高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄河源区鄂陵湖湖面和湖边草地对流边界层湍流结构特征的大涡模拟研究

张蕴帅 黄倩 马耀明 王蓉 田红瑛 王婵 李照国

张蕴帅, 黄倩, 马耀明, 等. 2021. 黄河源区鄂陵湖湖面和湖边草地对流边界层湍流结构特征的大涡模拟研究[J]. 大气科学, 45(2): 435−455 doi: 10.3878/j.issn.1006-9895.2009.20111
引用本文: 张蕴帅, 黄倩, 马耀明, 等. 2021. 黄河源区鄂陵湖湖面和湖边草地对流边界层湍流结构特征的大涡模拟研究[J]. 大气科学, 45(2): 435−455 doi: 10.3878/j.issn.1006-9895.2009.20111
ZHANG Yunshuai, HUANG Qian, MA Yaoming, et al. 2021. Large Eddy Simulation Study of the Turbulent Structure Characteristics of the Convective Boundary Layer over Ngoring Lake and Surrounding Grassland in the Source Region of the Yellow River [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(2): 435−455 doi: 10.3878/j.issn.1006-9895.2009.20111
Citation: ZHANG Yunshuai, HUANG Qian, MA Yaoming, et al. 2021. Large Eddy Simulation Study of the Turbulent Structure Characteristics of the Convective Boundary Layer over Ngoring Lake and Surrounding Grassland in the Source Region of the Yellow River [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(2): 435−455 doi: 10.3878/j.issn.1006-9895.2009.20111

黄河源区鄂陵湖湖面和湖边草地对流边界层湍流结构特征的大涡模拟研究

doi: 10.3878/j.issn.1006-9895.2009.20111
基金项目: 国家自然科学基金项目41775013、91837208,国家自然科学基金—青年科学基金项目41905011
详细信息
    作者简介:

    张蕴帅,女,1995年出生,博士研究生,主要从事青藏高原地区大气边界层湍流方面的研究。E-mail: zhangysh13@lzu.edu.cn

    通讯作者:

    黄倩,E-mail: qianhuang@lzu.edu.cn

  • 中图分类号: P404

Large Eddy Simulation Study of the Turbulent Structure Characteristics of the Convective Boundary Layer over Ngoring Lake and Surrounding Grassland in the Source Region of the Yellow River

Funds: National Natural Science Foundation of China (Grants 41775013, 91837208), National Natural Science Foundation of China—Youth Science Foundation Project (Grant 41905011)
  • 摘要: 为研究黄河源区边界层湍流特征及其对物质和能量输送的影响,本文首次采用大涡模拟的方法,对比分析了黄河源区两种不同下垫面上(鄂陵湖和湖边草地)对流边界层(CBL)中精细的湍流结构特征。使用资料为2012年夏季黄河源区鄂陵湖流域野外观测实验的GPS探空资料、涡动相关观测资料。分析表明,模拟的黄河源区草地和湖上CBL的平均结构与实测结果吻合较好,但草地和湖上CBL的湍流结构特征差异较明显。模拟结果显示,草地CBL内湍能收支、湍流特征量的时空分布和湍涡结构特征均与陆地上热力驱动CBL的研究结果一致;湖上CBL顶部存在明显的对流卷特征,且夹卷层的湍流强度比草地的强,而草地近地面湍强则更大。通过改变水平分辨率的模拟试验,发现两个不同下垫面上模拟结果对模式分辨率的敏感性不同,湖面CBL的模拟要选择较高的水平分辨率(50~100 m),以提高近湖面和夹卷层对湍流动能和湍流通量模拟的精度,也充分模拟出各种尺度的波对湍流通量的累积贡献。考虑到计算时间等影响,模拟草地边界层精细的湍流结构时建议选择网格距为100~200 m。
  • 图  1  使用LandSat数据绘制的研究区域卫星影像图,图中黄色五角星标记的是观测站位置。湖面测站(LS)和草地测站(GS)测量湍流通量、辐射分量和标准大气变量。五层的梯度观测塔(TS)测量标准大气变量(风速和风向、空气温度、相对湿度等)。玛多气象站(MD)是中国气象局的固定气象观测站[图1引自Li et al.(2017)中的图1c]

    Figure  1.  Map of the study area using Landsat data, with the location of the observation stations marked by yellow stars. Turbulent fluxes, radiation components, and standard atmospheric variables were measured at lake station and grassland station. At the tower station, the standard atmospheric variables (wind speed and wind direction, air temperature, relative humidity, etc.) were observed at five levels. Madoi station is a fixed meteorological observatory of the China Meteorological Administration [Fig. 1 is quoted from Fig. 1c of Li et al. (2017)]

    图  2  2012年7月28日21:30(地方时,下同)至2012年7月29日18:30(a)草地与(b)湖面虚位温随高度的变化,实线代表实测结果,虚线代表草地白天(试验RG50)和湖面夜间(试验RL50)的模拟结果;草地和湖面上(c)位温、比湿和(d)水平风的初始廓线

