高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高黎贡山复杂地形下局地环流的数值模拟研究

邢雯雯 孙绩华 刘辉志 许鲁君

邢雯雯, 孙绩华, 刘辉志, 等. 2021. 高黎贡山复杂地形下局地环流的数值模拟研究[J]. 大气科学, 45(4): 746−758 doi: 10.3878/j.issn.1006-9895.2009.20112
引用本文: 邢雯雯, 孙绩华, 刘辉志, 等. 2021. 高黎贡山复杂地形下局地环流的数值模拟研究[J]. 大气科学, 45(4): 746−758 doi: 10.3878/j.issn.1006-9895.2009.20112
XING Wenwen, SUN Jihua, LIU Huizhi, et al. 2021. Numerical Simulation of the Local Circulation of Complex Topography on the Gaoligong Mountains [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(4): 746−758 doi: 10.3878/j.issn.1006-9895.2009.20112
Citation: XING Wenwen, SUN Jihua, LIU Huizhi, et al. 2021. Numerical Simulation of the Local Circulation of Complex Topography on the Gaoligong Mountains [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(4): 746−758 doi: 10.3878/j.issn.1006-9895.2009.20112

高黎贡山复杂地形下局地环流的数值模拟研究

doi: 10.3878/j.issn.1006-9895.2009.20112
基金项目: 国家自然科学基金项目91537212,第二次青藏高原综合科学考察研究项目2019QZKK0105
详细信息
    作者简介:

    邢雯雯,女,1994年出生,硕士研究生,主要从事大气边界层物理研究。E-mail: 1004617414@qq.com

    通讯作者:

    孙绩华 E-mail: sunjh@vip.sina.com

  • 中图分类号: P434

Numerical Simulation of the Local Circulation of Complex Topography on the Gaoligong Mountains

Funds: National Natural Science Foundation of China (Grant 91537212), The Second Comprehensive Scientific Investigation Project of Qinghai Tibet Plateau (Grant 2019QZKK0105)
  • 摘要: 本文利用中尺度模式WRF(weather research and forecasting)模拟了2016年干季和湿季高黎贡山南段(腾冲—保山地区)山谷风环流,分析YSU、MYJ、MYNN3、ACM2和BouLac五种边界层参数化方案在高黎贡山复杂下垫面的适用性。研究结果表明YSU方案对温度模拟的效果最好;ACM2模拟的风速平均绝对误差最小;MYNN3方案模拟的风向绝对误差最小,YSU方案和MYJ方案模拟的风向日变化趋势与观测更加一致。高黎贡山南段地区上午09时(北京时,下同)出现谷风环流,夜间19时转为山风环流。白天多为偏南风,夜间为偏北风和偏西风。白天山顶气流辐合而山谷气流辐散,夜间相反。白天风速大于夜间。干季西风风力较弱,有利于低层局地环流的发展;而湿季受较强的偏东背景风影响时,局地环流的发展受到抑制,边界层高度也就低于干季。干季西风遇到高黎贡山,在西坡下沉并形成涡旋,西侧湍流混合充分,边界层高度高;湿季偏东风使高黎贡山西侧谷风减弱,腾冲与保山的边界层高度相差不大。
  • 图  1  (a)四重模拟区域;(b)d04区域模拟地形高度(阴影)及站点位置(GLGM代表高黎贡山,T代表腾冲站,B代表保山站);(c)d04区域MODIS 20类土地利用情况

    Figure  1.  (a) Model domains (d01, d02, d03, and d04); (b) terrain height of d04 and locations of two stations (GLGM is Gaoligong mountains, T is Tengchong station and B is Baoshan station); and (c) land use type of d04 from MODIS 20-class dataset

    图  2  2016年12月4日08时(北京时,下同)(a)850 hPa位势高度场(单位:dagpm)和(b)海平面气压场(单位:hPa);2016年9月27日08时850 hPa(c)位势高度场(单位:dagpm)和(d)海平面气压场(单位:hPa)(G代表高中心,D代表低中心)

    Figure  2.  (a) 850-hPa geopotential height field (units: dagpm) and (b) sea-level pressure field (units: hPa) at 0800 BJT 4 December 2016, (c) 850-hPa geopotential height field (units: dagpm) and (d) sea-level pressure field (units: hPa) at 0800 BJT 27 September 2016. G stands for high center, D stands for low center

