高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

辐射传输模式对地基微波辐射计观测亮温的模拟能力分析

邹荣士 何文英 王普才 茆佳佳 陈洪滨 李军 南卫东 常越

邹荣士, 何文英, 王普才, 等. 2021. 辐射传输模式对地基微波辐射计观测亮温的模拟能力分析[J]. 大气科学, 45(3): 1−12 doi: 10.3878/j.issn.1006-9895.2008.20134
引用本文: 邹荣士, 何文英, 王普才, 等. 2021. 辐射传输模式对地基微波辐射计观测亮温的模拟能力分析[J]. 大气科学, 45(3): 1−12 doi: 10.3878/j.issn.1006-9895.2008.20134
ZOU Rongshi, HE Wengying, WANG Pucai, et al. 2021. Assessment of Radiative Transfer Models Based on Observed Brightness Temperature from Ground-Based Microwave Radiometer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(3): 1−12 doi: 10.3878/j.issn.1006-9895.2008.20134
Citation: ZOU Rongshi, HE Wengying, WANG Pucai, et al. 2021. Assessment of Radiative Transfer Models Based on Observed Brightness Temperature from Ground-Based Microwave Radiometer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(3): 1−12 doi: 10.3878/j.issn.1006-9895.2008.20134

辐射传输模式对地基微波辐射计观测亮温的模拟能力分析

doi: 10.3878/j.issn.1006-9895.2008.20134
基金项目: 国家重点研发计划项目2017YFC1501700,国家自然科学基金项目41575033
详细信息
    作者简介:

    邹荣士,男,1981年出生,博士,主要从事大气探测和大气遥感研究。E-mail: zours@mail.iap.ac.cn

    通讯作者:

    何文英,E-mail: hwy@mail.iap.ac.cn

  • 中图分类号: P412.1

Assessment of Radiative Transfer Models Based on Observed Brightness Temperature from Ground-Based Microwave Radiometer

Funds: National Key Research and Development Program of China (Grant 2017YFC1501700), National Natural Science Foundation of China (NSFC) (Grant 41575033)
  • 摘要: 提供高时间分辨率大气温度湿度廓线的地基微波辐射计近年来广泛使用,多通道观测亮温的数据质量是大气廓线产品合理性的基本保障。一般定期液氮绝对定标可以更好维护亮温数据质量,但实际操作颇为不易。辐射传输模式作为一种辅助工具,可以检验和认识地基微波辐射计观测亮温的数据质量。本文针对三个辐射传输模式:MonoRTM、ARTS和MWRT,结合北京探空观测资料、北京观象台和河北香河站同类型的德国RPG地基微波辐射计观测资料,分析比较了三个模式的模拟与观测亮温差异,评估不同辐射传输模式对地基微波辐射计观测的模拟能力。地基微波辐射计14个通道观测亮温与模式模拟的差异统计比较发现:三个模式的模拟结果与地基微波辐射计大部分通道的观测亮温都很接近,与观测结果具有很好一致性(如相关系数高达0.99),而对温度通道ch8(51.26 GHz)和ch9(52.28 GHz),三个模式模拟与观测相关系数明显较低(<0.80),并且存在显著的绝对偏差(4~5 K),表明模式在这两个通道的模拟能力有待提高。三个模式中,MonoRTM模式在温度通道ch8、ch9和ch10(53.86 GHz)存在明显的系统性偏差,尤其是ch8高达5 K;ARTS模式对水汽通道ch1(22.24 GHz)的模拟能力相对较弱;MWRT模拟与观测亮温在多个通道上相对更为接近和稳定,尤其系统性偏差最小。此外,探空廓线与地基观测站的空间位置不一致,对地基微波辐射计水汽通道的模拟结果影响较为显著,而对水汽不敏感的温度通道影响甚微。两地观测亮温与模式模拟的比对,初步表明北京观象台地基微波辐射水汽通道的观测质量有待改进。
  • 图  1  香河站(XH)地基微波辐射计的ch1(ch代表通道)、ch7、ch8、ch14的观测亮温(O)与三种模式MWRT、MonoRTM、ARTS模拟亮温(M)的散点分布图