    Figure  2.  Change in virtual potential temperature of (a) grassland and (b) lake surface with height from 2130 LT on July 28, 2012 to 1830 LT on July 29, 2012; solid lines and dashed lines show the observations and simulations of daytime over grassland (RG50) and night over lake (RL50). The initial profiles of potential temperature, specific humidity, and horizontal wind over grassland and lake are shown in (c) and (d), respectively

    图  3  试验RG50和RL50模拟的2012年7月29日15:30草地(第一行)和03:30湖面上(第二行)各高度垂直速度(单位:m s−1)的水平分布:(a、e)0.3zi、(b、f)0.5zi、(c、g)0.7zi、(d、h)1.0zizi为相应时刻的CBL(对流边界层)高度

    Figure  3.  Simulated horizontal distribution of vertical velocity (units: m s−1) at CBL (convective boundary layer) heights of (a, e) 0.3zi, (b, f) 0.5zi, (c, g) 0.7zi, and (d, h) 1.0zi above grassland at 1530 LT (Local time) from RG50 (top line) and above the lake at 0330 LT from RL50 (bottom line) on July 29, 2012

    图  4  试验RG50和RL50模拟的2012年7月29日(a)白天草地15:30和(b)夜间湖面上03:30的湍流动能收支方程中各项随高度的变化(实线:浮力项B;点线:切变产生项S;虚线:耗散项D;点划线:湍流输送项T+气压传输项P)

    Figure  4.  Vertical profiles of the budget terms in the turbulent kinetic energy balance above (a) the daytime grassland from test RG50 at 1530 LT and (b) the nighttime lake from test RL50 at 0330 LT on July 29, 2012. Solid line, buoyancy term B; dotted line, shear production term S; dashed line, dissipative term D; dot/dash line, turbulent transport term T and pressure transport term P

    图  5  试验RG50和RL50模拟的2012年7月29日草地15:30与湖面上03:30无量纲湍流统计量(a)u方差、(b)v方差、(c)w方差和(d)θ方差廓线

    Figure  5.  Dimensionless turbulence statistics above grassland at 1530 LT from test RG50 and above the lake at 0330 LT from test RL50 on July 29, 2012. Shown are the profiles of (a) u variance, (b) v variance, (c) w variance and (d) θ variance profile

    图  6  不同水平分辨率试验模拟的2012年7月29日(a)草地上15:30与(b)湖面上03:30混合层虚位温廓线

    Figure  6.  Virtual potential temperatures in the mixed layer above (a) grassland at 1530 LT and above (b) lake at 0330 LT on July 29, 2012 from tests with horizontal grid spacing of 50, 100, 200 and 500 m

    图  7  不同水平分辨率试验模拟的2012年7月29日(a、b)草地上15:30与(c、d)湖面上03:30混合层内浮力作用项(右列)、切变产生项(左列)廓线。实线表示直接计算所得大涡旋的贡献,虚线表示次网格涡旋的贡献

    Figure  7.  Vertical profiles of buoyant production term (left column) and shear production term (right column) in the mixed layer (a, b) above grassland at 1530 LT and (c, d) above the lake at 0330 LT on July 29, 2012 from tests with horizontal grid spacing of 50, 100, 200 and 500 m. The resolved and sub-grid results are presented in solid lines and dashed lines, respectively

    图  8  不同分辨率试验模拟的(a–d)2012年7月29日草地15:30和(e–h)湖面上03:30垂直速度(填色;单位:m s−1)的垂直剖面:(a、b、c、d)试验RG50、RG100、RG200、RG500;(e、f、g、h)试验RL50、RL100、RL200、RL500

    Figure  8.  Instantaneous yz cross section of the vertical velocity (shaded, units: m s−1) at (a–d) 1530 LT above the grassland from tests (a) RG50, (b) RG100, (c) RG200, and (d) RG500; and at (b) 0330 LT above the lake from tests (e) RL50, (f) RL100, (g) RL200, and (h) RL500 on July 29, 2012, respectively

    图  9  试验RG50、RG100、RG200和RG500模拟的2012年7月29日15:30草地对流边界层中z=1.0zi(第一行),z=0.7zi(第二行),z=0.3zi(第三行)高度处垂直速度(左列)、位温(中间列)、水汽混合比(右列)的概率密度函数(PDFs)分布

    Figure  9.  PDFs (Probability Density Functions) of vertical velocity (left column), potential temperature (middle column), and water vapor mixing ratio (right column) above grassland from test RG50, RG100, RG200, and RG500 at 1530 LT on July 29, 2012 from z=0.3zi (bottom line), z=0.7zi (second line) and z=1.0zi (top line)

    图  10  图9,但为试验RL50、RL100、RL200和RL500模拟的2012年7月29日03:30湖面上的结果

    Figure  10.  Same as Fig. 9, but for the lake at 0330 LT on July 29, 2012 from test RL50, RL100, RL200 and RL500

