高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

为什么NCEP-CFSv2模式对11月西伯利亚高压强度的预测性能较好

杨洪卿 范可 田宝强 华维

杨洪卿, 范可, 田宝强, 等. 2021. 为什么NCEP-CFSv2模式对11月西伯利亚高压强度的预测性能较好[J]. 大气科学, 45(4): 697−712 doi: 10.3878/j.issn.1006-9895.2009.20106
引用本文: 杨洪卿, 范可, 田宝强, 等. 2021. 为什么NCEP-CFSv2模式对11月西伯利亚高压强度的预测性能较好[J]. 大气科学, 45(4): 697−712 doi: 10.3878/j.issn.1006-9895.2009.20106
YANG Hongqing, FAN Ke, TIAN Baoqiang, et al. 2021. Why is the November Siberian High Intensity More Predictable by NCEP-CFSv2 Model? [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(4): 697−712 doi: 10.3878/j.issn.1006-9895.2009.20106
Citation: YANG Hongqing, FAN Ke, TIAN Baoqiang, et al. 2021. Why is the November Siberian High Intensity More Predictable by NCEP-CFSv2 Model? [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(4): 697−712 doi: 10.3878/j.issn.1006-9895.2009.20106

为什么NCEP-CFSv2模式对11月西伯利亚高压强度的预测性能较好

doi: 10.3878/j.issn.1006-9895.2009.20106
基金项目: 国家自然科学基金项目 41730964、42088101,南方海洋科学与工程广东省实验室(珠海) 创新团队建设项目311020001
详细信息
    作者简介:

    杨洪卿,女,1996年出生,硕士,主要从事气候预测方面的研究。E-mail: yanghongqing@mail.iap.ac.cn

    通讯作者:

    范可,E-mail: fanke@mail.iap.ac.cn

  • 中图分类号: P466

Why is the November Siberian High Intensity More Predictable by NCEP-CFSv2 Model?

Funds: National Natural Science Foundation of China (Grants 41730964, 42088101), Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (Grant 311020001)
  • 摘要: 作为东亚冬季风的关键系统,西伯利亚高压的变化对欧亚大陆冬季天气及气候异常产生重要影响。本文系统地评估了美国国家环境预测中心第二代气候预测系统(NCEP-CFSv2,National Center for Environment Prediction-Climate Forecast System, version 2)对冬半年(11~2月)及逐月西伯利亚高压强度的预测效能。结果表明,NCEP-CFSv2模式仅对11月西伯利亚高压强度的预测效能较好,研究其成因发现11月西伯利亚高压强度主要受该地区热力、动力过程以及西伯利亚地区积雪状况的影响。在热力过程方面,NCEP-CFSv2模式可以较好地再现11月西伯利亚高压强度及其相联的该地区表层土壤温度、对外长波辐射等热力因素;在动力过程方面,模式能较好地再现11月西伯利亚高压强度及其相联的该地区对流层低层辐散环流、中高层下沉运动;同时,模式也能较好地再现11月西伯利亚高压强度与该地区积雪覆盖率之间的相互作用。因此,与11月西伯利亚高压相联的热力、动力过程和该地区积雪状况可能是11月西伯利亚高压强度的可预测来源,且NCEP-CFSv2模式能较好地再现这些可预测来源。
  • 图  1  (a)1982~2018年冬半年(11月至次年2月)及逐月观测与NCEP-CFSv2(National Center for Environment Prediction-Climate Forecast System, version 2)提前1~6个月预测的西伯利亚高压强度指数(SHI)的时间相关系数(TCC),虚线为0.1的显著性水平;(b)NCEP-CFSv2提前1~6个月预测的SHI的均方根误差(RMSE)

    Figure  1.  (a) Temporal correlation coefficient (TCC) of the Siberian high intensity index (SHI) during 1982–2018 in winter time (November–February), November, December, January, and February between the observed and predicted data by the National Center for Environment Prediction-Climate Forecast System version 2 (NCEP-CFSv2) with 1- to 6-month leads. The dotted lines indicate significance at the 0.1 significance level. (b) Root mean square error (RMSE) of the SHI predicted by the NCEP-CFSv2 with 1- to 6-month leads

    图  2  1982~2018年11月(a)观测、NCEP-CFSv2提前(b)1个月和(c)6个月预测的海平面气压的气候平均(单位:hPa);提前(d)1个月和(e)6个月预测的11月海平面气压场气候态差值(模式-观测);(f)观测和提前1~6个月预测的西伯利亚地区(40°~60°N,70°~120°E)海平面气压气候态的空间相关系数(PCC),0.01的显著性水平对应的PCC为0.24

