高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气冰核:研究进展与挑战

吴志军 陈洁 陈景川 顾文君 唐明金 丁德平 银燕 胡敏

吴志军, 陈洁, 陈景川, 等. 2021. 大气冰核:研究进展与挑战[J]. 大气科学, 45(4): 759−776 doi: 10.3878/j.issn.1006-9895.2010.20121
引用本文: 吴志军, 陈洁, 陈景川, 等. 2021. 大气冰核:研究进展与挑战[J]. 大气科学, 45(4): 759−776 doi: 10.3878/j.issn.1006-9895.2010.20121
WU Zhijun, CHEN Jie, CHEN Jingchuan, et al. 2021. Ice Nucleating Particles in the Atmosphere—Progress and Challenges [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(4): 759−776 doi: 10.3878/j.issn.1006-9895.2010.20121
Citation: WU Zhijun, CHEN Jie, CHEN Jingchuan, et al. 2021. Ice Nucleating Particles in the Atmosphere—Progress and Challenges [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(4): 759−776 doi: 10.3878/j.issn.1006-9895.2010.20121

大气冰核:研究进展与挑战

doi: 10.3878/j.issn.1006-9895.2010.20121
基金项目: 国家自然科学基金项目41875149、91844301、42011530121、41775138
详细信息
    作者简介:

    吴志军,男,1978年出生,研究员,主要从事新粒子生成、颗粒物吸湿性、大气冰核研究。E-mail: zhijunwu@pku.edu.cn

    陈洁,女,1993年出生,博士研究生,主要从事大气冰核研究。E-mail: 1601111741@pku.edu.cn

    通讯作者:

    吴志军,E-mail: zhijunwu@pku.edu.cn

  • 中图分类号: P401

Ice Nucleating Particles in the Atmosphere—Progress and Challenges

Funds: National Natural Science Foundation of China (Grants 41875149, 91844301, 42011530121, 41775138)
  • 摘要: 大气冰核参与初始冰晶的异质形成,影响冰云的微物理过程和辐射性质。阐明大气冰核浓度、来源、性质及活化成冰的微观机制,是深入认识气溶胶与云相互作用的关键。本文梳理了近年来国内外在冰核测量技术、冰核活化机制、外场观测及其参数化方案等几个方面取得的进展,明晰了冰核研究存在的挑战。此外,本文也指出了我国加强大气冰核研究的必要性和迫切性。
  • 图  1  冰核测量技术

    Figure  1.  Measuring techniques of ice nucleating particles

    图  2  典型冰核来源汇总

    Figure  2.  Summary of typical ice nucleating particle sources

    图  3  不同来源的生物颗粒单位质量活性位点数(nm)随温度变化的结果(根据Kanji et al., 2017修改,© American Meteorological Society. Used with permission)

    Figure  3.  Ice-active mass site density (nm) of biological particles originated from different sources as a function of temperature (Kanji et al., 2017, © American Meteorological Society. Used with permission)

    表  1  冰核测量代表性仪器

    Table  1.   Representative measuring instruments of ice nucleating particles

    仪器类型代表性仪器仪器优点不足之处
    云室膨胀云室(AIDA) (Möhler et al., 2003
    混合云室(FINC) (Bundke et al., 2008
    连续流扩散云室(CFDC) (Rogers, 1988
    基于流动管的测量方法
    (LACIS) (Hartmann et al., 2011
    基于风洞的测量方法(Diehl et al., 2014
    无基板影响、保持气溶胶的悬浮状态造价高、多为原位测量,不适用于外场连续观测
    颗粒物预收集冷台法(Budke and Koop, 2015构造简单、操作方便、检测限低基板影响、液滴或颗粒物之间存在相互影响、预先收集改变颗粒物的性质
    单颗粒/液滴电动力平衡悬浮器(EDB)、声悬浮器(Rzesanke et al., 2012; Hoffmann et al., 2013a, 2013b; Diehl et al., 2014无基板影响液滴荷电的影响未知、可测定的液滴/颗粒物尺寸有要求
    注: Aerosol Interaction and Dynamics in the Atmosphere缩写为AIDA;Leipzig Aerosol Cloud Interaction Simulator缩写为LACIS;Fast Ice Nucleation CHamber缩写为FINCH;Continuous Flow Diffusion Chamber缩写为CFDC;ElectroDynamic Balance levitator缩写为EDB
    下载: 导出CSV

    表  2  中国开展的冰核外场观测汇总

    Table  2.   Summary of field measurements on ice nucleating particles in China

    参考文献观测地区观测年份观测背景仪器方法成核方式温度/°C浓度/L−1
    游来光和石安英, 1964北京1963城市/沙尘Bigg型冰核计数仪所有−30~−151.0~313
    (游来光等, 2002)北京1995~1996城市/沙尘Bigg型冰核计数仪、
    过滤膜采样—
    扩散云室法
    所有−30~−1514.7~5285
    Che et al., 2018北京2017城市混合云室所有−30~−100.18~496
    Chen et al., 2018b北京2017城市冷台浸润冻结−25~−610−3~10
    Bi et al., 2019北京2018城市CFDC-IAS−30, −25, −2070~430
    杨磊等, 2013b南京2011连续观测静力扩散云室所有−25~−100.22~514.49
    陈金荣, 1994南京1991郊区滤膜法凝华−20.3~−19.20.04~0.57
    吴明林等, 1986福建建瓯石塔山1983~1983-混合云室所有−30~−120.6~120.1
    葛正谟和周春科, 1986甘肃兰州1982~1983连续9个月Bigg型冰核计数仪所有−20248
    李淑日等, 2003青海河南县2001郊区Bigg型冰核计数仪所有−30~−153.4~297.7
    石爱丽等, 2006青海河南县2003郊区Bigg型冰核计数仪所有−30~−1547.4
    牛生杰等, 2000内蒙古阿拉善左旗
    巴音浩特
    1994沙漠边缘地区Bigg 型冰核计数仪所有−201.4
    牛生杰等, 2000宁夏银川1994沙漠边远地区Bigg型冰核计数仪所有−203.3
    李艳伟和杜秉玉, 2003新疆昌吉小渠子站2001地面土壤滤膜法所有−200.293
    李艳伟和杜秉玉, 2003新疆乌鲁木齐牧试站2001地面土壤滤膜法所有−200.339
    陈金荣, 1994内蒙东胜1991-滤膜法凝华−200.32
    苏航等, 2014安徽黄山2011背景地区静力真空水汽扩散云室、
    Bigg型冰核计数仪
    凝华、凝结冻结−30~−1521.38
    李娟和黄庚, 2001甘肃玛曲2000高原Bigg型冰核计数仪所有−30~−156.77
    Du et al., 2017内蒙古呼伦贝尔2011~2013生物液滴冻结浸润冻结−25~−10-
    周德平等, 2018辽宁沈阳2011~20121.5~4.5 km
    云中
    静力扩散云室/
    航测
    所有−20,−15<10, <2
    周德平等, 2016辽宁沈阳2011沙尘静力扩散云室所有−2030.49
    Li et al., 2017辽宁沈阳2010~2012雾霾静力扩散云室所有−2038.68,55.92
    Jiang et al., 2020山东泰安2018城市静力扩散云室凝华、凝结冻结−20, −251.57,11.5;
    4.82, 37.5
    Jiang et al., 2016新疆阿克苏地区2014非沙尘/沙尘静力扩散云室所有−2011,100
    下载: 导出CSV