    图  11  白天草地(左列)与夜间湖面上(右列)模拟(高度:3.5 m)和实测(高度:3.2 m)的2012年7月29日(a、e)湍流应力(TS)、(b、f)湍流动能(TKE)、(c、g)热通量(HF)和(d、h)水汽通量(WVF)随时间的变化

    Figure  11.  (a, e) Turbulent stress (TS), (b, f) turbulent kinetic energy (TKE), (c, g) heat flux (HF) and (d, h) water vapor flux (WVF) for daytime grassland (left column) and nighttime lakes (right column) from simulations (height: 3.5 m) and observations (height: 3.2 m) on July 29, 2012, respectively

    图  12  (a、b)50 m、(c、d)100 m、(e、f)200 m和(g、h)500 m分辨率试验模拟的2012年7月29日白天草地15:30与夜间湖面上03:30 30 m高度处不同尺度的波(不同波数)对热通量(左列;HF)和水汽通量(右列;WVF)的累积贡献

    Figure  12.  Contribution of waves with different wavenumbers to heat fluxes (left column; HF) and water vapor fluxes (right column; WVF) at 1530 LT over grassland and at 0330 LT over lake from (a, b) 50 m, (c, d) 100 m, (e, f) 200 m, and (g, h) 500 m resolution runs on July 29, 2012

    表  1  不同水平分辨率敏感性数值试验中模式水平网格距和水平方向格点数

    Table  1.   Horizontal grid spacings and grid points in sensitivity numerical tests with different horizontal resolutions

    草地试验(湖面试验)水平网格距/m格点数
    RG50(RL50)50200
    RG100(RL100)100100
    RG200(RL200)20050
    RG500(RL500)50020
    下载: 导出CSV
  • [1] 卞林根, 陆龙骅, 程彦杰, 等. 2001. 青藏高原东南部昌都地区近地层湍流输送的观测研究 [J]. 应用气象学报, 12(1): 1−13. doi: 10.3969/j.issn.1001-7313.2001.01.001

    Bian Lingen, Lu Longhua, Cheng Yanjie, et al. 2001. Turbulent measurement over the southeastern Tibetan Plateau [J]. Quart. J. Appl. Meteor. (in Chinese), 12(1): 1−13. doi: 10.3969/j.issn.1001-7313.2001.01.001
    [2] Biermann T, Babel W, Ma W Q, et al. 2014. Turbulent flux observations and modeling over a shallow lake and a wet grassland in the Nam Co Basin, Tibetan Plateau [J]. Theor. Appl. Climatol., 116(1-2): 301−316. doi: 10.1007/s00704-013-0953-6
    [3] Brooks I M, Rogers D P. 2000. Aircraft observations of the mean and turbulent structure of a shallow boundary layer over the Persian Gulf [J]. Bound.-Layer Meteor., 95(2): 189−210. doi: 10.1023/A:1002623712237
    [4] Brown A R, Derbyshire S H, Mason P J. 1994. Large-eddy simulation of stable atmospheric boundary layers with a revised stochastic subgrid model [J]. Quart. J. Roy. Meteor. Soc., 120(520): 1485−1512. doi: 10.1002/qj.49712052004
    [5] Catalano F, Moeng C H. 2010. Large-eddy simulation of the daytime boundary layer in an idealized valley using the Weather Research and Forecasting numerical model [J]. Bound.-Layer Meteor., 137(1): 49−75. doi: 10.1007/s10546-010-9518-8
    [6] 陈陟, 周明煜, 钱粉兰, 等. 2002. 我国西部高原大气边界层中的对流活动 [J]. 应用气象学报, 13(2): 142−155. doi: 10.3969/j.issn.1001-7313.2002.02.002

    Chen Zhi, Zhou Mingyu, Qian Fenlan, et al. 2002. Convective activities in the atmospheric boundary layer over the plateau in western China [J]. J. Appl. Meteor. Sci. (in Chinese), 13(2): 142−155. doi: 10.3969/j.issn.1001-7313.2002.02.002
    [7] Chen X L, Škerlak B, Rotach M W, et al. 2016. Reasons for the extremely high-ranging planetary boundary layer over the western Tibetan Plateau in winter [J]. J. Atmos. Sci., 73(5): 2021−2038. doi: 10.1175/JAS-D-15-0148.1
    [8] Chow F K, Moin P. 2003. A further study of numerical errors in large-eddy simulations [J]. J. Comput. Phys., 184(2): 366−380. doi: 10.1016/S0021-9991(02)00020-7
    [9] Conzemius R J, Fedorovich E. 2006. Dynamics of sheared convective boundary layer entrainment. Part I: Methodological background and large-eddy simulations [J]. J. Atmos. Sci., 63(4): 1151−1178. doi: 10.1175/JAS3691.1
    [10] 段水强, 范世雄, 曹广超, 等. 2015. 1976~2014年黄河源区湖泊变化特征及成因分析 [J]. 冰川冻土, 37(3): 745−756. doi: 10.7522/j.issn.1000-0240.2015.0084