    Figure  1.  Scatter plots of simulated brightness temperature (TB) (M) from the MWRT, MonoRTM, and ARTS models and observed TB (O) at ch1 (ch indicates channel), ch7, ch8, and ch14 by the MWR at the Xianghe site (XH)

    图  2  北京观象台(GXT)地基微波辐射计ch7、ch8和ch9通道的观测亮温(O)与三种模式MWRT、MonoRTM、ARTS模拟亮温(M)的散点分布图

    Figure  2.  Scatter plots of simulated TBs (M) from the MWRT, MonoRTM, and ARTS models and observed TBs (O) at ch7, ch8, and ch9 by the MWR at the Beijing Observatory (GXT) site

    图  3  香河站(XH)和北京观象台站(GXT)地基微波辐射计14个通道观测亮温与模拟亮温的统计参数变化:(a)相关系数;(b)标准偏差;(c)绝对偏差

    Figure  3.  Variations in the statistical parameters for 14 MWR channels at XH and GXT sites: (a) Correlation coefficient; (b) standard deviation; (c) absolute bias

    图  4  香河站(XH)和北京观象台站(GXT)的晴天(黑色)和云天(红色)观测亮温与三个模式模拟亮温比对散点图:(a–f)香河站;(g–l)观象台

    Figure  4.  Scatter plots of simulated and observed TBs under clear (in black) and cloudy (in red) conditions at (a–f) XH and (g–l) GXT sites

  • [1] Buehler S A, Eriksson P, Lemke O. 2011. Absorption lookup tables in the radiative transfer model ARTS [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 112(10): 1559−1567. doi: 10.1016/j.jqsrt.2011.03.008
    [2] Buehler S A, Mendrok J, Eriksson P, et al. 2018. ARTS, the Atmospheric Radiative Transfer Simulator—version 2.2, the planetary toolbox edition [J]. Geosci. Model Dev., 11: 1537−1556. doi: 10.5194/gmd-11-1537-2018
    [3] 车云飞, 马舒庆, 杨玲, 等. 2015. 云对地基微波辐射计反演湿度廓线的影响 [J]. 应用气象学报, 26(2): 193−202. doi: 10.11898/1001-7313.20150207

    Che Yunfei, Ma Shuqing, Yang Ling, et al. 2015. Cloud influence on atmospheric humidity profile retrieval by ground-based microwave radiometer [J]. Journal of Applied Meteorological Science (in Chinese), 26(2): 193−202. doi: 10.11898/1001-7313.20150207
    [4] Cimini D, Campos E, Ware R, et al. 2011. Thermodynamic atmospheric profiling during the 2010 winter Olympics using ground-based microwave radiometry [J]. IEEE Trans. Geosci. Remote Sens., 49(12): 4959−4969. doi: 10.1109/TGRS.2011.2154337
    [5] Cimini D, Nelson M, Güldner J, et al. 2015. Forecast indices from a ground-based microwave radiometer for operational meteorology [J]. Atmos. Meas. Tech., 8(1): 315−333. doi: 10.5194/amt-8-315-2015
    [6] Clough S A, Shephard M W, Mlawer E J, et al. 2005. Atmospheric radiative transfer modeling: A summary of the AER codes [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 91(2): 233−244. doi: 10.1016/j.jqsrt.2004.05.058
    [7] 丁虹鑫, 马舒庆, 杨玲, 等. 2018. 云雷达和微波辐射计联合反演大气湿度廓线的初步研究 [J]. 气象, 44(12): 1604−1611. doi: 10.7519/j.issn.1000<0526.2018.12.010