    Figure  2.  Climatological mean of (a) the observed and NCEP-CFSv2 predicted data of the (b) 1-month and (c) 6-month lead sea level pressure (unit: hPa) in November during 1982–2018. Climatological differences between the NCEP-CFSv2 predicted data with (d) 1-month and (e) 6-month leads and observed sea level pressure in November. (f) Spatial correlation coefficient between the observed and predicted sea level pressure anomalies in November at 1- to 6- month leads over the region (40°–60°N,70°–120°E). The PCC value of 0.24 represents the 0.01 significance level

    图  3  1982~2018年11月(a–f)观测与NCEP-CFSv2提前1~6个月预测的海平面气压距平场TCC的空间分布,打点为通过0.1的显著性水平

    Figure  3.  (a–f) TCC between the observed and predicted sea level pressure anomalies by the NECP-CSFv2 with 1- to 6-month leads during 1982–2018. The dotted areas indicate significant at the 0.1 significance level

    图  4  1982~2018年11月模式提前(a–f)1~6个月NCEP-CFSv2预测的海平面气压的信噪比(SNR);(g)NCEP-CFSv2提前1~6个月预测的11月西伯利亚区域关键区(40°~60°N,70°~120°E)平均的SNR

    Figure  4.  (a–f) Signal-to-noise ratio (SNR) of the sea level pressure predicted by the NCEP-CFSv2 with 1- to 6-month leads in November during 1982–2018. (g) Regional-average SNR for the sea level pressure predicted by the NCEP-CFSv2 with 1- to 6-month leads over the region (40°–60°N, 70°–120°E) in November

    图  5  1982~2018年11月(a,b)观测和(c, d)NCEP-CFSv2提前1个月预测的(a,c)0~10 cm深度土壤温度(单位:K)和(b,d)对外长波辐射通量(单位:W m−2)异常对11月SHI的回归,斜线为通过0.1的显著性水平;SHI与(e)0~10 cm土壤温度和(f)对外长波辐射通量的TCC差值(模式-观测)

    Figure  5.  Regression of (a, c) 0–10 cm soil temperature (units: K) and (b, d) upward long-wave radiation flux (units: W m−2) anomalies onto the Siberian high intensity index (SHI) in November during 1982–2018 for (a, b) the observation and (c, d) NCEP-CFSv2 with a 1-month lead, the areas with slash indicate significance at the 0.1 significance level. TCC between the SHI and 0–10 cm soil temperature anomalies (e), upward long-wave radiation flux anomalies, (f) differences between the NECP-CFSv2 and observation data

    图  6  1982~2018年冬半年(11~2月)及逐月观测(黑色柱)和NCEP-CFSv2(灰色柱)提前1个月预测的SHI和区域(40°~60°N, 70°~120°E)平均的土壤温度的TCC,虚线为0.01的显著性水平

    Figure  6.  TCC between the SHI and regional-averaged soil temperature over the region (40°–60°N,70°–120°E) in winter time (November–February), November, December, January, and February for the observation (black bar) and NECP-CFSv2 with a 1-month lead (white bar) during 1982–2018. The dotted lines indicate significance at the 0.01 significance level

    图  7  1982~2018年11月(a, b)观测和(c, d)NCEP-CFSv2提前1个月预测的纬向平均(70°~120°E)(a,c)散度(单位:10−7 s−1)和(b,d)垂直速度(单位:10−3 Pa s−1)异常对11月SHI的回归,打点为通过0.1的显著性水平;SHI与纬向平均(70°~120°E)的(e)散度场和(f)垂直速度场的TCC差值(模式-观测)

    Figure  7.  Regression of the zonal (70°–120°E) mean horizontal (a, c) divergence (units: 10−7 s−1) and (b, d) vertical velocity (units: 10−3 Pa s−1) anomalies of the SHI in November during 1982–2018 for (a, b) the observation and (c, d) NCEP-CFSv2 with a 1-month lead, the dotted areas indicate significance at the 0.1 significance level. TCC between the SHI and zonal mean horizontal (70°–120°E) divergence (e), vertical velocity (f) differences between the NECP-CFSv2 and observation data