    图  3  2016年腾冲站(黑色)和保山站(灰色)气温(单位:℃)(a)年变化和(b)日变化

    Figure  3.  (a) Annual variation and (b) daily variation of air temperature (unit: °C) at Tengchong station (black) and Baoshan station (gray) in 2016

    图  4  2016年腾冲站(黑色)和保山站(灰色)相对湿度(a)年变化和(b)日变化

    Figure  4.  (a) Annual variation and (b) daily variation of relative humidity at Tengchong station (black) and Baoshan station (gray) in 2016

    图  5  2016年腾冲站(a)干季、(b)湿季和保山站(c)干季、(d)湿季风玫瑰图

    Figure  5.  Wind roses of (a) dry season and (b) wet season at Tengchong station and (c) dry season and (d) wet season at Baoshan station in 2016

    图  6  2016年12月4日观测值与5种边界层参数化方案模拟值对比:(a)2 m温度(单位:°C);(b)10 m风向 [单位:(°)];(c)10 m风速日变化(单位:m s−1);(d)10 m风速箱图

    Figure  6.  Comparison of observed values on 4 December 2016 with the simulated values of five boundary layer parameterization schemes: (a) 2-m temperature (units: °C); (b) 10-m wind direction [units: (°)] of daily variation; (c) 10-m wind speed (units: m s−1); (d) box chart of 10-m wind speed

    图  7  模拟的2016年干季(12月4日)10 m风场(箭头,单位:m s−1)、2 m温度(阴影,单位:°C)和地形高度(等值线,单位:m):(a)02:00;(b)10:00;(c)14:00;(d)20:00

    Figure  7.  Simulated the 10-m wind field (black vector, units: m s−1), 2-m temperature (shaded, units: °C), and terrain height (contour, units: m) in 2016 dry season (December 4th): (a) 0200 BJT; (b) 1000 BJT; (c) 1400 BJT; (d) 2000 BJT

    图  8  2016年干季(12月4日)沿25.23°N的位温(填色,单位:K)、风场(箭头,单位:m/s)的垂直剖面(黑色阴影是海拔超过800 m的地形):(a)02:00;(b)10:00;(c)14:00;(d)20:00

    Figure  8.  Vertical cross sections of potential temperature (shaded, unit: K) and wind field (vector, unit: m s−1) at 25.23°N in 2016 dry season (December 4th) (Black shadows are terrain over 800 m above sea level): (a) 0200 BJT; (b) 1000 BJT; (c) 1400 BJT; (d) 2000 BJT

    图  9  图7,但为2016年湿季(9月27日)的10 m风场、2 m温度和地形高度

    Figure  9.  Same as Fig. 7, but for 10-m wind field, 2-m temperature, and terrain height in 2016 wet season (September 27th)

    图  10  图8,但为2016年湿季(9月27日)的垂直剖面

    Figure  10.  Same as Fig. 8, but is the vertical section in 2016 wet season (September 27th)

    图  11  模式中干季(2016年12月4日)(黑色)、湿季(2016年9月27日)(灰色)腾冲站(方框)和保山站(圆点)的边界层高度(单位:m)对比

    Figure  11.  Comparison of boundary layer height (units: m) between Tengchong station (square) and Baoshan station (dot) of dry season (4 December 2016) (black) and wet season (27 September 2016) (gray) in model

    表  1  腾冲站和保山站全年、干季和湿季的日平均气温(单位:°C)和相对湿度

    Table  1.   Daily average air temperature (units: °C) and relative humidity at Tengchong and Baoshan stations throughout the year, dry and wet seasons

    温度/°C相对湿度
    腾冲保山腾冲保山
    全年15.7717.6781.45%67.78%
    干季12.0914.0076.72%62.54%
    湿季19.4021.3086.16%72.96%
    下载: 导出CSV

    表  2  五种边界层参数化方案对温度、风向和风速的模拟值与观测值的平均绝对误差

    Table  2.   Mean absolute errors between observed and simulated values of air temperature, wind direction, and wind speed by the five boundary layer parameterization schemes

