高级检索
方春刚, 郭学良, 王盘兴. 碘化银播撒对云和降水影响的中尺度数值模拟研究[J]. 大气科学, 2009, 33(3): 621-633. DOI: 10.3878/j.issn.1006-9895.2009.03.18
引用本文: 方春刚, 郭学良, 王盘兴. 碘化银播撒对云和降水影响的中尺度数值模拟研究[J]. 大气科学, 2009, 33(3): 621-633. DOI: 10.3878/j.issn.1006-9895.2009.03.18
FANG Chungang, GUO Xueliang, WANG Panxing. The Physical and Precipitation Response to AgI Seeding from a Mesoscale WRF-based Seeding Model[J]. Chinese Journal of Atmospheric Sciences, 2009, 33(3): 621-633. DOI: 10.3878/j.issn.1006-9895.2009.03.18
Citation: FANG Chungang, GUO Xueliang, WANG Panxing. The Physical and Precipitation Response to AgI Seeding from a Mesoscale WRF-based Seeding Model[J]. Chinese Journal of Atmospheric Sciences, 2009, 33(3): 621-633. DOI: 10.3878/j.issn.1006-9895.2009.03.18

碘化银播撒对云和降水影响的中尺度数值模拟研究

The Physical and Precipitation Response to AgI Seeding from a Mesoscale WRF-based Seeding Model

  • 摘要: 通过在WRF (Weather Research and Forecasting) 中尺度天气数值模式中引入碘化银与云相互作用过程, 建立了中尺度播撒碘化银数值模式。研究了碘化银播撒对于中尺度对流天气过程中云和降水的影响, 研究了不同播撒部位、 播撒时间和播撒剂量情况下碘化银的扩散、 传输及其对云中水成物和降水量的影响。研究结果表明, 碘化银在云中的扩散传输过程与播撒的位置有很大关系, 在最大上升气流区播撒的碘化银能随着气流更快地扩散到云体上部过冷水含量丰富的区域, 播撒在云上层入流区和云下层入流区的碘化银扩散到云中过冷水区需要时间更长, 同时有大部分停留在云体边缘。碘化银能与云中过冷水相互作用, 消耗过冷水使云中冰晶数浓度明显增加, 从而使霰粒子转化减少, 过冷水更多地转化为雪粒子, 过冷水凝结释放出潜热使上升气流增强, 促进了对流发展。由于雨水含量的增加, 地面降水也出现增加。碘化银播撒率对地面降水量影响很大, 当播撒率为0.6 g/s时, 播撒对降水的影响时间超过4小时, 增雨的效果更好。播撒率为0.1 g/s时增雨效果不明显, 当播撒率为1.2 g/s 时, 对总降水可能出现抑止作用。对比碘化银播撒率为0.6 g/s时12小时地面增雨量, 在云上层入流区播撒碘化银试验中, 地面增雨量比对最大过冷水含量区的催化试验提高了48.7%, 最大上升气流区播撒试验增雨效果最好, 地面增雨量比在最大过冷水区域播撒提高了72.1%。

     

    Abstract: A WRF-based AgI-seeding model has been developed and used to simulate cloud seeding effects on cloud physics and precipitation of a convective cloud system in Beijing. The effects of diffusion and transport of seeding agent under different seeding locations, seeding time and seeding amounts on cloud hydrometeor and precipitation have been discussed. The results show that the diffusion and transport of AgI agent are strongly dependent on the seeding location. AgI injected into the maximum supercooled cloud water area or the maximum updraft area can be transported to the region of abundant supercooled water. It needs longer time for AgI seeded into the upper and lower inflow areas transporting to the supercooled water area of the cloud, and most of the particles assemble at the edge of the cloud. The seeding induces the rapid depletion of supercooled water and the increase of cloud ice particles. The graupel content translation decreases and the snow formation enhances. The latent heat from the supercooled water freezing enhances the vertical velocity and the rainfall increases because the rain water content increases. The precipitation change is greatly affected by the seeding rate (SR) . When the SR is 0.6 g/s, the seeding can influence surface rainfall for more than 4 hours and has a better effect on precipitation enhancement. When the SR is 0.1 g/s, little rainfall can be enhanced. The rainfall can be suppressed when the SR is 1.2 g/s. In the case of SR being 0.6 g/s, the 12-hour surface precipitation with AgI seeded in the upper inflow area is increased by 48.7% compared with that with AgI seeded in the maximum supercooled cloud water area. The effect in the case seeded in the maximum updraft area is the most. The precipitation is enhanced by 72.1% in the case seeded in the maximum updraft area compared with that seeded in the maximum supercooled cloud water area.

     

/

返回文章
返回