    图  8  1982~2018年12~2月(a–c)观测和(d–f)NCEP-CFSv2提前1个月预测的纬向平均(70°~120°E)垂直速度(单位:10−3 Pa s−1)异常对12~2(+1)SHI的回归,打点为通过0.1的显著性水平

    Figure  8.  Regression of the zonal (70°–120°E) mean horizontal vertical velocity (units: 10−3 Pa s−1) anomalies of the SHI in December, January, and February during 1982–2018 for (a–c) the observation and (d–f) NCEP-CFSv2 with a 1-month lead. The dotted areas indicate significance at the 0.1 significance level

    图  9  1982~2018年11月(a)观测、NCEP-CFSv2提前(b)1个月和(c)6个月预测的积雪覆盖率气候平均(阴影);提前(d)1个月和(e)6个月预测的11月积雪覆盖率(阴影)气候态差值(模式-观测);(f)观测和提前1~6个月预测的西伯利亚地区(40°~60°N,70°~120°E)积雪覆盖率气候态的PCC,0.01的显著性水平对应的PCC为0.24

    Figure  9.  Climatological mean of (a) the observed and NCEP-CFSv2 predicted data of the (b) 1-month and (c) 6-month snow cover extent (shaded) for November during 1982–2018. The climatological differences between the NCEP-CFSv2 predicted data with (d) 1-month and (e) 6-month leads and observed snow cover extent (shaded) in November. (f) The PCC between the observed and predicted snow cover extents in November with 1- to 6-month leads over the region (40°–60°N, 70°–120°E). The PCC value of 0.24 is the 0.01 significance level

    图  10  1982~2018年11月(a,b,c)观测和(d,e,f)NCEP-CFSv2提前1个月预测的(a,d)积雪覆盖率(阴影)、(b,e)潜热通量(阴影,单位:W m−2)和(c,f)感热通量(阴影,单位:W m−2)异常对11月SHI的回归,斜线为通过0.1的显著性水平;SHI与(g)积雪覆盖率、(h)潜热通量和(i)感热通量的TCC差值(模式-观测)

    Figure  10.  Regression of the (a, b, c) observed and (d, e, f) NCEP-CFSv2 predicted (a, d) snow cover extent (shaded), (b, e) latent heat flux (shaded, units: W m−2), and (c, f) sensible heat flux (shaded, units: W m−2) anomalies with a 1-month lead for the November SHI, the slashed areas indicate significance at the 0.1 significance level. Temporal correlation coefficient between the SHI and (g) snow cover extent anomalies, (h) latent heat flux anomalies, (i)sensible heat flux anomalies, differences between the NECP-CFSv2 and observation data

    图  11  1982~2018年12~2月(a,c,e)观测和(b,d,f)NCEP-CFSv2提前1个月预测的积雪覆盖率(阴影)异常对12~2(+1)月SHI的回归分析,斜线为通过0.1的显著性水平

    Figure  11.  Regression of the snow cover extent (shaded) anomalies in the SHI in December, January, and February during 1982–2018 for the (a, c, e) observation and (b, d, f) NCEP-CFSv2 with a 1-month lead. The slashed areas indicate significance at the 0.1 significance level

  • [1] Ao J, Sun J Q. 2016. Connection between November snow cover over Eastern Europe and winter precipitation over East Asia [J]. Int. J. Climatol., 36(5): 2396−2404. doi: 10.1002/joc.4484
    [2] Barnett T P, Dümenil L, Schlese U, et al. 1988. The effect of Eurasian snow cover on global climate [J]. Science, 239(4839): 504−507. doi: 10.1126/science.239.4839.504
    [3] Chang C P, Lu M M. 2012. Intraseasonal predictability of Siberian High and East Asian winter monsoon and its interdecadal variability [J]. J. Climate, 25(5): 1773−1778. doi: 10.1175/JCLI-D-11-00500.1
    [4] 陈红. 2017. 欧亚大陆积雪对我国春季气候可预报性的影响 [J]. 大气科学, 41(4): 727−738. doi: 10.3878/j.issn.1006-9895.1702.16231

    Chen Hong. 2017. Impacts of Eurasian snow condition on spring climate predictability over China by a global climate mode [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 41(4): 727−738. doi: 10.3878/j.issn.1006-9895.1702.16231
    [5] 陈海山, 孙照渤. 2003. 欧亚积雪异常分布对冬季大气环流的影响I. 观测研究 [J]. 大气科学, 27(3): 304−316. doi: 10.3878/j.issn.1006-9895.2003.03.02