    五种边界层参数化方案平均绝对误差
    YSUMYJMYNN3ACM2BouLac
    温度/°C1.412.392.471.411.50
    风向/(°)62.0957.5156.8662.4159.05
    风速/m s−11.041.011.030.881.07
    下载: 导出CSV
  • [1] Arritt R W, Pielke R A. 1986. Interactions of nocturnal slope flows with ambient winds [J]. Bound.-Layer Meteor., 37(1-2): 183−195. doi: 10.1007/BF00122763
    [2] Barr S, Orgill M M. 1989. Influence of external meteorology on nocturnal valley drainage winds [J]. J. Appl. Meteor., 28(6): 497−517. doi:10.1175/1520-0450(1989)028<0497:IOEMON>2.0.CO;2
    [3] Bougeault P, Lacarrère P. 1989. Parameterization of orography-induced turbulence in a Mesobeta-scale model [J]. Mon. Wea. Rev., 117(8): 1872−1890. doi:10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2
    [4] Chen F, Dudhia J. 2001. Coupling an advanced land surface-hydrology model with the Penn State NCAR MM5 modeling system. Part I: Model implementation and sensitivity [J]. Mon. Wea. Rev., 129(4): 569−585. doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
    [5] 陈艳, 丁一汇, 肖子牛, 等. 2006. 水汽输送对云南夏季风爆发及初夏降水异常的影响 [J]. 大气科学, 30(1): 25−37. doi: 10.3878/j.issn.1006-9895.2006.01.03

    Chen Yan, Ding Yihui, Xiao Ziniu, et al. 2006. The impact of water vapor transport on the summer monsoon onset and abnormal rainfall over Yunnan Province in May [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30(1): 25−37. doi: 10.3878/j.issn.1006-9895.2006.01.03
    [6] Clements W E, Archuleta J A, Hoard D E. 1989. Mean structure of the nocturnal drainage flow in a deep valley [J]. J. Appl. Meteor. Climatol., 28(6): 457−462. doi:10.1175/1520-0450(1989)028<0457:MSOTND>2.0.CO;2
    [7] Cogliati M G, Mazzeo N A. 2006. Air flow analysis in the upper Río Negro Valley (Argentina) [J]. Atmos. Res., 80(4): 263−279. doi: 10.1016/j.atmosres.2005.09.005
    [8] Doran J C. 1991. The effects of ambient winds on valley drainage flows [J]. Bound.-Layer Meteor., 55(1-2): 177−189. doi: 10.1007/BF00119333
    [9] Dudhia J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model [J]. J. Atmos. Sci., 46(20): 3077−3107. doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
    [10] Gerken T, Biermann T, Babel W, et al. 2014. A modelling investigation into lake-breeze development and convection triggering in the Nam Co Lake basin, Tibetan Plateau [J]. Theor. Appl. Climatol., 117(1-2): 149−176. doi: 10.1007/s00704-013-0987-9
    [11] Gross G. 1987. Some effects of deforestation on nocturnal drainage flow and local climate—A numerical study [J]. Bound.-Layer Meteor., 38(4): 315−337. doi: 10.1007/BF00120851
    [12] Holt T, Raman S. 1988. A review and comparative evaluation of multilevel boundary layer parameterizations for first-order and turbulent kinetic energy closure schemes [J]. Rev. Geophys., 26(4): 761−780. doi: 10.1029/RG026i004p00761
    [13] Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes [J]. Mon. Wea. Rev., 134(9): 2318−2341. doi: 10.1175/MWR3199.1
    [14] Jiménez P A, Dudhia J. 2012. Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model [J]. J. Appl. Meteor. Climatol., 51(2): 300−316. doi: 10.1175/JAMC-D-11-084.1
    [15] Jiménez P A, Dudhia J. 2013. On the ability of the WRF model to reproduce the surface wind direction over complex terrain [J]. J. Appl. Meteor. Climatol., 52(7): 1610−1617. doi: 10.1175/JAMC-D-12-0266.1
    [16] Kain J S, Fritsch J M. 1993. Convective parameterization for mesoscale models: The Kain-Fritsch scheme [M]//Emanuel K A, Raymond D J. The Representation of Cumulus Convection in Numerical Models. Boston: American Meteorological Society, 165-170. doi: 10.1007/978-1-935704-13-3_16
    [17] Lee J, Shin H H, Hong S Y, et al. 2015. Impacts of subgrid-scale orography parameterization on simulated surface layer wind and monsoonal precipitation in the high-resolution WRF model [J]. J. Geophys. Res. Atmos., 120(2): 644−653. doi: 10.1002/2014JD022747
    [18] 李汀, 琚建华. 2013. 孟加拉湾西南季风与南海热带季风的气候特征比较 [J]. 地球物理学报, 56(1): 27−37. doi: 10.6038/cjg20130103