    Duan Shuiqiang, Fan Shixiong, Cao Guangchao, et al. 2015. The changing features and cause analysis of the lakes in the source regions of the Yellow River from 1976 to 2014 [J]. J. Glaciol. Geocryol. (in Chinese), 37(3): 745−756. doi: 10.7522/j.issn.1000-0240.2015.0084
    [11] 封建民, 王涛, 谢昌卫, 等. 2004. 黄河源区生态环境退化研究 [J]. 地理科学进展, 23(6): 56−62. doi: 10.11820/dlkxjz.2004.06.007

    Feng Jianmin, Wang Tao, Xie Changwei, et al. 2004. A case study on the eco-environmental degradation in the source region of the Yellow River, Northeast Qinghai–Xizang Plateau [J]. Prog. Geogr. (in Chinese), 23(6): 56−62. doi: 10.11820/dlkxjz.2004.06.007
    [12] 冯璐, 仲雷, 马耀明, 等. 2016. 基于土壤温湿度观测资料估算藏北高原地区土壤热通量 [J]. 高原气象, 35(2): 297−308. doi: 10.7522/j.issn.1000-0534.2015.00006

    Feng Lu, Zhong Lei, Ma Yaoming, et al. 2016. Estimation of soil heat flux over the northern Tibetan Plateau based on in-situ soil temperature and moisture data [J]. Plateau Meteor. (in Chinese), 35(2): 297−308. doi: 10.7522/j.issn.1000-0534.2015.00006
    [13] Flores F, Garreaud R, Muñoz R C. 2013. CFD simulations of turbulent buoyant atmospheric flows over complex geometry: Solver development in OpenFOAM [J]. Comput. Fluids, 82: 1−13. doi: 10.1016/j.compfluid.2013.04.029
    [14] Friehe C A, Shaw W J, Rogers D P, et al. 1991. Air–sea fluxes and surface layer turbulence around a sea surface temperature front [J]. J. Geophys. Res., 96(C5): 8593−8609. doi: 10.1029/90JC02062
    [15] Gousseau P, Blocken B, Van Heijst G J F. 2012. Large-eddy simulation of pollutant dispersion around a cubical building: Analysis of the turbulent mass transport mechanism by unsteady concentration and velocity statistics [J]. Environ. Pollut., 167: 47−57. doi: 10.1016/j.envpol.2012.03.021
    [16] Gray M E B, Petch J, Derbyshire S H, et al. 2001. Version 2.3 of the Met.Office large eddy model: partⅡ. Scientific documentation [R]. Met Office (APR) Turbulence and Diffusion Note No.276.
    [17] Huang Q, Marsham J H, Parker D J, et al. 2009. A comparison of roll and nonroll convection and the subsequent deepening moist convection: An LEM case study based on SCMS data [J]. Mon. Wea. Rev., 137(1): 350−365. doi: 10.1175/2008MWR2450.1
    [18] 黄倩, 王蓉, 田文寿, 等. 2014. 风切变对边界层对流影响的大涡模拟研究 [J]. 气象学报, 72(1): 100−115. doi: 10.11676/qxxb2014.007

    Huang Qian, Wang Rong, Tian Wenshou, et al. 2014. Study of the impacts of wind shear on boundary layer convection based on the large eddy simulation [J]. Acta Meteor. Sinica (in Chinese), 72(1): 100−115. doi: 10.11676/qxxb2014.007
    [19] Iqbal M, Wen J, Wang S P, et al. 2018. Variations of precipitation characteristics during the period 1960-2014 in the source region of the Yellow River, China [J]. J. Arid Land, 10(3): 388−401. doi: 10.1007/s40333-018-0008-z
    [20] 蒋宗立, 刘时银, 郭万钦, 等. 2018. 黄河源区阿尼玛卿山典型冰川表面高程近期变化 [J]. 冰川冻土, 40(2): 231−237. doi: 10.7522/j.issn.1000-0240.2018.0027

    Jiang Zongli, Liu Shiyin, Guo Wanqin, et al. 2018. Recent surface elevation changes of three representative glaciers in ányêmaqên Mountains, source region of Yellow River [J]. J. Glaciol. Geocryol. (in Chinese), 40(2): 231−237. doi: 10.7522/j.issn.1000-0240.2018.0027
    [21] Kim S W, Park S U, Moeng C H. 2003. Entrainment processes in the convective boundary layer with varying wind shear [J]. Bound.-Layer Meteor., 108(2): 221−245. doi: 10.1023/A:1024170229293
    [22] 李家伦, 洪钟祥, 孙菽芬. 2000. 青藏高原西部改则地区大气边界层特征 [J]. 大气科学, 24(3): 301−312. doi: 10.3878/j.issn.1006-9895.2000.03.02

    Li Jialun, Hong Zhongxiang, Sun Shufen. 2000. An observational experiment on the atmospheric boundary layer in Gerze area of the Tibetan Plateau [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 24(3): 301−312. doi: 10.3878/j.issn.1006-9895.2000.03.02
    [23] 李照国, 吕世华, 奥银焕, 等. 2012a. 黄河源区生态环境变化对湖泊效应影响的数值模拟 [J]. 高原气象, 31(6): 1591−1600.