    表  3  冰核测量相关的参数化公式汇总

    Table  3.   Parameters related to the prediction of ice nucleating particles

    参数化公式说明参考文献
    $ {N}_{\mathrm{I}\mathrm{N}\mathrm{P}}=0.00001\mathrm{e}\mathrm{x}\mathrm{p}(-0.6T) $NINP:冰核数浓度Fletcher, 1962
    $ {N}_{\mathrm{I}\mathrm{N}\mathrm{P}}=0.06\mathrm{e}\mathrm{x}\mathrm{p}(-0.262T) $NINP:冰核数浓度Meyers et al., 1992
    $ {N}_{\mathrm{I}\mathrm{N}\mathrm{P}}=0.005\mathrm{e}\mathrm{x}\mathrm{p}(-0.304T) $NINP:冰核数浓度Cooper, 1980
    ${n}_{\mathrm{I}\mathrm{N},{\rm{T}}}={a\left(273.16-T\right)}^{b}{ {n}_{aer,0.5} }^{(c\left(273.16-T\right)+d)}$nIN, T:冰核数浓度
    a=0.0000594,b=3.33,c=0.0254,d=0.0033
    naer, 0.5:直径大于0.5 μm的颗粒物浓度,T:温度
    DeMott et al., 2010
    $ \mathrm{T}\mathrm{O}\mathrm{C}=\mathrm{e}\mathrm{x}\mathrm{p}(11.2186-(0.44593T\left)\right) $TOC(total organic carbon) :总有机碳浓度Wilson et al., 2015
    ${n}_{\mathrm{I}\mathrm{N},{\mathrm{T} } }=\left(\mathrm{c}\mathrm{f}\right)({ {n}_{a > 0.5 \mu m})}^{\left(a\left(273.16-T\right)+\beta \right)}\mathrm{e}\mathrm{x}\mathrm{p}(\gamma \left(273.16-T\right)+\delta)$cf=1,α= 0,δ=−11.6,β= 1.25,γ=0.46;
    T:温度,cf:校正因子
    DeMott et al., 2015
    $ {n}_{\mathrm{s}}\left(T\right)=\mathrm{e}\mathrm{x}\mathrm{p}(-0.517\left(T-273.15\right)+8.934) $ns(T):单位表面积活性位点的个数Niemand et al., 2012
    $ {\mathrm{l}\mathrm{n}(n}_{\mathrm{s}})=-1.038T+275.26 $ns:单位表面积活性位点的个数Atkinson et al., 2013
    ${n}_{\mathrm{s} }\left(T\right)=\displaystyle\frac{ {n}_{\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{e} } }{ {s}_{\mathrm{p} } }(1-{P}_{unfr}\left(T,{\mu }_{\theta },{\sigma }_{\theta },t\right))$ns(T):单位表面积活性位点的个数
    nsite:液滴总活性位点个数
    Sp:液滴中含颗粒物的总表面积
    Punfr(T, μθ, σθ, t):液滴在温度T,经过时间t后仍然保持为
    液态的概率
    μθ:接触角均值,σθ:接触角标准差
    Peckhaus et al., 2016
    ${f}_{\mathrm{i}\mathrm{c}\mathrm{e} }=1-{\rm{exp} }(-{\lambda }_{\mathrm{I}\mathrm{N}\mathrm{S},\mathrm{S}\mathrm{B}\mathrm{M} }(1)-{P}_{\mathrm{u}\mathrm{n}\mathrm{f}\mathrm{r},\mathrm{I}\mathrm{N}\mathrm{S} }\left(T,{\mu }_{\theta },{\sigma }_{\theta },t\right))$λINS, SBM:平均活性位点个数
    Punfr(T, μθ, σθ, t):液滴在温度T,经过时间t后仍然保持为
    液态的概率
    Niedermeier et al., 2015
    $ {N}_{\mathrm{I}\mathrm{N}\mathrm{P}}=0.00254\mathrm{e}\mathrm{x}\mathrm{p}(-0.389T) $NINP:冰核数浓度,T:温度游来光和石安英, 1964
    $ {N}_{\mathrm{I}\mathrm{N}\mathrm{P}}=0.0049\mathrm{e}\mathrm{x}\mathrm{p}(-0.388T) $NINP:冰核数浓度,T:温度杨磊等, 2013b
    $ {N}_{\mathrm{I}\mathrm{N}\mathrm{P}}=0.0046\mathrm{e}\mathrm{x}\mathrm{p}(-0.388T) $NINP;冰核数浓度,T:温度苏航等, 2014
    $ {N}_{\mathrm{I}\mathrm{N}\mathrm{P}}=0.021\mathrm{e}\mathrm{x}\mathrm{p}(-0.293T) $NINP:冰核数浓度,T:温度Bi et al., 2018
    $ {N}_{\mathrm{I}\mathrm{N}\mathrm{P}}=0.00014\mathrm{e}\mathrm{x}\mathrm{p}(-0.546T) $NINP:冰核数浓度,T:温度Bi et al., 2018
    $ {n}_{\mathrm{I}\mathrm{N},\mathrm{T}}=7.12 \cdot {10}^{-7} \cdot ({-T)}^{4.753}{{n}_{aer,0.5}}^{(-0.015 \cdot T+0.31)} $nIN, T:冰核数浓度,T:温度
    naer, 0.5:直径大于0.5 μm的颗粒物浓度,T:温度
    Jiang et al., 2016
    ${n}_{\mathrm{I}\mathrm{N},\mathrm{T} }=8.2 \cdot {10}^{-7} \cdot ({-T)}^{3.501}({S}_{\mathrm{i} }){ {N}_{aer,0.5} }^{(-0.02 \cdot T-0.008{ \cdot S}_{\mathrm{i} }+0.37)}$naer, 0.5:直径大于0.5 μm的颗粒物浓度,T:温度Jiang et al., 2016
    $ {n}_{\mathrm{I}\mathrm{N},\mathrm{T}}=0.0026 \cdot ({-T)}^{2.3816}{{n}_{aer,0.5}}^{(-0.0256 \cdot T-0.0250)} $nIN, T:冰核数浓度,T:温度
    naer,0.5:直径大于0.5 μm的颗粒物浓度
    Bi et al., 2019
    下载: 导出CSV
  • [1] Archuleta C M, DeMott P J, Kreidenweis S M. 2005. Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures [J]. Atmos. Chem. Phys., 5(10): 2617−2634. doi: 10.5194/acp-5-2617-2005
    [2] Ardon-Dryer K, Levin Z, Lawson R P. 2011. Characteristics of immersion freezing nuclei at the South Pole station in Antarctica [J]. Atmos. Chem. Phys., 11(8): 4015−4024. doi: 10.5194/acp-11-4015-2011
    [3] Atkinson J D, Murray B J, Woodhouse M T, et al. 2013. The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds [J]. Nature, 498(7454): 355−358. doi: 10.1038/nature12278
    [4] Augustin S, Wex H, Niedermeier D, et al. 2013. Immersion freezing of birch pollen washing water [J]. Atmos. Chem. Phys., 13(21): 10989−11003. doi: 10.5194/acp-13-10989-2013
    [5] Augustin-Bauditz S, Wex H, Denjean C, et al. 2016. Laboratory-generated mixtures of mineral dust particles with biological substances: Characterization of the particle mixing state and immersion freezing behavior [J]. Atmos. Chem. Phys., 16(9): 5531−5543. doi: 10.5194/acp-16-5531-2016
    [6] Bühl J, Ansmann A, Seifert P, et al. 2013. Toward a quantitative characterization of heterogeneous ice formation with lidar/radar: Comparison of CALIPSO/CloudSat with ground-based observations [J]. Geophys. Res. Lett., 40(16): 4404−4408. doi: 10.1002/grl.50792
    [7] Baustian K J, Wise M E, Tolbert M A. 2010. Depositional ice nucleation on solid ammonium sulfate and glutaric acid particles [J]. Atmos. Chem. Phys., 10(5): 2307−2317. doi: 10.5194/acp-10-2307-2010
    [8] Baustian K J, Wise M E, Jensen E J, et al. 2013. State transformations and ice nucleation in amorphous (semi-) solid organic aerosol [J]. Atmos. Chem. Phys., 13(11): 5615−5628. doi: 10.5194/acp-13-5615-2013
    [9] Berkemeier T, Shiraiwa M, Pöschl U, et al. 2014. Competition between water uptake and ice nucleation by glassy organic aerosol particles [J]. Atmos. Chem. Phys., 14(22): 12513−12531. doi: 10.5194/acp-14-12513-2014
    [10] Bi K, Ma X C, Chen Y B, et al. 2018. The observation of ice-nucleating particles active at temperatures above −15°C and its implication on ice formation in clouds [J]. J. Meteor. Res., 32(5): 734−743. doi: 10.1007/s13351-018-7181-z
    [11] Bi K, McMeeking G, Ding D P, et al. 2019. Measurements of ice nucleating particles in Beijing, China [J]. J. Geophys. Res., 124(14): 8065−8075. doi: 10.1029/2019JD030609
    [12] Bingemer H, Klein H, Ebert M, et al. 2012. Atmospheric ice nuclei in the Eyjafjallajökull volcanic ash plume [J]. Atmos. Chem. Phys., 12(2): 857−867. doi: 10.5194/acp-12-857-2012
    [13] Boose Y, Kanji Z A, Kohn M, et al. 2016a. Ice nucleating particle measurements at 241 K during winter months at 3580 m MSL in the swiss alps [J]. J. Atmos. Sci., 73(5): 2203−2228. doi: 10.1175/JAS-D-15-0236.1
    [14] Boose Y, Welti A, Atkinson J, et al. 2016b. Heterogeneous ice nucleation on dust particles sourced from nine deserts worldwide. Part 1: Immersion freezing [J]. Atmos. Chem. Phys., 16(23): 15075−15095. doi: 10.5194/acp-16-15075-2016
    [15] Boose Y, Sierau B, García M I, et al. 2016c. Ice nucleating particles in the Saharan air layer [J]. Atmos. Chem. Phys., 16(14): 9067−9087. doi: 10.5194/acp-16-9067-2016
    [16] Broadley S L, Murray B J, Herbert R J, et al. 2012. Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust [J]. Atmos. Chem. Phys., 12(1): 287−307. doi: 10.5194/acp-12-287-2012
    [17] Brooks S D, Suter K, Olivarez L. 2014. Effects of chemical aging on the ice nucleation activity of soot and polycyclic aromatic hydrocarbon aerosols [J]. J. Phys. Chem. A, 118(43): 10036−10047. doi: 10.1021/jp508809y
    [18] Budke C, Koop T. 2015. BINARY: An optical freezing array for assessing temperature and time dependence of heterogeneous ice nucleation [J]. Atmos. Meas. Tech., 8(2): 689−703. doi: 10.5194/amt-8-689-2015
    [19] Bundke U, Nillius B, Jaenicke R, et al. 2008. The fast ice nucleus chamber FINCH [J]. Atmos. Res., 90(2–4): 180−186. doi: 10.1016/j.atmosres.2008.02.008
    [20] Burrows S M, Hoose C, Pöschl U, et al. 2013. Ice nuclei in marine air: biogenic particles or dust? [J]. Atmos. Chem. Phys., 13(1): 247−267. doi: 10.5194/acp-13-245-2013
    [21] Charnawskas J C, Alpert P A, Lambe A T, et al. 2017. Condensed-phase biogenic–anthropogenic interactions with implications for cold cloud formation [J]. Faraday Discuss., 200: 165−194. doi: 10.1039/C7FD00010C
    [22] Che Y F, Dang J, Fang W, et al. 2018. Measurements of natural ice nucleating particles in Beijing in the spring of 2017 [J]. Atmos. Environ., 200: 170−177. doi: 10.1016/j.atmosenv.2018.12.020
    [23] Chen J, Pei X Y, Wang H, et al. 2018a. Development, characterization, and validation of a cold stage-based ice nucleation array (PKU-INA) [J]. Atmosphere, 9(9): 357. doi: 10.3390/atmos9090357
    [24] Chen J, Wu Z J, Augustin-Bauditz S, et al. 2018b. Ice-nucleating particle concentrations unaffected by urban air pollution in Beijing, China [J]. Atmos. Chem. Phys., 18(5): 3523−3539. doi: 10.5194/acp-18-3523-2018
    [25] 陈金荣. 1994. 大气冰核浓度的测量及特征 [J]. 气象科学, 14(2): 155−160.