    Ding Hongxin, Ma Shuqing, Yang Ling, et al. 2018. Retrieval of humidity profiles by using cloud radar and microwave radiometer [J]. Meteorological Monthly (in Chinese), 44(12): 1604−1611. doi:10.7519/j.issn.1000<0526.2018.12.010
    [8] Goldberg M D, Crosby D S, Zhou L H. 2001. The limb adjustment of AMSU-A observations: Methodology and validation [J]. J. Appl. Meteor., 40(1): 70−83. doi:10.1175/1520-0450(2001)040<0070:TLAOAA>2.0.CO;2
    [9] Hewison T J, Cimini D, Martin L, et al. 2006. Validating clear air absorption model using ground-based microwave radiometers and vice-versa [J]. Meteorol. Z., 15: 27−36. doi: 10.1127/0941-2948/2006/0097
    [10] 黄兴友, 张曦, 冷亮, 等. 2013. 基于MonoRTM模型的微波辐射计反演方法研究 [J]. 气象科学, 33(2): 138−145. doi: 10.3969/2012jms.0127

    Huang Xingyou, Zhang Xi, Leng Liang, et al. 2013. Study on retrieval methods with MonoRTM for microwave radiometer measurements [J]. Journal of the Meteorological Sciences (in Chinese), 33(2): 138−145. doi: 10.3969/2012jms.0127
    [11] 李青, 胡方超, 楚艳丽, 等. 2014. 北京—地基微波辐射计的观测数据一致性分析和订正实验 [J]. 遥感技术与应用, 29(4): 547−556. doi: 10.11873/j.issn.1004-0323.2014.4.0547

    Li Qing, Hu Fangchao, Chu Yanli, et al. 2014. A consistency analysis and correction of the brightness temperature data observed with a ground-based microwave radiometer in Beijing [J]. Remote Sensing Technology and Application (in Chinese), 29(4): 547−556. doi: 10.11873/j.issn.1004-0323.2014.4.0547
    [12] 李书磊, 刘磊, 高太长. 2016. 大气辐射传输模拟器(ARTS)软件的介绍 [J]. 大气与环境光学学报, 11(4): 241−248.

    Li Shulei, Liu Lei, Gao Taichang. 2016. Introduction of atmospheric radiative transfer simulator software [J]. Journal of Atmospheric and Environmental Optics (in Chinese), 11(4): 241−248.
    [13] Liu G S. 1998. A fast and accurate model for microwave radiance calculations [J]. J. Meteor. Soc. Japan, 76(2): 335−343. doi: 10.2151/jmsj1965.76.2_335
    [14] Liu G S. 2004. Approximation of single scattering properties of ice and snow particles for high microwave frequencies [J]. J. Atmos. Sci., 61(20): 2441−2456. doi:10.1175/1520-0469(2004)061<2441:AOSSPO>2.0.CO;2
    [15] 刘红燕, 王迎春, 王京丽, 等. 2009. 由地基微波辐射计测量得到的北京地区水汽特性的初步分析 [J]. 大气科学, 33(2): 388−396. doi: 10.3878/j.issn.1006-9895.2009.02.16

    Liu Hongyan, Wang Yingchun, Wang Jingli, et al. 2009. Preliminary analysis of the characteristics of precipitable water vapor measured by the ground-based 12-channel microwave radiometer in Beijing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33(2): 388−396. doi: 10.3878/j.issn.1006-9895.2009.02.16
    [16] 刘思波, 何文英, 刘红燕, 等. 2015. 地基微波辐射计探测大气边界层高度方法 [J]. 应用气象学报, 26(5): 626−635. doi: 10.11898/1001-7313.20150512

    Liu Sibo, He Wenying, Liu Hongyan, et al. 2015. Retrieval of atmospheric boundary layer height from ground-based microwave radiometer measurements [J]. Journal of Applied Meteorological Science (in Chinese), 26(5): 626−635. doi: 10.11898/1001-7313.20150512
    [17] Löhnert U, Maier O. 2012. Operational profiling of temperature using ground-based microwave radiometry at Payerne: Prospects and challenges [J]. Atmos. Meas. Tech., 5(5): 1121−1134. doi: 10.5194/amt-5-1121-2012
    [18] Lu Q F, Bell W, Bauer P, et al. 2011. An evaluation of FY-3A satellite data for numerical weather prediction [J]. Quart. J. Roy. Meteor. Soc., 137(658): 1298−1311. doi: 10.1002/qj.834
    [19] 茆佳佳, 张雪芬, 王志诚, 等. 2018. 多型号地基微波辐射计亮温准确性比对 [J]. 应用气象学报, 29(6): 724−736. doi: 10.11898/1001-7313.20180608

