temperature and precipitation over the arid region of northwestern China: Observation and projection [J]. Adv. Atmos. Sci., 34(3): 289−305. doi: 10.1007/s00376-016-6160-5
    [37] 王晓欣, 姜大膀, 郎咸梅. 2019. CMIP5多模式预估的1.5°C升温背景下中国气温和降水变化 [J]. 大气科学, 43(5): 1158−1170. doi: 10.3878/j.issn.1006-9895.1810.18225

    Wang X X, Jiang D B, Lang X M. 2019. Temperature and precipitation changes over china under a 1.5°C global warming scenario based on CMIP5 models [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(5): 1158−1170. doi: 10.3878/j.issn.1006-9895.1810.18225
    [38] 吴佳, 高学杰. 2013. 一套格点化的中国区域逐日观测资料及与其它资料的对比 [J]. 地球物理学报, 56(4): 1102−1111. doi: 10.6038/cjg20130406

    Wu J, Gao X J. 2013. A gridded daily observation dataset over China region and comparison with the other datasets [J]. Chinese J. Geophys. (in Chinese), 56(4): 1102−1111. doi: 10.6038/cjg20130406
    [39] 吴佳, 高学杰, 石英, 等. 2011. 新疆21世纪气候变化的高分辨率模拟 [J]. 冰川冻土, 33(3): 479−487.

    Wu J, Gao X J, Shi Y, et al. 2011. Climate change over Xinjiang region in the 21st century simulated by a high resolution regional climate model [J]. Journal of Glaciology and Geocryology (in Chinese), 33(3): 479−487.
    [40] Wu F T, Wang S Y, Fu C B, et al. 2016. Evaluation and projection of summer extreme precipitation over East Asia in the Regional Model Inter-comparison Project [J]. Climate Res., 69(1): 45−58. doi: 10.3354/cr01384
    [41] 《新疆区域气候变化评估报告》编写委员会. 2013. 新疆区域气候变化评估报告决策者摘要及执行摘要-2012 [M]. 北京: 气象出版社.

    Compilation Committee of Regional Climate Change Assessment Report in Xinjiang. 2013. Summary for Policymakers and Execution of Regional Climate Change Assessment Report in Xinjiang 2012 (in Chinese) [M]. Beijing: China Meteorological Press.
    [42] Xu Y, Xu C H. 2012. Preliminary assessment of simulations of climate changes over China by CMIP5 multi–models [J]. Atmos. Oceanic Sci. Lett., 5(6): 489−494. doi: 10.1080/16742834.2012.11447041
    [43] 徐影, 丁一汇, 赵宗慈. 2003. 人类活动引起的我国西北地区21世纪温度和降水变化情景分析 [J]. 冰川冻土, 25(3): 327−330. doi: 10.3969/j.issn.1000-0240.2003.03.015

    Xu Y, Ding Y H, Zhao Z C. 2003. Scenario of temperature and precipitation changes in Northwest China due to human activity in the 21st Century [J]. Journal of Glaciology and Geocryology (in Chinese), 25(3): 327−330. doi: 10.3969/j.issn.1000-0240.2003.03.015
    [44] 许崇海, 徐影, 罗勇. 2008. 新疆地区21世纪气候变化分析 [J]. 沙漠与绿洲气象, 2(3): 1−7. doi: 10.3969/j.issn.1002-0799.2008.03.001

    Xu C H, Xu Y, Luo Y. 2008. Climate change of the 21st century in Xinjiang with SRES scenarios [J]. Desert and Oasis Meteorology (in Chinese), 2(3): 1−7. doi: 10.3969/j.issn.1002-0799.2008.03.001
    [45] Yang S L, Feng J M, Dong W J, et al. 2014. Analyses of extreme climate events over China based on CMIP5 historical and future simulations [J]. Adv. Atmos. Sci., 31(5): 1209−1220. doi: 10.1007/s00376-014-3119-2
    [46] 杨绚, 李栋梁, 汤绪. 2014. 基于CMIP5多模式集合资料的中国气温和降水预估及概率分析 [J]. 中国沙漠, 34(3): 795−804. doi: 10.7522/j.issn.1000-694X.2013.00381

    Yang X, Li D L, Tang X. 2014. Probability assessment of temperature and precipitation over China by CMIP5 multi-model ensemble [J]. Journal of Desert Research (in Chinese), 34(3): 795−804. doi: 10.7522/j.issn.1000-694X.2013.00381
    [47] Yao Y, Luo Y, Huang J B. 2012. Evaluation and projection of temperature extremes over China based on CMIP5 model [J]. Adv. Climate Change Res., 3(4): 179−185. doi: 10.3724/SP.J.1248.2012.00179
    [48] 于恩涛, 孙建奇. 2019. 基于多区域模式集合的中国西部干旱区极端温度未来预估 [J]. 大气科学学报, 42(1): 46−57. doi: 10.13878/j.cnki.dqkxxb.20181109001

    Yu E T, Sun J Q. 2019. Extreme temperature projection over northwestern China based on multiple regional climate models [J]. Transactions of Atmospheric Sciences (in Chinese), 42(1): 46−57. doi: 10.13878/j.cnki.dqkxxb.20181109001
    [49] 于恩涛, 孙建奇, 吕光辉, 等. 2015. 西部干旱区未来气候变化高分辨率预估 [J]. 干旱区地理, 38(3): 429−437. doi: 10.13826/j.cnki.cn65-1103/x.2015.03.001

    Yu E T, Sun J Q, Lv G H, et al. 2015. High–resolution projection of future climate change in the Northwestern arid regions of China [J]. Arid Land Geography (in Chinese), 38(3): 429−437. doi: 10.13826/j.cnki.cn65-1103/x.2015.03.001
    [50] 于晓晶, 李淑娟, 赵勇, 等. 2017. CMIP5模式对未来30 a新疆夏季降水的预估 [J]. 沙漠与绿洲气象, 11(5): 53−62. doi: 10.12057/j.issn.1002-0799.2017.05.008

    Yu X J, Li S J, Zhao Y, et al. 2017. Projected summer precipitation over Xinjiang by multi-CMIP5 models in the next 30 years [J]. Desert and Oasis Meteorology (in Chinese), 11(5): 53−62. doi: 10.12057/j.issn.1002-0799.2017.05.008
    [51] Zhang X B, Alexander L, Hegerl G C, et al. 2011. Indices for monitoring changes in extremes based on daily temperature and precipitation data [J]. Wiley Interdisciplinary Reviews: Climate Change, 2(6): 851−870. doi: 10.1002/wcc.147
    [52] Zhao T B, Dai A G. 2015. The magnitude and causes of global drought changes in the twenty-first century under a low–moderate emissions scenario [J]. J. Climate, 28(11): 4490−4512. doi: 10.1175/JCLI-D-14-00363.1
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  18
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-09
  • 录用日期:  2020-06-09
  • 网络出版日期:  2020-11-23
  • 刊出日期:  2021-03-18

目录

    /

    返回文章
    返回