    Chen Jinrong. 1994. The observation results and its features of the concentration of atmospheric ice nucleus [J]. Scientia Meteorologica Sinica (in Chinese), 14(2): 155−160.
    [26] Chou C, Stetzer O, Weingartner E, et al. 2011. Ice nuclei properties within a saharan dust event at the Jungfraujoch in the Swiss Alps [J]. Atmos. Chem. Phys., 11(10): 4725−4738. doi: 10.5194/acp-11-4725-2011
    [27] Chou C, Kanji Z A, Stetzer O, et al. 2013. Effect of photochemical ageing on the ice nucleation properties of diesel and wood burning particles [J]. Atmos. Chem. Phys., 13(2): 761−772. doi: 10.5194/acp-13-761-2013
    [28] Christner B C, Cai R M, Morris C E, et al. 2008a. Geographic, seasonal, and precipitation chemistry influence on the abundance and activity of biological ice nucleators in rain and snow [J]. Proc. Natl. Acad. Sci. USA, 105(48): 18854−18859. doi: 10.1073/pnas.0809816105
    [29] Christner B C, Morris C E, Foreman C M, et al. 2008b. Ubiquity of biological ice nucleators in snowfall [J]. Science, 319(5867): 1214. doi: 10.1126/science.1149757
    [30] Conen F, Yakutin M V. 2018. Soils rich in biological ice-nucleating particles abound in ice-nucleating macromolecules likely produced by fungi [J]. Biogeosciences, 15(14): 4381−4385. doi: 10.5194/bg-15-4381-2018
    [31] Conen F, Stopelli E, Zimmermann L. 2016. Clues that decaying leaves enrich Arctic air with ice nucleating particles [J]. Atmos. Environ., 129: 91−94. doi: 10.1016/j.atmosenv.2016.01.027
    [32] Conen F, Morris C, Leifeld J, et al. 2011. Biological residues define the ice nucleation properties of soil dust [J]. Atmos. Chem. Phys., 11(18): 9643−9648. doi: 10.5194/acp-11-9643-2011
    [33] Conen F, Rodríguez S, Hülin C, et al. 2015. Atmospheric ice nuclei at the high-altitude observatory Jungfraujoch, Switzerland [J]. Tellus B, 67(1): 25014. doi: 10.3402/tellusb.v67.25014
    [34] Connolly P J, Möhler O, Field P R, et al. 2009. Studies of heterogeneous freezing by three different desert dust samples [J]. Atmos. Chem. Phys., 9(8): 2805−2824. doi: 10.5194/acp-9-2805-2009
    [35] Cooper W A. 1980. A method of detecting contact ice nuclei using filter samples [C]//Proceedings of the Eighth International Conference on Cloud Physics. Clermont-Ferrand, France, 605–669.
    [36] Cornwell G C, McCluskey C S, Levin E J T, et al. 2019. Direct online mass spectrometry measurements of ice nucleating particles at a California coastal site [J]. J. Geophys. Res., 124(22): 12157−12172. doi: 10.1029/2019JD030466
    [37] Cozic J, Mertes S, Verheggen B, et al. 2008. Black carbon enrichment in atmospheric ice particle residuals observed in lower tropospheric mixed phase clouds [J]. J. Geophys. Res., 113(D15): D15209. doi: 10.1029/2007JD009266
    [38] Creamean J M, Suski K J, Rosenfeld D, et al. 2013. Dust and biological aerosols from the sahara and asia influence precipitation in the western U.S. [J]. Science, 339(6127): 1572−1578. doi: 10.1126/science.1227279
    [39] Crawford I, Möhler O, Schnaiter, M, et al. 2011. Studies of propane flame soot acting as heterogeneous ice nuclei in conjunction with single particle soot photometer measurements [J]. Atmos. Chem. Phys., 11: 9549−9561. doi: 10.5194/acp-11-9549-2011
    [40] Cziczo D J, Froyd K D, Gallavardin S J, et al. 2009. Deactivation of ice nuclei due to atmospherically relevant surface coatings [J]. Environ. Res. Lett., 4(4): 044013. doi: 10.1088/1748-9326/4/4/044013
    [41] Cziczo D J, Froyd K D, Hoose C, et al. 2013. Clarifying the dominant sources and mechanisms of cirrus cloud formation [J]. Science, 340(6138): 1320−1324. doi: 10.1126/science.1234145
    [42] Cziczo D J, Ladino L, Boose Y, et al. 2017. Measurements of ice nucleating particles and ice residuals [J]. Meteor. Monogr., 58: 8.1−8.13. doi: 10.1175/AMSMONOGRAPHS-D-16-0008.1
    [43] DeMott P J. 1990. An exploratory study of ice nucleation by soot aerosols [J]. J. Appl. Meteor., 29(10): 1072−1079. doi:10.1175/1520-0450(1990)029<1072:AESOIN>2.0.CO;2
    [44] DeMott P J, Prenni A J, Liu X, et al. 2010. Predicting global atmospheric ice nuclei distributions and their impacts on climate [J]. Proc. Natl. Acad. Sci. USA, 107(25): 11217−11222. doi: 10.1073/pnas.0910818107
    [45] DeMott P J, Möhler O, Stetzer O, et al. 2011. Resurgence in ice nuclei measurement research [J]. Bull. Amer. Meteor. Soc., 92(12): 1623−1635. doi: 10.1175/2011BAMS3119.1
    [46] DeMott P J, Prenni A J, McMeeking G R, et al. 2015. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles [J]. Atmos. Chem. Phys., 15(1): 393−409. doi: 10.5194/acp-15-393-2015
    [47] DeMott P J, Hill T C J, McCluskey C S, et al. 2016. Sea spray aerosol as a unique source of ice nucleating particles [J]. Proc. Natl. Acad. Sci. USA, 113(21): 5797−5803. doi: 10.1073/pnas.1514034112
    [48] DeMott P J, Möhler O, Cziczo D J, et al. 2018. The fifth international workshop on ice nucleation phase 2 (FIN-02): Laboratory intercomparison of ice nucleation measurements [J]. Atmos. Meas. Tech., 11(11): 6231−6257. doi: 10.5194/amt-11-6231-2018
    [49] Després V R, Huffman J A, Burrows S M, et al. 2012. Primary biological aerosol particles in the atmosphere: A review [J]. Tellus B, 64(1): 15598. doi: 10.3402/tellusb.v64i0.15598
    [50] Diehl K, Matthias-Maser S, Jaenicke R, et al. 2002. The ice nucleating ability of pollen. Part II: Laboratory studies in immersion and contact freezing modes [J]. Atmos. Res., 61(2): 125−133. doi: 10.1016/S0169-8095(01)00132-6
    [51] Diehl K, Debertshäuser M, Eppers O, et al. 2014. Particle surface area dependence of mineral dust in immersion freezing mode: Investigations with freely suspended drops in an acoustic levitator and a vertical wind tunnel [J]. Atmos. Chem. Phys., 14(22): 12343−12355. doi: 10.5194/acp-14-12343-2014
    [52] Du R, Du P R, Lu Z D, et al. 2017. Evidence for a missing source of efficient ice nuclei [J]. Sci. Rep., 7: 39673. doi: 10.1038/srep39673
    [53] Eidhammer T, DeMott P J, Prenni A J, et al. 2010. Ice initiation by aerosol particles: Measured and predicted ice nuclei concentrations versus measured ice crystal concentrations in an orographic wave cloud [J]. J. Atmos. Sci., 67(8): 2417−2436. doi: 10.1175/2010JAS3266.1
    [54] Fletcher N H. 1962. The Physics of Rainclouds [M]. Cambridge: Cambridge University Press.
    [55] Frey W, Hu D W, Dorsey J, et al. 2018. The efficiency of secondary organic aerosol particles acting as ice-nucleating particles under mixed-phase cloud conditions [J]. Atmos. Chem. Phys., 18(13): 9393−9409. doi: 10.5194/acp-18-9393-2018
    [56] Friedman B, Kulkarni G, Cziczo D J, et al. 2011. Ice nucleation and droplet formation by bare and coated soot particles [J]. J. Geophys. Res., 116. doi: 10.1029/2011JD015999
    [57] Fröhlich-Nowoisky J, Hill T C J, Pummer B G, et al. 2015. Ice nucleation activity in the widespread soil fungus Mortierella alpina [J]. Biogeosciences, 12(4): 1057−1071. doi: 10.5194/bg-12-1057-2015
    [58] 高任杰, 银燕, 蒋惠, 等. 2017. 亚青会期间南京地区大气冰核的观测分析 [J]. 气象科学, 37(2): 141−150. doi: 10.3969/2015jms.0090