    Chen Haishan, Sun Zhaobo. 2003. The effects of Eurasian snow cover anomaly on winter atmospheric general circulation. Part I. Observational studies [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 27(3): 304−316. doi: 10.3878/j.issn.1006-9895.2003.03.02
    [6] Chen X D, Luo D H, Feldstein S B, et al. 2018. Impact of winter Ural blocking on Arctic sea ice: Short-time variability [J]. J. Climate, 31(6): 2267−2282. doi: 10.1175/JCLI-D-17-0194.1
    [7] Cohen J. 1994. Snow cover and climate [J]. Weather, 49(5): 150−156. doi: 10.1002/j.1477-8696.1994.tb05997.x
    [8] Cohen J, Rind D. 1991. The effect of snow cover on the climate [J]. J. Climate, 4(7): 689−706. doi:10.1175/1520-0442(1991)004<0689:TEOSCO>2.0.CO;2
    [9] Cohen J, Fletcher C. 2007. Improved skill of Northern Hemisphere winter surface temperature predictions based on land–atmosphere fall anomalies [J]. J. Climate, 20(16): 4118−4132. doi: 10.1175/JCLI4241.1
    [10] Cohen J, Saito K, Entekhabi D. 2001. The role of the Siberian High in Northern Hemisphere climate variability [J]. Geophys. Res. Lett., 28(2): 299−302. doi: 10.1029/2000GL011927
    [11] Ding Y H. 1990. Build-up, air mass transformation and propagation of Siberian High and its relations to cold surge in East Asia [J]. Meteor. Atmos. Phys., 44(1-4): 281−292. doi: 10.1007/BF01026822
    [12] Ding Y H, Krishnamurti T N. 1987. Heat budget of the Siberian High and the winter monsoon [J]. Mon. Wea. Rev., 115(10): 2428−2449. doi:10.1175/1520-0493(1987)115<2428:HBOTSH>2.0.CO;2
    [13] 丁一汇, 温市耕, 李运锦. 1991. 冬季西伯利亚高压动力结构的研究 [J]. 气象学报, 49(4): 430−439. doi: 10.11676/qxxb1991.057

    Ding Yihui, Wen Shigeng, Li Yunjin. 1991. A study of dynamic structures of the Siberian High in winter [J]. Acta Meteorologica Sinica (in Chinese), 49(4): 430−439. doi: 10.11676/qxxb1991.057
    [14] 葛旭阳, 周霞琼. 2001. 欧亚大陆雪盖月际变化特征及其与我国气候异常的关系初探 [J]. 南京气象学院学报, 24(2): 281−285. doi: 10.3969/j.issn.1674-7097.2001.02.020

    Ge Xuyang, Zhou Xiaqiong. 2001. Eurasian snowcover intermonthly features and its relations to China climate [J]. Journal of Nanjing Institute of Meteorology (in Chinese), 24(2): 281−285. doi: 10.3969/j.issn.1674-7097.2001.02.020
    [15] 龚道溢, 王绍武. 1999. 西伯利亚高压的长期变化及全球变暖可能影响的研究 [J]. 地理学报, 54(2): 125−133. doi: 10.3321/j.issn:0375-5444.1999.02.004

    Gong Daoyi, Wang Shaowu. 1999. Long-term variability of the Siberian High and the possible connection to global warming [J]. Acta Geographica Sinica (in Chinese), 54(2): 125−133. doi: 10.3321/j.issn:0375-5444.1999.02.004
    [16] Gong D Y, Ho C H. 2002. The Siberian High and climate change over middle to high latitude Asia [J]. Theor. Appl. Climatol., 72(1-2): 1−9. doi: 10.1007/s007040200008
    [17] Gong D Y, Wang S W, Zhu J H. 2001. East Asian winter monsoon and Arctic Oscillation [J]. Geophys. Res. Lett., 28(10): 2073−2076. doi: 10.1029/2000GL012311
    [18] 龚道溢, 朱锦红, 王绍武. 2002. 西伯利亚高压对亚洲大陆的气候影响分析 [J]. 高原气象, 21(2): 8−14. doi: 10.3321/j.issn:1000-0534.2002.01.002