    Li Zhaoguo, Lü Shihua, Ao Yinhuan, et al. 2012a. Numerical simulation of impact of ecological environment change on lake effect in the source region of the Yellow River [J]. Plateau Meteor. (in Chinese), 31(6): 1591−1600.
    [24] 李照国, 吕世华, 奥银焕, 等. 2012b. 鄂陵湖湖滨地区夏季近地层微气象特征与碳通量变化分析 [J]. 地理科学进展, 31(5): 602−608. doi: 10.11820/dlkxjz.2012.05.008

    Li Zhaoguo, Lü Shihua, Ao Yinhuan, et al. 2012b. Analysis of micrometeorology and CO2 flux characteristics over Lake Ngoring lakeside region in summer [J]. Prog. Geogra. (in Chinese), 31(5): 602−608. doi: 10.11820/dlkxjz.2012.05.008
    [25] 李照国, 吕世华, 文莉娟, 等. 2016. 一次干冷空气过境对鄂陵湖地区大气边界层过程的影响 [J]. 高原气象, 35(5): 1200−1211. doi: 10.7522/j.issn.1000-0534.2015.00076

    Li Zhaoguo, Lü Shihua, Wen Lijuan, et al. 2016. Influence of incursion of dry cold air on atmospheric boundary layer process in Ngoring Lake Basin [J]. Plateau Meteor, 35(5): 1200−1211. doi: 10.7522/j.issn.1000-0534.2015.00076
    [26] Li X F, Zheng W Z, Yang X F, et al. 2013. Coexistence of atmospheric gravity waves and boundary layer rolls observed by SAR [J]. J. Atmos. Sci., 70(1): 3448−3459. doi: 10.1175/JAS-D-12-0347.1
    [27] Li Z G, Lyu S, Ao Y H, et al. 2015. Long-term energy flux and radiation balance observations over Lake Ngoring, Tibetan Plateau [J]. Atmos. Res., 155: 13−25. doi: 10.1016/j.atmosres.2014.11.019
    [28] Li X Y, Ma Y J, Huang Y M, et al. 2016. Evaporation and surface energy budget over the largest high-altitude saline lake on the Qinghai-Tibet Plateau [J]. J. Geophys. Res., 121(18): 10470−10485. doi: 10.1002/2016JD025027
    [29] Li Z G, Lyu S, Wen L J, et al. 2017. Effect of a cold, dry air incursion on atmospheric boundary layer processes over a high–altitude lake in the Tibetan Plateau [J]. Atmos. Res., 185: 32−43. doi: 10.1016/j.atmosres.2016.10.024
    [30] Liang J L, Zhang Y, Wang Y, et al. 2014. Turbulence regimes and the validity of similarity theory in the stable boundary layer over complex terrain of the Loess Plateau, China [J]. J. Geophys. Res., 119(10): 6009−6021. doi: 10.1002/2014JD021510
    [31] 刘辉志, 冯健武, 王雷, 等. 2013. 大气边界层物理研究进展 [J]. 大气科学, 37(2): 467−476. doi: 10.3878/j.issn.1006-9895.2012.12315

    Liu Huizhi, Feng Jianwu, Wang Lei, et al. 2013. Overview of recent studies on atmospheric boundary layer physics and atmospheric environment at LAPC [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(2): 467−476. doi: 10.3878/j.issn.1006-9895.2012.12315
    [32] 马耀明, 马伟强, 胡泽勇, 等. 2002. 青藏高原草甸下垫面湍流强度相似性关系分析 [J]. 高原气象, 21(5): 514−517. doi: 10.3321/j.issn:1000-0534.2002.05.012

    Ma Yaoming, Ma Weiqiang, Hu Zeyong, et al. 2002. Similarity analysis of atmospheric turbulent intensity over grassland surface of Qinghai–Xizang Plateau [J]. Plateau Meteor. (in Chinese), 21(5): 514−517. doi: 10.3321/j.issn:1000-0534.2002.05.012
    [33] Marsham J H, Parker D J, Grams C M, et al. 2008. Observations of mesoscale and boundary–layer scale circulations affecting dust transport and uplift over the Sahara [J]. Atmos. Chem. Phys., 8(23): 6979−6993. doi: 10.5194/acp-8-6979-2008
    [34] McBean G A, Elliott J A. 1975. The vertical transports of kinetic energy by turbulence and pressure in the boundary layer [J]. J. Atmos. Sci., 32(4): 753−766. doi:10.1175/1520-0469(1975)032<0753:TVTOKE>2.0.CO;2
    [35] Moeng C H. 1984. A large-eddy-simulation model for the study of planetary boundary–layer turbulence [J]. J. Atmos. Sci., 41(13): 2052−2062. doi:10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2
    [36] Moeng C H, Sullivan P P. 1994. A comparison of shear- and buoyancy-driven planetary boundary layer flows [J]. J. Atmos. Sci., 51(7): 999−1022. doi:10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2
    [37] Pino D, Vilà-Guerau de Arellano J, Duynkerke P G. 2003. The contribution of shear to the evolution of a convective boundary layer [J]. J. Atmos. Sci., 60(16): 1913−1926. doi:10.1175/1520-0469(2003)060<1913:TCOSTT>2.0.CO;2
    [38] Qiu J. 2008. China: The third pole [J]. Nature, 454(7203): 393−396. doi: 10.1038/454393a
    [39] 任燕, 黄倩, 张君霞, 等. 2018. 大涡模式分辨率对海洋信风区大气边界层结构和演变模拟的影响 [J]. 热带气象学报, 34(1): 23−33. doi: 10.16032/j.issn.1004-4965.2018.01.003