    Mao Jiajia, Zhang Xuefen, Wang Zhicheng, et al. 2018. Comparison of brightness temperature of multi-type ground-based microwave radiometers [J]. Journal of Applied Meteorological Science (in Chinese), 29(6): 724−736. doi: 10.11898/1001-7313.20180608
    [20] Turner D D, Clough S A, Liljegren J C, et al. 2007. Retrieving liquid water path and precipitable water vapor from the Atmospheric Radiation Measurement (ARM) microwave radiometers [J]. Geosci. Remote Sens., 45: 3682−3690.
    [21] 王振会, 曹雪芬, 黄建松, 等. 2014. 基于气象资料变化特征和辐射传输模式的微波辐射计工作状态分析 [J]. 大气科学学报, 37(1): 1−8. doi: 10.3969/j.issn.1674-7097.2014.01.001

    Wang Zhenhui, Cao Xuefen, Huang Jiansong, et al. 2014. Analysis on the working state of a ground-based microwave radiometer based on radiative transfer model and meteorological data variation features [J]. Trans. Atmos. Sci. (in Chinese), 37(1): 1−8. doi: 10.3969/j.issn.1674-7097.2014.01.001
    [22] Ware R, Carpenter R, Güldner J, et al. 2003. A multichannel radiometric profiler of temperature, humidity, and cloud liquid [J]. Radio Sci., 38(4): 8079. doi: 10.1029/2002RS002856
    [23] Westwater E R. 1993. Ground-based microwave remote sensing of meteorological variables [M]//Janssen M. Atmospheric Remote Sensing by Microwave Radiometry. New York: John Wiley, 145–213.
    [24] 姚志刚, 陈洪滨. 2005. 七通道微波辐射计遥感大气温度廓线的性能分析 [J]. 气象科学, 25(2): 133−141. doi: 10.3969/j.issn.1009-0827.2005.02.004

    Yao Zhigang, Chen Hongbin. 2005. Analysis of the remote sensing of atmospheric temperature profiles using the seven channel microwave radiometer [J]. Scientia Meteorologica Sinica (in Chinese), 25(2): 133−141. doi: 10.3969/j.issn.1009-0827.2005.02.004
    [25] 赵兵科, 邵德民, 鲁小琴, 等. 2009. 多通道地基微波辐射计在0713号“韦帕”台风登陆前后探测性能及特征分析 [J]. 地球科学进展, 24(9): 1001−1008. doi: 10.3321/j.issn:1001-8166.2009.09.006

    Zhao Bingke, Shao Demin, Lu Xiaoqin, et al. 2009. Performance and characteristics analysis of a multi-wavelength, ground-based microwave radiometer before and after 0713 typhoon “Wipha” landfall [J]. Advances in Earth Science (in Chinese), 24(9): 1001−1008. doi: 10.3321/j.issn:1001-8166.2009.09.006
    [26] 朱雅毓, 王振会, 楚艳丽, 等. 2015. 地基微波辐射计亮温观测数据的综合质量控制与效果分析 [J]. 气象科学, 35(5): 621−628. doi: 10.3969/2014jms.0031

    Zhu Yayu, Wang Zhenhui, Chu Yanli, et al. 2015. Comprehensive quality control and efficiency analysis on brightness temperature data by ground-based microwave radiometer [J]. Journal of the Meteorological Sciences (in Chinese), 35(5): 621−628. doi: 10.3969/2014jms.0031
  • 加载中
图(4)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  1
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-16
  • 录用日期:  2020-08-31
  • 网络出版日期:  2020-09-01

目录

    /

    返回文章
    返回