    Gong Daoyi, Zhu Jinhong, Wang Shaowu. 2002. The influence of Siberian High on large-scale climate over continental Asia [J]. Plateau Meteorology (in Chinese), 21(2): 8−14. doi: 10.3321/j.issn:1000-0534.2002.01.002
    [19] Gong G, Entekhabi D, Cohen J, et al. 2004. Sensitivity of atmospheric response to modeled snow anomaly characteristics [J]. J. Geophys. Res., 109(D6): D06107. doi: 10.1029/2003JD004160
    [20] Hasanean H M, Almazroui M, Jones P D, et al. 2013. Siberian High variability and its teleconnections with tropical circulations and surface air temperature over Saudi Arabia [J]. Climate Dyn., 41(7-8): 2003−2018. doi: 10.1007/s00382-012-1657-9
    [21] Iqbal M J, Riaz S M F, Ghauri B M K. 2013. Impact of Siberian High on rainfall variability over northern part of Indo-Pak region [J]. Arab. J. Geosci., 6(8): 3087−3092. doi: 10.1007/s12517-012-0598-2
    [22] Jaiser R, Dethloff K, Handorf D. 2013. Stratospheric response to Arctic sea ice retreat and associated planetary wave propagation changes [J]. Tellus A, 65(1): 19375. doi: 10.3402/tellusa.v65i0.19375
    [23] Jia B, Wang Y, Yao Y, et al. 2015. A new indicator on the impact of large-scale circulation on wintertime particulate matter pollution over China [J]. Atmos. Chem. Phys., 15(20): 11919−11929. doi: 10.5194/acp-15-11919-2015
    [24] Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project [J]. Bull. Amer. Meteor. Soc., 77(3): 437−472. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [25] 李栋梁, 蓝柳茹. 2017. 西伯利亚高压强度与北大西洋海温异常的关系 [J]. 大气科学学报, 40(1): 13−24. doi: 10.13878/j.cnki.dqkxxb.20151218001

    Li Dongliang, Lan Liuru. 2017. Relationship between the intensity of the Siberian High and the SST anomaly in the North Atlantic [J]. Trans. Atmos. Sci. (in Chinese), 40(1): 13−24. doi: 10.13878/j.cnki.dqkxxb.20151218001
    [26] 李勇, 陆日宇, 何金海. 2007. 影响我国冬季温度的若干气候因子 [J]. 大气科学, 31(3): 505−514. doi: 10.3878/j.issn.1006-9895.2007.03.14

    Li Yong, Lu Riyu, He Jinhai. 2007. Several climate factors influencing the winter temperature over China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31(3): 505−514. doi: 10.3878/j.issn.1006-9895.2007.03.14
    [27] Lorenz E N. 1969. The predictability of a flow which possesses many scales of motion [J]. Tellus, 21(3): 289−307. doi: 10.3402/tellusa.v21i3.10086
    [28] Lü Z Z, He S P, Li F, et al. 2019. Impacts of the autumn Arctic Sea Ice on the intraseasonal reversal of the winter Siberian High [J]. Adv. Atmos. Sci., 36(2): 173−188. doi: 10.1007/s00376-017-8089-8
    [29] 麻巨慧, 王盘兴, 李丽平, 等. 2009. “0801南方雪灾”与同期蒙古高压中期活动的关系 [J]. 大气科学学报, 32(5): 652−660. doi: 10.3969/j.issn.1674-7097.2009.05.008