    Ren Yan, Huang Qian, Zhang Junxia, et al. 2018. Effect of large eddy resolution on simulation of structure and evolution of the marine trade–wind boundary layer [J]. J. Trop. Meteor. (in Chinese), 34(1): 23−33. doi: 10.16032/j.issn.1004-4965.2018.01.003
    [40] 沈鹏珂, 张雪芹. 2019. 藏南羊卓雍错湖面大气湍流特征观测分析 [J]. 湖泊科学, 31(1): 243−255. doi: 10.18307/2019.0123

    Shen Pengke, Zhang Xueqin. 2019. Observation of atmospheric turbulence characteristics over the Yamzhog Yumco, South Tibet [J]. J. Lake Sci. (in Chinese), 31(1): 243−255. doi: 10.18307/2019.0123
    [41] Shen L D, Sun J N, Yuan R M, et al. 2016. Characteristics of secondary circulations in the convective boundary layer over two-dimensional heterogeneous surfaces [J]. J. Meteor. Res., 30(6): 944−960. doi: 10.1007/s13351-016-6016-z
    [42] Shin H H, Dudhia J. 2016. Evaluation of PBL parameterizations in WRF at subkilometer grid spacings: Turbulence statistics in the dry convective boundary layer [J]. Mon. Wea. Rev., 144(3): 1161−1177. doi: 10.1175/MWR-D-15-0208.1
    [43] Sikora T D, Ufermann S. 2004. Marine atmospheric boundary layer cellular convection and longitudinal roll vortices [M]//Jackson C R, Apel J R. Synthetic Aperture Radar: Marine User’s Manual. Washington, DC: NOAA, 321–330.
    [44] Stevens B, Moeng C H, Ackerman A S, et al. 2005. Evaluation of Large-Eddy Simulations via Observations of Nocturnal Marine Stratocumulus [J]. Mon. Wea. Rev., 133(6): 1443−1462. doi: 10.1175/MWR2930.1
    [45] Stull R B. 1988. An Introduction to Boundary Layer Meteorology [M]. Dordrecht: Kluwer Academic Publishers, 666pp.
    [46] Sullivan P P, Patton E G. 2011. The effect of mesh resolution on convective boundary layer statistics and structures generated by large–eddy simulation [J]. J. Atmos. Sci., 68(10): 2395−2415. doi: 10.1175/JAS-D-10-05010.1
    [47] 唐恬, 王磊, 文小航. 2013. 黄河源鄂陵湖地区辐射收支和地表能量平衡特征研究 [J]. 冰川冻土, 35(6): 1462−1473. doi: 10.7522/j.issn.1000-0240.2013.0162

    Tang Tian, Wang Lei, Wen Xiaohang. 2013. A study of the radiation and surface energy balance around the Ngoring Lake in source regions of the Yellow River [J]. J. Glaciol. Geocryol. (in Chinese), 35(6): 1462−1473. doi: 10.7522/j.issn.1000-0240.2013.0162
    [48] Tian W S, Parker D J, Kilburn C A D. 2003. Observations and numerical simulation of atmospheric cellular convection over mesoscale topography [J]. Mon. Wea. Rev., 131(1): 222−235. doi:10.1175/1520-0493(2003)131<0222:OANSOA>2.0.CO;2
    [49] Wang B B, Ma Y M, Chen X L, et al. 2015. Observation and simulation of lake–air heat and water transfer processes in a high-altitude shallow lake on the Tibetan Plateau [J]. J. Geophys. Res., 120(24): 12327−12344. doi: 10.1002/2015JD023863
    [50] 王蓉, 黄倩, 田文寿, 等. 2015. 边界层对流对示踪物抬升和传输影响的大涡模拟研究 [J]. 大气科学, 39(4): 731−746. doi: 10.3878/j.issn.1006-9895.1502.14155