    Gao Renjie, Yin Yan, Jiang Hui, et al. 2017. Measurement analysis of atmospheric ice nuclei in Nanjing during the Asian Youth Games [J]. Journal of the Meteorological Sciences (in Chinese), 37(2): 141−150. doi: 10.3969/2015jms.0090
    [59] 葛正谟, 周春科. 1986. 兰州市大气冰核的观测 [J]. 高原气象, 5(2): 167−171.

    Ge Zhengmo, Zhou Chunke. 1986. The observations of atmospheric ice nuclei in Lanzhou [J]. Plateau Meteorology (in Chinese), 5(2): 167−171.
    [60] Gong X D, Wex H, van Pinxteren M, et al. 2020. Characterization of aerosol particles at cabo verde close to sea level and at the cloud level. Part 2: Ice-nucleating particles in air, cloud and seawater [J]. Atmos. Chem. Phys., 20(3): 1451−1468. doi: 10.5194/acp-20-1451-2020
    [61] Harrison A D, Lever K, Sanchez-Marroquin A, et al. 2019. The ice-nucleating ability of quartz immersed in water and its atmospheric importance compared to K-feldspar [J]. Atmos. Chem. Phys., 19(17): 11343−11361. doi: 10.5194/acp-19-11343-2019
    [62] Hartmann S, Augustin S, Clauss T, et al. 2013. Immersion freezing of ice nucleation active protein complexes [J]. Atmos. Chem. Phys., 13: 5751−5766. doi: 10.5194/acp-13-5751-2013
    [63] Hartmann S, Niedermeier D, Voigtländer J, et al. 2011. Homogeneous and heterogeneous ice nucleation at LACIS: Operating principle and theoretical studies [J]. Atmos. Chem. Phys., 11(4): 1753−1767. doi: 10.5194/acp-11-1753-2011
    [64] Hill T C J, DeMott P J, Tobo Y, et al. 2016. Sources of organic ice nucleating particles in soils [J]. Atmos. Chem. Phys., 16(11): 7195−7211. doi: 10.5194/acp-16-7195-2016
    [65] Hiranuma N, Hoffmann N, Kiselev A, et al. 2014. Influence of surface morphology on the immersion mode ice nucleation efficiency of hematite particles [J]. Atmos. Chem. Phys., 14(5): 2315−2324. doi: 10.5194/acp-14-2315-2014
    [66] Hiranuma N, Möhler O, Yamashita K, et al. 2015a. Ice nucleation by cellulose and its potential contribution to ice formation in clouds [J]. Nat. Geosci., 8(4): 273−277. doi: 10.1038/ngeo2374
    [67] Hiranuma N, Augustin-Bauditz S, Bingemer H, et al. 2015b. A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: A comparison of 17 ice nucleation measurement techniques [J]. Atmos. Chem. Phys., 15(5): 2489−2518. doi: 10.5194/acp-15-2489-2015
    [68] Hoffmann N, Duft D, Kiselev A, et al. 2013a. Contact freezing efficiency of mineral dust aerosols studied in an electrodynamic balance: Quantitative size and temperature dependence for illite particles [J]. Faraday Discuss., 165: 383−390. doi: 10.1039/C3FD00033H
    [69] Hoffmann N, Kiselev A, Rzesanke D, et al. 2013b. Experimental quantification of contact freezing in an electrodynamic balance [J]. Atmos. Meas. Tech., 6(9): 2373−2382. doi: 10.5194/amt-6-2373-2013
    [70] Hoose C, Möhler O. 2012. Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments [J]. Atmos. Chem. Phys., 12(20): 9817−9854. doi: 10.5194/acp-12-9817-2012
    [71] Hoose C, Kristjánsson J E, Burrows S M. 2010a. How important is biological ice nucleation in clouds on a global scale? [J]. Environ. Res. Lett., 5(2): 024009. doi: 10.1088/1748-9326/5/2/024009
    [72] Hoose C, Kristjánsson J E, Chen J P, et al. 2010b. A classical-theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot, and biological particles in a global climate model [J]. J. Atmos. Sci., 67(8): 2483−2503. doi: 10.1175/2010JAS3425.1
    [73] Hummel M, Hoose C, Pummer B, et al. 2018. Simulating the influence of primary biological aerosol particles on clouds by heterogeneous ice nucleation [J]. Atmos. Chem. Phys., 18(20): 15437−15450. doi: 10.5194/acp-18-15437-2018
    [74] Ignatius K, Kristensen T B, Järvinen E, et al. 2016. Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of α-pinene [J]. Atmos. Chem. Phys., 16(10): 6495−6509. doi: 10.5194/acp-16-6495-2016
    [75] Irish V E, Elizondo P, Chen J, et al. 2017. Ice-nucleating particles in Canadian Arctic Sea-surface microlayer and bulk seawater [J]. Atmos. Chem. Phys., 17(17): 10583−10595. doi: 10.5194/acp-17-10583-2017
    [76] Jiang H, Yin Y, Yang L, et al. 2014. The characteristics of atmospheric ice nuclei measured at different altitudes in the Huangshan mountains in Southeast China [J]. Adv. Atmos. Sci., 31(2): 396−406. doi: 10.1007/s00376-013-3048-5
    [77] Jiang H, Yin Y, Su H, et al. 2015. The characteristics of atmospheric ice nuclei measured at the top of Huangshan (the Yellow Mountains) in Southeast China using a newly built static vacuum water vapor diffusion chamber [J]. Atmos. Res., 153: 200−208. doi: 10.1016/j.atmosres.2014.08.015
    [78] Jiang H, Yin Y, Wang X, et al. 2016. The measurement and parameterization of ice nucleating particles in different backgrounds of China [J]. Atmos. Res., 181: 72−80. doi: 10.1016/j.atmosres.2016.06.013
    [79] Jiang H, Yin Y, Chen K, et al. 2020. The measurement of ice nucleating particles at Tai’an City in East China [J]. Atmos. Res., 232: 104684. doi: 10.1016/j.atmosres.2019.104684
    [80] Jones H M, Flynn M J, DeMott P J, et al. 2011. Manchester Ice Nucleus Counter (MINC) measurements from the 2007 international workshop on comparing Ice Nucleation Measuring Systems (ICIS-2007) [J]. Atmos. Chem. Phys., 11(1): 53−65. doi: 10.5194/acp-11-53-2011
    [81] Kanji Z A, Abbatt J P D. 2010. Ice nucleation onto arizona test dust at cirrus temperatures: Effect of temperature and aerosol size on onset relative humidity [J]. J. Phys. Chem. A, 114(2): 935−941. doi: 10.1021/jp908661m
    [82] Kanji Z A, DeMott P J, Möhler O, et al. 2011. Results from the university of toronto continuous flow diffusion chamber at ICIS 2007: Instrument intercomparison and ice onsets for different aerosol types [J]. Atmos. Chem. Phys., 11(1): 31−41. doi: 10.5194/acp-11-31-2011
    [83] Kanji Z A, Ladino L A, Wex H, et al. 2017. Overview of ice nucleating particles [J]. Meteor. Monogr., 58: 1.1−1.33. doi: 10.1175/AMSMONOGRAPHS-D-16-0006.1
    [84] Kärcher B, Möhler O, DeMott P J, et al. 2007. Insights into the role of soot aerosols in cirrus cloud formation [J]. Atmos. Chem. Phys., 7(16): 4203−4227. doi: 10.5194/acp-7-4203-2007
    [85] Kiselev A, Bachmann F, Pedevilla P, et al. 2017. Active sites in heterogeneous ice nucleation-the example of K-rich feldspars [J]. Science, 355(6323): 367−371. doi: 10.1126/science.aai8034
    [86] Knackstedt K A, Moffett B F, Hartmann S, et al. 2018. Terrestrial origin for abundant riverine nanoscale ice-nucleating particles [J]. Environ. Sci. Technol., 52(21): 12358−12367. doi: 10.1021/acs.est.8b03881
    [87] Knopf D A, Wang B, Laskin A, et al. 2010. Heterogeneous nucleation of ice on anthropogenic organic particles collected in Mexico City [J]. Geophys. Res. Lett., 37(11): L11803. doi: 10.1029/2010GL043362
    [88] Knopf D A, Alpert P A, Wang B, et al. 2011. Stimulation of ice nucleation by marine diatoms [J]. Nat. Geosci., 4(2): 88−90. doi: 10.1038/ngeo1037
    [89] Knopf D A, Alpert P A, Wang B B. 2018. The role of organic aerosol in atmospheric ice nucleation: A review [J]. ACS Earth Space Chem., 2(3): 168−202. doi: 10.1021/acsearthspacechem.7b00120
    [90] Koehler K A, Kreidenweis S M, DeMott P J, et al. 2010. Laboratory investigations of the impact of mineral dust aerosol on cold cloud formation [J]. Atmos. Chem. Phys., 10(23): 11955−11968. doi: 10.5194/acp-10-11955-2010
    [91] Kulkarni G, Zhang K, Zhao C, et al. 2015. Ice formation on nitric acid-coated dust particles: Laboratory and modeling studies [J]. J. Geophys. Res., 120(5): 7682−7698. doi: 10.1002/2014JD022637
    [92] Kulkarni G, China S, Liu S, et al. 2016. Ice nucleation activity of diesel soot particles at cirrus relevant temperature conditions: Effects of hydration, secondary organics coating, soot morphology, and coagulation [J]. Geophys. Res. Lett., 43(7): 3580−3588. doi: 10.1002/2016GL068707
    [93] Ladino L A, Zhou S, Yakobi‐Hancock J D, et al. 2014. Factors controlling the ice nucleating abilities of α-pinene SOA particles [J]. J. Geophys. Res., 119(14): 9041−9051. doi: 10.1002/2014JD021578
    [94] Ladino Moreno L A, Stetzer O, Lohmann U. 2013. Contact freezing: A review of experimental studies [J]. Atmos. Chem. Phys., 13(19): 9745−9769. doi: 10.5194/acp-13-9745-2013
    [95] Lamb D, Verlinde J. 2011. Physics and Chemistry of Clouds [M]. Cambridge: Cambridge University Press.
    [96] Levin E J T, McMeeking G R, DeMott P J, et al. 2016. Ice-nucleating particle emissions from biomass combustion and the potential importance of soot aerosol [J]. J. Geophys. Res., 121(10): 5888−5903. doi: 10.1002/2016JD024879
    [97] 李娟, 黄庚. 2001. 黄河上游地区大气冰核浓度的观测研究 [J]. 气象, 27(11): 8−12. doi: 10.3969/j.issn.1000-0526.2001.11.002

    Li Juan, Huang Geng. 2001. Analysis of observational results of content of ice nuclei in the atmosphere in the upper reaches of Huanghe River [J]. Meteorological Monthly (in Chinese), 27(11): 8−12. doi: 10.3969/j.issn.1000-0526.2001.11.002
    [98] 李丽光, 周德平. 2011. 大气冰核研究进展 [J]. 高原气象, 30(6): 1716−1721.