    Ma Juhui, Wang Panxing, Li liping, et al. 2009. Contemporaneous relationship between "0801 snow storm over southern China" and medium-term activities of Mongolian High [J]. Trans. Atmos. Sci. (in Chinese), 32(5): 652−660. doi: 10.3969/j.issn.1674-7097.2009.05.008
    [30] MacLachlan C, Arribas A, Peterson K A, et al. 2015. Global Seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system [J]. Quart. J. Roy. Meteor. Soc., 141(689): 1072−1084. doi: 10.1002/qj.2396
    [31] Panagiotopoulos F, Shahgedanova M, Hannachi A, et al. 2005. Observed trends and teleconnections of the Siberian High: A recently declining center of action [J]. J. Climate, 18(9): 1411−1422. doi: 10.1175/JCLI3352.1
    [32] Park T W, Ho C H, Yang S. 2011. Relationship between the Arctic Oscillation and cold surges over East Asia [J]. J. Climate, 24(1): 68−83. doi: 10.1175/2010JCLI3529.1
    [33] Parkinson C L. 1990. The impact of the Siberian High and Aleutian Low on the sea–ice cover of the sea of Okhotsk [J]. Annals of Glaciology, 14: 226−229. doi: 10.3189/S0260305500008636
    [34] Peng S L, Robinson W A. 2001. Relationships between atmospheric internal variability and the responses to an extratropical SST anomaly [J]. J. Climate, 14(13): 2943−2959. doi:10.1175/1520-0442(2001)014<2943:RBAIVA>2.0.CO;2
    [35] Peng P, Kumar A, Wang W. 2011. An analysis of seasonal predictability in coupled model forecasts [J]. Climate Dyn., 36(3-4): 637−648. doi: 10.1007/s00382-009-0711-8
    [36] Phelps M W, Kumar A, O’Brien J J. 2004. Potential predictability in the NCEP CPC dynamical seasonal forecast system [J]. J. Climate, 17(19): 3775−3785. doi:10.1175/1520-0442(2004)017<3775:PPITNC>2.0.CO;2
    [37] Riaz S M F, Iqbal M J. 2017. Singular value decomposition analysis for examining the impact of Siberian High on winter precipitation variability over South Asia [J]. Theor. Appl. Climatol., 130(3-4): 1189−1194. doi: 10.1007/s00704-016-1948-x
    [38] Robinson D A, Kukla G. 2010. Albedo of a dissipating snow cover [J]. J. Climate Appl. Meteor., 23(12): 1626−1634. doi:10.1175/1520-0450(1984)023<1626:AOADSC>2.0.CO;2
    [39] Saha S, Moorthi S, Wu X R, et al. 2014. The NCEP climate forecast system version 2 [J]. J. Climate, 27(6): 2185−2208. doi: 10.1175/JCLI-D-12-00823.1
    [40] Sahsamanoglou H S, Makrogiannis T J, Kallimopoulos P P. 1991. Some aspects of the basic characteristics of the Siberian anticyclone [J]. Int. J. Climatol., 11(8): 827−839. doi: 10.1002/joc.3370110803
    [41] 施能, 邓自旺, 潘蔚娟, 等. 2000. 北半球冬季海平面气压场的气候基本态与气候变率特征及其影响的初步研究 [J]. 大气科学, 24(6): 795−803. doi: 10.3878/j.issn.1006-9895.2000.06.07

    Shi Neng, Deng Ziwang, Pan Weijuan, et al. 2000. A preliminary study of the Northern winter SLP climate base state and its climate variability and effects [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 24(6): 795−803. doi: 10.3878/j.issn.1006-9895.2000.06.07
    [42] Song L, Wu R G. 2017. Processes for occurrence of strong cold events over eastern China [J]. J. Climate, 30(22): 9247−9266. doi: 10.1175/JCLI-D-16-0857.1
    [43] Song L, Wu R G, Yang J. 2018. Relative contributions of synoptic and intraseasonal variations to strong cold events over eastern China [J]. Climate Dyn., 50(11-12): 4619−4634. doi: 10.1007/s00382-017-3894-4
    [44] Tian B Q, Fan K, Yang H Q. 2018. East Asian winter monsoon forecasting schemes based on the NCEP’s climate forecast system [J]. Climate Dyn., 51(7-8): 2793−2805. doi: 10.1007/s00382-017-4045-7
    [45] Wagner A J. 1973. The Influence of average snow depth on monthly mean temperature Anomaly [J]. Mon. Wea. Rev., 101(8): 624−626. doi:10.1175/1520-0493(1973)101<0624:TIOASD>2.3.CO;2
    [46] 王遵娅, 丁一汇. 2006. 近53年中国寒潮的变化特征及其可能原因 [J]. 大气科学, 30(6): 1068−1076. doi: 10.3878/j.issn.1006-9895.2006.06.02

    Wang Zunya, Ding Yihui. 2006. Climate change of the cold wave frequency of China in the last 53 years and the possible reasons [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30(6): 1068−1076. doi: 10.3878/j.issn.1006-9895.2006.06.02
    [47] 武炳义. 2018. 北极海冰融化影响东亚冬季天气和气候的研究进展以及学术争论焦点问题 [J]. 大气科学, 42(4): 786−805. doi: 10.3878/j.issn.1006-9895.1804.17262

    Wu Bingyi. 2018. Progresses in the impact study of arctic sea ice loss on wintertime weather and climate variability over East Asia and key academic disputes [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(4): 786−805. doi: 10.3878/j.issn.1006-9895.1804.17262
    [48] 武炳义, 苏京志, 张人禾. 2011. 秋-冬季节北极海冰对冬季西伯利亚高压的影响 [J]. 科学通报, 56(30): 3220−3228. doi: 10.1007/s11434-011-4696-4