    Li Ting, Ju Jianhua. 2013. Comparison of climate features between the Southwest summer monsoon of the Bay of Bengal and the South China Sea summer monsoon [J]. Chinese J. Geophys. (in Chinese), 56(1): 27−37. doi: 10.6038/cjg20130103
    [19] 李斐, 邹捍, 周立波, 等. 2017. WRF模式中边界层参数化方案在藏东南复杂下垫面适用性研究 [J]. 高原气象, 36(2): 340−357. doi: 10.7522/j.issn.1000-0534.2016.00084

    Li Fei, Zou Han, Zhou Libo, et al. 2017. Study of boundary layer parameterization schemes’ applicability of WRF model over complex underlying surfaces in Southeast Tibet [J]. Plateau Meteor. (in Chinese), 36(2): 340−357. doi: 10.7522/j.issn.1000-0534.2016.00084
    [20] Lim K S S, Hong S Y. 2010. Development of an effective double-moment cloud microphysics scheme with prognostic Cloud Condensation Nuclei (CCN) for weather and climate models [J]. Mon. Wea. Rev., 138(5): 1587−1612. doi: 10.1175/2009MWR2968.1
    [21] 刘玉洪, 张克映, 马友鑫, 等. 1996. 哀牢山(西南季风山地)空气湿度资源的分布特征 [J]. 自然资源学报, 11(4): 347−354. doi: 10.11849/zrzyxb.1996.04.008

    Liu Yuhong, Zhang Keying, Ma Youxin, et al. 1996. Distribution characteristics of the air humidity resource of the Ailao mountains (southwest monsoon mountainous area) [J]. J. Nat. Res. (in Chinese), 11(4): 347−354. doi: 10.11849/zrzyxb.1996.04.008
    [22] 刘辉志, 洪钟祥, 桑建国. 2001. 对流边界层中过山气流的数值模拟 [J]. 气候与环境研究, 2001, 6(3): 305−311. doi: 10.3878/j.issn.1006-9585.2001.03.05

    Liu Huizhi, Hong Zhongxiang, Sang Jianguo. 2001. Numerical simulation of the flow over terrain on the convective boundary layer [J]. Climatic Environ. Res. (in Chinese), 2001, 6(3): 305−311. doi: 10.3878/j.issn.1006-9585.2001.03.05
    [23] 刘振鑫, 刘树华, 胡非, 等. 2012. MM5和WRF对北京地区低层大气局地环流模拟能力的对比研究 [J]. 中国科学: 地球科学, 55(3): 418−427. doi: 10.1007/s11430-011-4310-2

    Liu Zhenxin, Liu Shuhua, Hu Fei, et al. 2012. A comparison study of the simulation accuracy between WRF and MM5 in simulating local atmospheric circulations over Greater Beijing [J]. Sci. China Earth Sci., 55(3): 418−427. doi: 10.1007/s11430-011-4310-2
    [24] Mellor G L, Yamada T. 1982. Development of a turbulence closure model for geophysical fluid problems [J]. Rev. Geophys., 20(4): 851−875. doi: 10.1029/RG020i004p00851
    [25] Mlawer E J, Taubman S J, Brown P D, et al. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave [J]. J. Geophys. Res. Atmos., 102(D14): 16663−16682. doi: 10.1029/97JD00237
    [26] Nakanishi M, Niino H. 2004. An improved Mellor-Yamada level-3 model with condensation physics: Its design and verification [J]. Bound.-Layer Meteor., 112(1): 1−31. doi: 10.1023/B:BOUN.0000020164.04146.98
    [27] Pleim J E. 2007. A Combined local and nonlocal closure model for the atmospheric boundary layer. PartⅡ: Application and evaluation in a mesoscale meteorological model [J]. J. Appl. Meteor. Climatol., 46(9): 1396−1409. doi: 10.1175/JAM2534.1
    [28] Prasad K B R R H, Srinivas C V, Rao T N, et al. 2017. Performance of WRF in simulating terrain induced flows and atmospheric boundary layer characteristics over the tropical station Gadanki [J]. Atmos. Res., 185: 101−117. doi: 10.1016/j.atmosres.2016.10.020
    [29] 齐瑛, 傅抱璞. 1992. 过山气流与地形形状 [J]. 南京大学学报, 28(4): 633−643.