    Li Liguang, Zhou Deping. 2011. Advance in atmospheric ice nuclei [J]. Plateau Meteorology (in Chinses), 30(6): 1716−1721.
    [99] Li L G, Zhou D P, Wang Y F, et al. 2017. An observational study of atmospheric ice nuclei number concentration during three fog-haze weather periods in shenyang, northeastern China [J]. Atmos. Res., 188: 11−19. doi: 10.1016/j.atmosres.2016.12.014
    [100] 李淑日, 黄庚, 胡志晋. 2003. 黄河上游河南县地面大气冰核观测分析 [J]. 应用气象学报, 14(S1): 41−48. doi: 10.3969/j.issn.1001-7313.2003.z1.006

    Li Shuri, Huang Geng, Hu Zhijin. 2003. Analysis of ice nuclei in atmosphere in Henan county in upper reaches of Huanghe River [J]. Journal of Applied Meteorological Science (in Chinses), 14(S1): 41−48. doi: 10.3969/j.issn.1001-7313.2003.z1.006
    [101] 李艳伟, 杜秉玉. 2003. 新疆天山山区大气冰核浓度的测量及分析 [J]. 南京气象学院学报, 26(3): 364−370. doi: 10.13878/j.cnki.dqkxxb.2003.03.010

    Li Yanwei, Du Bingyu. 2003. Measurement and analysis of concentration of atmospheric ice nuclei in Tianshan Mountain area [J]. Journal of Nanjing Institute of Meteorology (in Chinese), 26(3): 364−370. doi: 10.13878/j.cnki.dqkxxb.2003.03.010
    [102] Lohmann U, Lüönd F, Mahrt F. 2016. An Introduction To Clouds: From the Microscale to Climate [M]. Cambridge: Cambridge University Press.
    [103] Marcolli C, Gedamke S, Zobrist B. 2007. Efficiency of immersion mode ice nucleation on surrogates of mineral dust [M]//O’ Dowd C D, Wagner P E. Nucleation and Atmospheric Aerosols. Dordrecht: Springer, 36–40. doi: 10.1007/978-1-4020-6475-3_5
    [104] Mahrt F, Marcolli C, David R O, et al. 2018. Ice nucleation abilities of soot particles determined with the Horizontal Ice Nucleation Chamber [J]. Atmos. Chem. Phys., 18: 13363−13392. doi: 10.5194/acp-18-13363-2018
    [105] Mason B J. 1962. The cloud chamber as a tool in cloud physics [J]. Contemp. Phys., 4(1): 27−48. doi: 10.1080/00107516208205826
    [106] Mason R H, Si M, Li J, et al. 2015. Ice nucleating particles at a coastal marine boundary layer site: Correlations with aerosol type and meteorological conditions [J]. Atmos. Chem. Phys., 15(21): 12547−12566. doi: 10.5194/acp-15-12547-2015
    [107] McCluskey C S, DeMott P J, Prenni A J, et al. 2014. Characteristics of atmospheric ice nucleating particles associated with biomass burning in the US: Prescribed burns and wildfires [J]. J. Geophys. Res., 119(17): 10458−10470. doi: 10.1002/2014JD021980
    [108] McCluskey C S, DeMott P J, Ma P L, et al. 2019. Numerical representations of marine ice-nucleating particles in remote marine environments evaluated against observations [J]. Geophys. Res. Lett., 46(13): 7838−7847. doi: 10.1029/2018GL081861
    [109] Mertes S, Verheggen B, Walter S, et al. 2007. Counterflow virtual impactor based collection of small ice particles in mixed-phase clouds for the physico-chemical characterization of tropospheric ice nuclei: Sampler description and first case study [J]. Aerosol Sci. Technol., 41(9): 848−864. doi: 10.1080/02786820701501881
    [110] Meyers M P, DeMott P J, Cotton W R. 1992. New primary ice-nucleation parameterizations in an explicit cloud model [J]. J. Appl. Meteor., 31(7): 708−721. doi:10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2
    [111] Möhler O, Stetzer O, Schaefers S, et al. 2003. Experimental investigation of homogeneous freezing of sulphuric acid particles in the aerosol chamber AIDA [J]. Atmos. Chem. Phys., 3(1): 211−223. doi: 10.5194/acp-3-211-2003
    [112] Moffett B F, Hill T C J, DeMott P J, et al. 2018. Abundance of Biological Ice Nucleating Particles in the Mississippi and Its Major Tributaries [J]. Atmosphere, 9: 307. doi: 10.3390/atmos9080307
    [113] Murray B J, Wilson T W, Dobbie S, et al. 2010. Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions [J]. Nat. Geosci., 3(4): 233−237. doi: 10.1038/ngeo817
    [114] Murray B J, O'Sullivan D, Atkinson J D, et al. 2012. Ice nucleation by particles immersed in supercooled cloud droplets [J]. Chem. Soc. Rev., 41(19): 6519−6554. doi: 10.1039/C2CS35200A
    [115] Nichman L, Wolf M, Davidovits P, et al. 2019. Laboratory study of the heterogeneous ice nucleation on black-carbon-containing aerosol [J]. Atmos. Chem. Phys., 19(19): 12175−12194. doi: 10.5194/acp-19-12175-2019
    [116] Niedermeier D, Hartmann S, Shaw R A, et al. 2010. Heterogeneous freezing of droplets with immersed mineral dust particles-measurements and parameterization [J]. Atmos. Chem. Phys., 10(8): 3601−3614. doi: 10.5194/acp-10-3601-2010
    [117] Niedermeier D, Shaw R A, Hartmann S, et al. 2011. Heterogeneous ice nucleation: Exploring the transition from stochastic to singular freezing behavior [J]. Atmos. Chem. Phys., 11(16): 8767−8775. doi: 10.5194/acp-11-8767-2011
    [118] Niedermeier D, Augustin-Bauditz S, Hartmann S, et al. 2015. Can we define an asymptotic value for the ice active surface site density for heterogeneous ice nucleation? [J]. J. Geophys. Res., 120(10): 5036−5046. doi: 10.1002/2014JD022814
    [119] Niemand M, Möhler O, Vogel B, et al. 2012. A particle-surface-area-based parameterization of immersion freezing on desert dust particles [J]. J. Atmos. Sci., 69(10): 3077−3092. doi: 10.1175/JAS-D-11-0249.1
    [120] 牛生杰, 安夏兰, 陈跃, 等. 2000. 贺兰山地区大气冰核浓度的测量及初步分析 [J]. 南京气象学院学报, 23(2): 294−298. doi: 10.13878/j.cnki.dqkxxb.2000.02.021