    Wu Bingyi, Su Jingzhi, Zhang Renhe. 2011. Effects of Autumn–Winter Arctic sea ice on winter Siberian High [J]. Chinese Sci. Bull., 56(30): 3220−3228. doi: 10.1007/s11434-011-4696-4
    [49] Wu B Y, Yang K, Francis J A. 2017. A cold event in Asia during January–February 2012 and its possible association with Arctic sea ice loss [J]. J. Climate, 30(19): 7971−7990. doi: 10.1175/JCLI-D-16-0115.1
    [50] 谢安, 卢莹, 陈受钧. 1992. 冬季风爆发前西伯利亚高压的演变 [J]. 大气科学, 16(6): 677−685. doi: 10.3878/j.issn.1006-9895.1992.06.05

    Xie An, Lu Ying, Chen Shoujun. 1992. The evolution of Siberian High prior to the outbreak of cold air [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 16(6): 677−685. doi: 10.3878/j.issn.1006-9895.1992.06.05
    [51] Xu X P, He S P, Li F, et al. 2018. Impact of northern Eurasian snow cover in autumn on the warm Arctic–cold Eurasia pattern during the following January and its linkage to stationary planetary waves [J]. Climate Dyn., 50(5-6): 1993−2006. doi: 10.1007/s00382-017-3732-8
    [52] Yang S H, Lu R Y. 2014. Predictability of the East Asian winter monsoon indices by the coupled models of ENSEMBLES [J]. Adv. Atmos. Sci., 31(6): 1279−1292. doi: 10.1007/s00376-014-4020-8
    [53] 杨莲梅, 张广兴, 杨青. 2006. 南疆盆地翻山型沙尘暴环流动力结构分析 [J]. 中国沙漠, 26(1): 71−76. doi: 10.3321/j.issn:1000-694X.2006.01.012

    Yang Lianmei, Zhang Guangxing, Yang Qing. 2006. Circulation dynamical structure of sand–dust storm caused by cold air crossing mountains in southern Xinjiang [J]. Journal of Desert Research (in Chinese), 26(1): 71−76. doi: 10.3321/j.issn:1000-694X.2006.01.012
    [54] 曾鼎文, 朱伟军, 马小娇, 等. 2015. 冬季北大西洋风暴轴的变化及其对西伯利亚高压的影响 [J]. 大气科学学报, 38(2): 232−240. doi: 10.13878/j.cnki.dqkxxb.20121003001

    Zeng Dingwen, Zhu Weijun, Ma Xiaojiao, et al. 2015. North Atlantic storm track and its infulence on Siberian High in winter [J]. Trans. Atmos. Sci. (in Chinese), 38(2): 232−240. doi: 10.13878/j.cnki.dqkxxb.20121003001
    [55] 张刚. 2012. 欧洲多个耦合气候模式对东亚冬季气候的预测性能研究 [J]. 气象学报, 70(4): 690−703. doi: 10.11676/qxxb2012.056

    Zhang Gang. 2012. Study of East Asian winter climate predictability by using European multi-model ensemble prediction [J]. Acta Meteorologica Sinica (in Chinese), 70(4): 690−703. doi: 10.11676/qxxb2012.056
    [56] 张天宇, 陈海山, 孙照渤. 2007. 欧亚秋季雪盖与北半球冬季大气环流的联系 [J]. 地理学报, 62(7): 728−741. doi: 10.3321/j.issn:0375-5444.2007.07.006

    Zhang Tianyu, Chen Haishan, Sun Zhaobo. 2007. The relationship between autumn–time Eurasian snow cover and winter–time NH circulation [J]. Acta Geographica Sinica (in Chinese), 62(7): 728−741. doi: 10.3321/j.issn:0375-5444.2007.07.006
    [57] Zhang X J, Jin L Y, Huang W, et al. 2016. Forcing mechanisms of orbital–scale changes in winter rainfall over northwestern China during the Holocene [J]. Holocene, 26(4): 549−555. doi: 10.1177/0959683615612569
  • 加载中
图(11)
计量
  • 文章访问数:  303
  • HTML全文浏览量:  60
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-17
  • 录用日期:  2020-09-08
  • 网络出版日期:  2020-09-11
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回