    Wang Rong, Huang Qian, Tian Wenshou, et al. 2015. Study of a large eddy simulation of the effects of boundary layer convection tracer uplift and transmission [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(4): 731−746. doi: 10.3878/j.issn.1006-9895.1502.14155
    [51] Wang B B, Ma Y M, Ma W Q, et al. 2017. Physical controls on half-hourly, daily, and monthly turbulent flux and energy budget over a high-altitude small lake on the Tibetan Plateau [J]. J. Geophys. Res., 122(4): 2289−2303. doi: 10.1002/2016JD026109
    [52] 王蓉, 黄倩, 岳平. 2019. 大涡模式水平分辨率对边界层夹卷过程及示踪物垂直传输的影响 [J]. 干旱气象, 37(1): 48−56. doi: 10.11755/j.issn.1006-7639(2019)-01-0048

    Wang Rong, Huang Qian, Yue Ping. 2019. Effect of large eddy horizontal resolution on simulation of entrainment and tracer vertical transport [J]. J. Arid Meteor. (in Chinese), 37(1): 48−56. doi: 10.11755/j.issn.1006-7639(2019)-01-0048
    [53] 王蓉, 张强, 岳平, 等. 2020. 大气边界层数值模拟研究与未来展望 [J]. 地球科学进展, 35(4): 331−349. doi: 10.11867/j.issn.1001-8166.2020.036

    Wang Rong, Zhang Qiang, Yue Ping, et al. 2020. Summary and prospects of numerical simulation research of the atmospheric boundary layer [J]. Adv. Earth Sci. (in Chinese), 35(4): 331−349. doi: 10.11867/j.issn.1001-8166.2020.036
    [54] Wen L J, Lv S H, Li Z G, et al. 2015. Impacts of the two biggest lakes on local temperature and precipitation in the Yellow River source region of the Tibetan Plateau [J]. Adv. Meteor., 2015: 248031. doi: 10.1155/2015/248031
    [55] Wood C R, Lacser A, Barlow J F, et al. 2010. Turbulent flow at 190 m height above London during 2006-2008: A climatology and the applicability of similarity theory [J]. Bound.-Layer Meteor., 137(1): 77−96. doi: 10.1007/s10546-010-9516-x
    [56] 吴国雄, 毛江玉, 段安民, 等. 2004. 青藏高原影响亚洲夏季气候研究的最新进展 [J]. 气象学报, 62(5): 528−540. doi: 10.3321/j.issn:0577-6619.2004.05.002

    Wu Guoxiong, Mao Jiangyu, Duan Anmin, et al. 2004. Recent progress in the study on the impacts of Tibetan Plateau on Asian summer climate [J]. Acta Meteor. Sinica (in Chinese), 62(5): 528−540. doi: 10.3321/j.issn:0577-6619.2004.05.002
    [57] 吴灏, 叶柏生, 吴锦奎, 等. 2013. 疏勒河上游高寒草甸下垫面湍流特征分析 [J]. 高原气象, 32(2): 368−376. doi: 10.7522/j.issn.1000-0534.2013.00036

    Wu Hao, Ye Baisheng, Wu Jinkui, et al. 2013. Analysis on turbulent feature of alpine meadow in the upper reach of Shule River [J]. Plateau Meteor. (in Chinese), 32(2): 368−376. doi: 10.7522/j.issn.1000-0534.2013.00036
    [58] 吴国雄, 何编, 刘屹岷, 等. 2016. 青藏高原和亚洲夏季风动力学研究的新进展 [J]. 大气科学, 40(1): 22−32. doi: 10.3878/j.issn.1006-9895.1504.15129

    Wu Guoxiong, He Bian, Liu Yimin, et al. 2016. Recent progresses on dynamics of the Tibetan Plateau and Asian summer monsoon [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(1): 22−32. doi: 10.3878/j.issn.1006-9895.1504.15129
    [59] Xiao W, Liu S D, Wang W, et al. 2013. Transfer coefficients of momentum, heat and water vapour in the atmospheric surface layer of a large freshwater lake [J]. Bound.-Layer Meteor., 148(3): 479−494. doi: 10.1007/s10546-013-9827-9
    [60] 徐祥德, 周明煜, 陈家宜, 等. 2001. 青藏高原地-气过程动力、热力结构综合物理图象 [J]. 中国科学(D辑), 45(7): 577−594. doi: 10.3969/j.issn.1674-7240.2001.05.011

    Xu Xiangde, Zhou Mingyu, Chen Jiayi, et al. 2001. A comprehensive physical pattern of land-air dynamic and thermal structure on the Qinghai–Xizang Plateau [J]. Sci. China Ser. D Earth Sci., 45(7): 577−594. doi: 10.3969/j.issn.1674-7240.2001.05.011
    [61] Xu G R, Xie Y F, Cui C G, et al. 2016. Sensitivity of the summer precipitation simulated with WRF model to planetary boundary layer parameterization over the Tibetan Plateau and its downstream areas [J]. J. Geol. Geophys., 5(4): 249. doi: 10.4172/2381-8719.1000249
    [62] Xu H X, Wang M Z, Wang Y J, et al. 2018. Performance of WRF large eddy simulations in modeling the convective boundary layer over the Taklimakan desert, China [J]. J. Meteor. Res., 32(6): 1011−1025. doi: 10.1007/s13351-018-8001-1
    [63] 杨显玉, 文军. 2012. 扎陵湖和鄂陵湖大气边界层特征的数值模拟 [J]. 高原气象, 31(4): 927−934.