    Niu Shengjie, An Xialan, Chen Yao, et al. 2000. Measurements and analysis of concentrations of atmospheric ice nuclei in the Helanshan Area [J]. Journal of Nanjing Institute of Meteorology (in Chinese), 23(2): 294−298. doi: 10.13878/j.cnki.dqkxxb.2000.02.021
    [121] O’ Sullivan D, Murray B J, Malkin T L, et al. 2014. Ice nucleation by fertile soil dusts: Relative importance of mineral and biogenic components [J]. Atmos. Chem. Phys., 14(4): 1853−1867. doi: 10.5194/acp-14-1853-2014
    [122] O’ Sullivan D, Murray B J, Ross J F, et al. 2015. The relevance of nanoscale biological fragments for ice nucleation in clouds [J]. Sci. Rep., 5: 8082. doi: 10.1038/srep08082
    [123] O’ Sullivan D, Murray B J, Ross J F, et al. 2016. The adsorption of fungal ice-nucleating proteins on mineral dusts: A terrestrial reservoir of atmospheric ice-nucleating particles [J]. Atmos. Chem. Phys., 16(12): 7879−7887. doi: 10.5194/acp-16-7879-2016
    [124] O’ Sullivan D, Adams M P, Tarn M D, et al. 2018. Contributions of biogenic material to the atmospheric ice-nucleating particle population in North Western Europe [J]. Sci. Rep., 8(1): 13821. doi: 10.1038/s41598-018-31981-7
    [125] Peckhaus A, Kiselev A, Hiron T, et al. 2016. A comparative study of K-rich and Na/Ca-rich feldspar ice-nucleating particles in a nanoliter droplet freezing assay [J]. Atmos. Chem. Phys., 16(18): 11477−11496. doi: 10.5194/acp-16-11477-2016
    [126] Phillips V T J, Andronache C, Christner B, et al. 2009. Potential impacts from biological aerosols on ensembles of continental clouds simulated numerically [J]. Biogeosciences, 6(6): 987−1014. doi: 10.5194/bg-6-987-2009
    [127] Phillips V T J, DeMott P J, Andronache C, et al. 2013. Improvements to an empirical parameterization of heterogeneous ice nucleation and its comparison with observations [J]. J. Atmos. Sci., 70(2): 378−409. doi: 10.1175/JAS-D-12-080.1
    [128] Pinti V, Marcolli C, Zobrist B, et al. 2012. Ice nucleation efficiency of clay minerals in the immersion mode [J]. Atmos. Chem. Phys., 12(13): 5859−5878. doi: 10.5194/acp-12-5859-2012
    [129] Prenni A J, Petters M D, Faulhaber A, et al. 2009. Heterogeneous ice nucleation measurements of secondary organic aerosol generated from ozonolysis of alkenes [J]. Geophys. Res. Lett., 36(6): L06808. doi: 10.1029/2008GL036957
    [130] Prenni A J, DeMott P J, Sullivan A P, et al. 2012. Biomass burning as a potential source for atmospheric ice nuclei: Western wildfires and prescribed burns [J]. Geophys. Res. Lett., 39(11): L11805. doi: 10.1029/2012GL051915
    [131] Price H C, Baustian K J, McQuaid J B, et al. 2018. Atmospheric ice-nucleating particles in the dusty tropical atlantic [J]. J. Geophys. Res., 123(4): 2175−2193. doi: 10.1002/2017JD027560
    [132] Pummer B G, Bauer H, Bernardi J, et al. 2012. Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen [J]. Atmos. Chem. Phys., 12(5): 2541−2550. doi: 10.5194/acp-12-2541-2012
    [133] Pummer B G, Budke C, Augustin-Bauditz S, et al. 2015. Ice nucleation by water-soluble macromolecules [J]. Atmos. Chem. Phys., 15(8): 4077−4091. doi: 10.5194/acp-15-4077-2015
    [134] Reicher N, Budke C, Eickhoff L, et al. 2019. Size-dependent ice nucleation by airborne particles during dust events in the eastern Mediterranean [J]. Atmos. Chem. Phys., 19(17): 11143−11158. doi: 10.5194/acp-19-11143-2019
    [135] Reitz P, Spindler C, Mentel T F, et al. 2011. Surface modification of mineral dust particles by sulphuric acid processing: Implications for ice nucleation abilities [J]. Atmos. Chem. Phys., 11(15): 7839−7858. doi: 10.5194/acp-11-7839-2011
    [136] Rogers D C. 1988. Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies [J]. Atmos. Res., 22(2): 149−181. doi: 10.1016/0169-8095(88)90005-1
    [137] Rogers D C, DeMott P J, Kreidenweis S M. 2001. Airborne measurements of tropospheric ice-nucleating aerosol particles in the arctic spring [J]. J. Geophys. Res., 106(D14): 15053−15063. doi: 10.1029/2000JD900790
    [138] Rzesanke D, Nadolny J, Duft D, et al. 2012. On the role of surface charges for homogeneous freezing of supercooled water microdroplets [J]. Phys. Chem. Chem. Phys., 14(26): 9359−9363. doi: 10.1039/C2CP23653B
    [139] Schill G P, Tolbert M A. 2013. Heterogeneous ice nucleation on phase-separated organic-sulfate particles: Effect of liquid vs. glassy coatings [J]. Atmos. Chem. Phys., 13(9): 4681−4695. doi: 10.5194/acp-13-4681-2013
    [140] Schill G P, De Haan D O, Tolbert M A. 2014. Heterogeneous ice nucleation on simulated secondary organic aerosol [J]. Environ. Sci. Technol., 48(3): 1675−1682. doi: 10.1021/es4046428
    [141] 石爱丽, 郑国光, 游来光. 2006. 2003年秋季青海省河南县地面大气冰核观测分析 [J]. 应用气象学报, 17(2): 245−249. doi: 10.3969/j.issn.1001-7313.2006.02.016

    Shi Aili, Zheng Guoguang, You Laiguang. 2006. Observation and analysis on ice nucleus of Henan county of Qinghai Province in Autumn 2003 [J]. Journal of Applied Meteorological Science (in Chinses), 17(2): 245−249. doi: 10.3969/j.issn.1001-7313.2006.02.016
    [142] Shilling J E, Fortin T J, Tolbert M A. 2006. Depositional ice nucleation on crystalline organic and inorganic solids [J]. J. Geophys. Res., 111(D12). doi: 10.1029/2005JD006664