    Qi Ying, Fu Baopu. 1992. Airflow over mountain and mountain shape [J]. Journal of Nanjing University (Natural Science Edition) (in Chinese), 28(4): 633−643.
    [30] Schmidli J, Rotunno R. 2012. Influence of the valley surroundings on valley wind dynamics [J]. J. Atmos. Sci., 69(2): 561−577. doi: 10.1175/JAS-D-11-0129.1
    [31] 屠妮妮, 何光碧, 张利红. 2012. 不同边界层和陆面过程参数化方案对比分析 [J]. 高原山地气象研究, 32(3): 1−8. doi: 10.3969/j.issn.1674-2184.2012.03.001

    Tu Nini, He Guangbi, Zhang Lihong. 2012. Numerical studies of different planet boundary layer parameterization and land surface model parameterization [J]. Plateau and Mountain Meteorology Research (in Chinese), 32(3): 1−8. doi: 10.3969/j.issn.1674-2184.2012.03.001
    [32] 王瑾, 张镭, 王腾蛟, 等. 2012. 兰州附近山谷典型日环流特征对比分析 [J]. 干旱气象, 30(2): 169−177. doi: 10.3969/j.issn.1006-7639.2012.02.003

    Wang Jin, Zhang Lei, Wang Tengjiao, et al. 2012. Comparative analysis of mountain-valley wind circulation characteristics over semi-arid areas nearby Lanzhou [J]. Journal of Arid Meteorology (in Chinese), 30(2): 169−177. doi: 10.3969/j.issn.1006-7639.2012.02.003
    [33] Xie B, Fung J C H, Chan A, et al. 2012. Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model [J]. J. Geophys. Res. Atmos., 117(D12): D12103. doi: 10.1029/2011JD017080
    [34] 徐嘉行, 李良敏, 刘敏蓉. 1984. 盛夏云南大—暴雨与季风活动的关系 [J]. 云南大学学报(3): 53−62.

    Xu Jiaxing, Li Liangmin, Liu Minrong. 1984. The relationship between the rainstorms over Yunnan Province and the activity of summer monsoon during summer [J]. Journal of Yunnan University (in Chinese)(3): 53−62.
    [35] 叶笃正. 1956. 小地形对于气流的影响 [J]. 气象学报, 27(3): 243−262. doi: 10.11676/qxxb1956.018

    Ye Duzheng. 1956. Topographical effect on the airflow [J]. Acta Meteor. Sinica (in Chinese), 27(3): 243−262. doi: 10.11676/qxxb1956.018
    [36] 尹相玉. 2014. 基于WRF模式的济南地区大气边界层特征模拟研究 [D]. 山东师范大学硕士学位论文.

    Yin Xiangyu. 2014. The numerical simulation of atmospheric boundary layer in Ji’nan by using WRF [D]. M. S. thesis (in Chinese), Shandong Normal University.
    [37] Zängl G. 2009. The impact of weak synoptic forcing on the valley-wind circulation in the Alpine Inn Valley [J]. Meteor. Atmos. Phys., 105(1-2): 37−53. doi: 10.1007/s00703-009-0030-y
    [38] 张小培, 银燕. 2013. 复杂地形地区WRF模式四种边界层参数化方案的评估 [J]. 大气科学学报, 36(1): 68−76. doi: 10.3969/j.issn.1674-7097.2013.01.008

    Zhang Xiaopei, Yin Yan. 2013. Evaluation of the four PBL schemes in WRF Model over complex topographic areas [J]. Trans. Atmos. Sci. (in Chinese), 36(1): 68−76. doi: 10.3969/j.issn.1674-7097.2013.01.008
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  199
  • HTML全文浏览量:  38
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-13
  • 录用日期:  2020-12-11
  • 网络出版日期:  2020-12-17
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回