    Yang Xianyu, Wen Jun. 2012. Numerical simulation of characteristic of atmospheric boundary layer over Lake Gyaring and Ngoring [J]. Plateau Meteor. (in Chinese), 31(4): 927−934.
    [64] 杨丽薇, 高晓清, 惠小英, 等. 2017. 青藏高原中部聂荣亚寒带半干旱草地近地层湍流特征研究 [J]. 高原气象, 36(4): 875−885. doi: 10.7522/j.issn.1000-0534.2016.00089

    Yang Liwei, Gao Xiaoqing, Hui Xiaoying, et al. 2017. Study on turbulence characteristics in the atmospheric surface layer over Nyainrong grassland in central Qinghai–Tibetan Plateau [J]. Plateau Meteor. (in Chinese), 36(4): 875−885. doi: 10.7522/j.issn.1000-0534.2016.00089
    [65] Yue P, Zhang Q, Wang R Y, et al. 2015. Turbulence intensity and turbulent kinetic energy parameters over a heterogeneous terrain of Loess Plateau [J]. Adv. Atmos. Sci., 32(9): 1291−1302. doi: 10.1007/s00376-015-4258-9
    [66] 张强. 2003. 大气边界层气象学研究综述 [J]. 干旱气象, 21(3): 74−78.

    Zhang Qiang. 2003. Review of atmospheric boundary layer meterology [J]. Arid Meteor. (in Chinese), 21(3): 74−78.
    [67] 张强, 胡隐樵. 2001. 大气边界层物理学的研究进展和面临的科学问题 [J]. 地球科学进展, 16(4): 526−532. doi: 10.3321/j.issn:1001-8166.2001.04.013

    Zhang Qiang, Hu Yinqiao. 2001. Scientific problems and advance of atmospheric boundary layer physics [J]. Adv. Earth Sci. (in Chinese), 16(4): 526−532. doi: 10.3321/j.issn:1001-8166.2001.04.013
    [68] 张强, 赵映东, 王胜, 等. 2007. 极端干旱荒漠区典型晴天大气热力边界层结构分析 [J]. 地球科学进展, 22(11): 1150−1159. doi: 10.3321/j.issn:1001-8166.2007.11.007

    Zhang Qiang, Zhao Yingdong, Wang Sheng, et al. 2007. A study on atmospheric thermal boundary layer structure in extremely arid desert and Gobi region on the clear day in summer [J]. Adv. Earth Sci. (in Chinese), 22(11): 1150−1159. doi: 10.3321/j.issn:1001-8166.2007.11.007
    [69] 张强, 王蓉, 岳平, 等. 2017. 复杂条件陆—气相互作用研究领域有关科学问题探讨 [J]. 气象学报, 75(1): 39−56. doi: 10.11676/qxxb2017.003

    Zhang Qiang, Wang Rong, Yue Ping, et al. 2017. Several scientific issues about the land–atmosphere interaction under complicated conditions [J]. Acta Meteor. Sinica (in Chinese), 75(1): 39−56. doi: 10.11676/qxxb2017.003
    [70] Zhang W C, Guo J P, Miao Y C, et al. 2018. On the summertime planetary boundary layer with different thermodynamic stability in China: A radiosonde perspective [J]. J. Climate, 31(4): 1451−1465. doi: 10.1175/JCLI-D-17-0231.1
    [71] 赵采玲, 吕世华, 李照国, 等. 2014. 夏季巴丹吉林沙漠陆面热状况对边界层高度影响的模拟实验 [J]. 高原气象, 33(6): 1526−1533. doi: 10.7522/j.issn.1000-0534.2013.00160

    Zhao Cailing, Lü Shihua, Li Zhaoguo, et al. 2014. Numerical simulation of influence of land surface thermal condition on Badain Jaran desert atmospheric boundary layer height in summer [J]. Plateau Meteor. (in Chinese), 33(6): 1526−1533. doi: 10.7522/j.issn.1000-0534.2013.00160
    [72] Zhao Y, Xu X D, Ruan Z, et al. 2019. Precursory strong-signal characteristics of the convective clouds of the central Tibetan Plateau detected by radar echoes with respect to the evolutionary processes of an eastward-moving heavy rainstorm belt in the Yangtze River Basin [J]. Meteor. Atmos. Phys., 131(4): 697−712. doi: 10.1007/s00703-018-0597-2
    [73] Zhong L Z, Mu R, Zhang D L, et al. 2015. An observational analysis of warm–sector rainfall characteristics associated with the 21 July 2012 Beijing extreme rainfall event [J]. J. Geophys. Res., 120(8): 3274−3291. doi: 10.1002/2014JD02268
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  29
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-03
  • 录用日期:  2020-11-19
  • 网络出版日期:  2020-12-23
  • 刊出日期:  2021-03-18

目录

    /

    返回文章
    返回