    [143] Sihvonen S K, Schill G P, Lyktey N A, et al. 2014. Chemical and physical transformations of aluminosilicate clay minerals due to acid treatment and consequences for heterogeneous ice nucleation [J]. J. Phys. Chem. A, 118(38): 8787−8796. doi: 10.1021/jp504846g
    [144] Spracklen D V, Heald C L. 2014. The contribution of fungal spores and bacteria to regional and global aerosol number and ice nucleation immersion freezing rates [J]. Atmos. Chem. Phys., 14(17): 9051−9059. doi: 10.5194/acp-14-9051-2014
    [145] 苏航, 银燕, 陆春松, 等. 2014. 新型扩散云室搭建及其对黄山地区大气冰核的观测研究 [J]. 大气科学, 38(2): 386−398. doi: 10.3878/j.issn.1006-9895.2013.12211

    Su Hang, Yin Yan, Lu Chunsong, et al. 2014. Development of new diffusion cloud chamber type and its observation study of ice nuclei in the Huangshan Area [J]. Chinese Journal of Atmospheric Sciences (in Chinses), 38(2): 386−398. doi: 10.3878/j.issn.1006-9895.2013.12211
    [146] Sullivan R C, Petters M D, DeMott P J, et al. 2010. Irreversible loss of ice nucleation active sites in mineral dust particles caused by sulphuric acid condensation [J]. Atmos. Chem. Phys., 10(23): 11471−11487. doi: 10.5194/acp-10-11471-2010
    [147] Tang M J, Cziczo D J, Grassian V H. 2016. Interactions of water with mineral dust aerosol: Water adsorption, hygroscopicity, cloud condensation, and ice nucleation [J]. Chem. Rev., 116(7): 4205−4259. doi: 10.1021/acs.chemrev.5b00529
    [148] Tang M J, Chen J, Wu Z J. 2018. Ice nucleating particles in the troposphere: Progresses, challenges and opportunities [J]. Atmos. Environ., 192: 206−208. doi: 10.1016/j.atmosenv.2018.09.004
    [149] Vali G. 1994. Freezing rate due to heterogeneous nucleation [J]. J. Atmos. Sci., 51(13): 1843−1856. doi:10.1175/1520-0469(1994)051<1843:FRDTHN>2.0.CO;2
    [150] Vali G. 2014. Interpretation of freezing nucleation experiments: Singular and stochastic; sites and surfaces [J]. Atmos. Chem. Phys., 14(11): 5271−5294. doi: 10.5194/acp-14-5271-2014
    [151] Vali G, DeMott P J, Möhler O, et al. 2015. Technical Note: A proposal for ice nucleation terminology [J]. Atmos. Chem. Phys., 15(18): 10263−10270. doi: 10.5194/acp-15-10263-2015
    [152] Vergara-Temprado J, Murray B J, Wilson T W, et al. 2017. Contribution of feldspar and marine organic aerosols to global ice nucleating particle concentrations [J]. Atmos. Chem. Phys., 17(5): 3637−3658. doi: 10.5194/acp-17-3637-2017
    [153] Vergara-Temprado J, Miltenberger A K, Furtado K, et al. 2018a. Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles [J]. Proc. Natl. Acad. Sci. USA, 115(11): 2687−2692. doi: 10.1073/pnas.1721627115
    [154] Vergara-Temprado J, Holden M A, Orton T R, et al. 2018b. Is black carbon an unimportant ice-nucleating particle in mixed-phase clouds? [J]. J. Geophys. Res., 123(8): 4273−4283. doi: 10.1002/2017JD027831
    [155] Wagner R, Möhler O, Saathoff H, et al. 2012. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability [J]. Atmos. Chem. Phys., 12(18): 8589−8610. doi: 10.5194/acp-12-8589-2012
    [156] Wagner R, Höhler K, Huang W, et al. 2017. Heterogeneous ice nucleation of α-pinene SOA particles before and after ice cloud processing [J]. J. Geophys. Res., 122(9): 4924−4943. doi: 10.1002/2016JD026401
    [157] Wang B B, Lambe A T, Massoli P, et al. 2012. The deposition ice nucleation and immersion freezing potential of amorphous secondary organic aerosol: Pathways for ice and mixed-phase cloud formation [J]. J. Geophys. Res., 117(D16): D16209. doi: 10.1029/2012JD018063
    [158] Welti A, Lüönd F, Stetzer O, et al. 2009. Influence of particle size on the ice nucleating ability of mineral dusts [J]. Atmos. Chem. Phys., 9(18): 6705−6715. doi: 10.5194/acp-9-6705-2009
    [159] Welti A, Lüönd F, Kanji Z A, et al. 2012. Time dependence of immersion freezing: An experimental study on size selected kaolinite particles [J]. Atmos. Chem. Phys., 12(20): 9893−9907. doi: 10.5194/acp-12-9893-2012
    [160] Wex H, DeMott P J, Tobo Y, et al. 2014. Kaolinite particles as ice nuclei: Learning from the use of different kaolinite samples and different coatings [J]. Atmos. Chem. Phys., 14(11): 5529−5546. doi: 10.5194/acp-14-5529-2014
    [161] Wex H, Augustin-Bauditz S, Boose Y, et al. 2015. Intercomparing different devices for the investigation of ice nucleating particles using snomax® as test substance [J]. Atmos. Chem. Phys., 15(3): 1463−1485. doi: 10.5194/acp-15-1463-2015
    [162] Wex H, Huang L, Zhang W, et al. 2019. Annual variability of ice-nucleating particle concentrations at different arctic locations [J]. Atmos. Chem. Phys., 19(7): 5293−5311. doi: 10.5194/acp-19-5293-2019
    [163] Wilson T W, Murray B J, Wagner R, et al. 2012. Glassy aerosols with a range of compositions nucleate ice heterogeneously at cirrus temperatures [J]. Atmos. Chem. Phys., 12(18): 8611−8632. doi: 10.5194/acp-12-8611-2012
    [164] Wilson T W, Ladino L A, Alpert P A, et al. 2015. A marine biogenic source of atmospheric ice-nucleating particles [J]. Nature, 525(7568): 234−238. doi: 10.1038/nature14986
    [165] Wolf M J, Zhang Y, Zawadowicz M A, et al. 2020. A biogenic secondary organic aerosol source of cirrus ice nucleating particles [J]. Nat. Commun., 11: 4834. doi: 10.1038/s41467-020-18424-6
    [166] 吴明林, 刘峻, 黄文娟, 等. 1986. 福建石塔山大气冰核的观测和分析 [J]. 热带气象, 2(1): 71−78.

    Wu Minglin, Liu Jun, Huang Wenjuan, et al. 1986. The measurement and analysis of atmospheric ice-nucleus concentration on Fujian Shita mountain [J]. Journal of Tropical Meteorology (in Chinses), 2(1): 71−78.
    [167] Wu Z J, Chen J, Wang Y, et al. 2018. Interactions between water vapor and atmospheric aerosols have key roles in air quality and climate change [J]. Natl. Sci. Rev., 5(4): 452−454. doi: 10.1093/nsr/nwy063
    [168] Xu C H, Wei M, Chen J M, et al. 2017. Investigation of diverse bacteria in cloud water at mt. Tai, China [J]. Sci. Total. Environ., 580: 258−265. doi: 10.1016/j.scitotenv.2016.12.081
    [169] 杨磊, 银燕, 杨绍忠, 等. 2013. 南京地区冬季大气冰核特征及其与气溶胶关系的研究 [J]. 大气科学, 37(5): 983−993. doi: 10.3878/j.issn.1006-9895.2012.12098

    Yang Lei, Yin Yan, Yang Shaozhong, et al. 2013. Characteristics of atmospheric ice nuclei and its relationship to aerosols in winter in Nanjing [J]. Chinese Journal of Atmospheric Sciences (in Chinses), 37(5): 983−993. doi: 10.3878/j.issn.1006-9895.2012.12098
    [170] 杨磊, 银燕, 杨绍忠, 等. 2013. 南京地区大气冰核浓度的测量及分析 [J]. 大气科学, 37(3): 579−594. doi: 10.3878/j.issn.1006-9895.2012.11242

    Yang Lei, Yin Yan, Yang Shaozhong, et al. 2013. Measurement and analysis of atmospheric ice nuclei in Nanjing [J]. Chinese Journal of Atmospheric Sciences (in Chinses), 37(3): 579−594. doi: 10.3878/j.issn.1006-9895.2012.11242
    [171] Yankofsky S A, Levin Z, Bertold T, et al. 1981. Some basic characteristics of bacterial freezing nuclei [J]. J. Appl. Meteor., 20(9): 1013−1019. doi:10.1175/1520-0450(1981)020<1013:SBCOBF>2.0.CO;2
    [172] 游来光. 1976. 大气中的冰核 [J]. 气象, 2(S1): 29−32.

    You Laiguang. 1976. Atmosperhic ice nuclei [J]. Meteorological Monthly (in Chinese), 2(S1): 29−32.
    [173] 游来光, 石安英. 1964. 北京地区1963年春季冰核浓度变化特点的观测分析 [J]. 气象学报, 34(4): 548−554. doi: 10.11676/qxxb1964.054

    You Laiguang, Shi Anying. 1964. The measurement and analysis of ice-nucleuscon centration at Peking during the period from March 18th to April 30th in 1963 [J]. Acta Meteor. Sinica (in Chinses), 34(4): 548−554. doi: 10.11676/qxxb1964.054
    [174] 游来光, 杨绍忠, 王祥国, 等. 2002. 1995和1996年春季北京地区大气冰核浓度的观测与研究 [J]. 气象学报, 60(1): 101−109. doi: 10.11676/qxxb2002.012

    You Laiguang, Yang Shaozhong, Wang Xiangguo, et al. 2002. Study of ice nuclei concentration at Beijing in the spring of 1995 and 1996 [J]. Acta Meteor. Sinica (in Chinses), 60(1): 101−109. doi: 10.11676/qxxb2002.012
    [175] Zhao B, Wang Y, Gu Y, et al. 2019. Ice nucleation by aerosols from anthropogenic pollution [J]. Nat. Geosci., 12(8): 602−607. doi: 10.1038/s41561-019-0389-4
    [176] 周德平, 洪也, 王扬锋, 等. 2016. 沙尘天气过程对沈阳大气冰核浓度与尺度分布的影响 [J]. 中国沙漠, 36(6): 1672−1678. doi: 10.7522/j.issn.1000-694X.2016.00052

    Zhou Deping, Hong Ye, Wang Yangfeng, et al. 2016. Observation on distributions of atmospheric ice nuclei concentration and size under the influence of dust weather [J]. Journal of Desert Research (in Chinses), 36(6): 1672−1678. doi: 10.7522/j.issn.1000-694X.2016.00052
    [177] 周德平, 苏航, 耿树江, 等. 2018. 辽沈地区不同高度大气冰核数浓度的飞机观测 [J]. 气象与环境学报, 34(6): 133−139. doi: 10.3969/j.issn.1673-503X.2018.06.016

    Zhou Deping, Su Hang, Geng Shujiang, et al. 2018. Aircraft observation of atmospheric ice nuclei concentration in Liaoning and Shenyang regions [J]. Journal of Meteorology and Environment (in Chinese), 34(6): 133−139. doi: 10.3969/j.issn.1673-503X.2018.06.016
    [178] Zobrist B, Marcolli C, Koop T, et al. 2006. Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect [J]. Atmos. Chem. Phys., 6(10): 3115−3129. doi: 10.5194/acp-6-3115-2006
    [179] Zolles T, Burkart J, Häusler T, et al. 2015. Identification of ice nucleation active sites on feldspar dust particles [J]. J. Phys. Chem. A, 119(11): 2692−2700. doi: 10.1021/jp509839x
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  50
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-05
  • 录用日期:  2020-11-02
  • 网络出版日期:  2020-11-24
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回