高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2016年秋季中国南方降水异常的环流特征及海温影响

蒋子瑶 徐海明 马静

蒋子瑶, 徐海明, 马静. 2021. 2016年秋季中国南方降水异常的环流特征及海温影响[J]. 大气科学, 45(5): 1−16 doi: 10.3878/j.issn.1006-9895.2011.20180
引用本文: 蒋子瑶, 徐海明, 马静. 2021. 2016年秋季中国南方降水异常的环流特征及海温影响[J]. 大气科学, 45(5): 1−16 doi: 10.3878/j.issn.1006-9895.2011.20180
JIANG Ziyao, XU Haiming, MA Jing. 2021. Atmospheric Circulation Characteristics of Heavy Precipitation Events and Impact of Sea Surface Temperature over the Southern China in the Autumn of 2016 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(5): 1−16 doi: 10.3878/j.issn.1006-9895.2011.20180
Citation: JIANG Ziyao, XU Haiming, MA Jing. 2021. Atmospheric Circulation Characteristics of Heavy Precipitation Events and Impact of Sea Surface Temperature over the Southern China in the Autumn of 2016 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(5): 1−16 doi: 10.3878/j.issn.1006-9895.2011.20180

2016年秋季中国南方降水异常的环流特征及海温影响

doi: 10.3878/j.issn.1006-9895.2011.20180
基金项目: 国家自然科学基金资助项目41975106
详细信息
    作者简介:

    蒋子瑶,女,1996年出生,硕士研究生,主要从事海—气相互作用研究。E-mail: 389751842@qq.com

    通讯作者:

    徐海明,E-mail: hxu@nuist.edu.cn

  • 中图分类号: P466

Atmospheric Circulation Characteristics of Heavy Precipitation Events and Impact of Sea Surface Temperature over the Southern China in the Autumn of 2016

Funds: National Natural Science Foundation of China (Grant 41975106)
  • 摘要: 本文利用中国气象台站观测降水、英国Hadley中心海温和NCEP/NCAR再分析数据集等资料,研究了2016年秋季中国南方降水异常偏多的环流特征及其海温影响。结果表明,2016年秋季东亚副热带西风急流偏强,我国南方地区位于急流入口区的右侧,有利于产生上升运动;同时西太平洋副热带高压强度偏强、面积偏大、位置偏北偏西,对应副高西南侧的东南风将热带太平洋的暖湿气流向我国南方输送,有利于降水偏多。另外,2016年秋季登陆我国的台风异常偏多,频繁活动的台风给我国南方带来了大量降水,也是导致我国南方降水异常偏多的原因之一。进一步研究表明,2016年秋季南方降水异常偏多主要与同期赤道西太平洋和东南太平洋海温异常偏高有关,上述海区的海温异常通过激发向下游传播的遥相关波列或通过Gill响应对东亚环流产生影响,进而有利于中国南方降水增多。通过CAM5.3(Community Atmosphere Model Version 5.3)一系列的敏感性试验,验证了上述的结果。
  • 图  1  (a)2016年秋季全国降水量(等值线,单位:mm)及降水距平百分比(填色)分布(黑色方框表示降水关键区);(b)1967~2019年中国南方秋季降水指数

    Figure  1.  Distributions of accumulated precipitation (contours, units: mm) and precipitation anomaly percentage (shaded) over China in fall of 2016, black box indicates the key area of precipitation; (b) fall precipitation index in southern China in 1967–2019

    图  2  2016年秋季台风(a)“莫兰蒂”(9月14~15日)、(b)“鲇鱼”(9月27~30日)、(c)“莎莉嘉”(10月17~19日)和(d)“海马”引起的降水量分布,单位:mm

    Figure  2.  Distributions of accumulated precipitation (units: mm) caused by typhoons (a) Meranti (September 14–15), (b) Megi (September 27–30), (c) Sarika (October 17–19), and (d) Haima (October 20–21) in fall of 2016

    图  3  去除台风影响后的2016年秋季全国降水量(等值线,单位:mm)及降水距平百分比(填色)分布

    Figure  3.  Distributions of accumulated precipitation (contours, units: mm) and precipitation anomaly percentage (shaded) over China in fall of 2016 with the typhoon-related precipitation removed

    图  4  2016年秋季大气环流及其异常分布:(a)500 hPa位势高度场(黑色等值线,单位:gpm)及其距平场(填色,单位:gpm)(粗红线为气候平均的5880等值线)、850 hPa风场(箭头,单位:m s−1)及200 hPa纬向风场(蓝色等值线,单位:m s−1);(b)850 hPa风场距平(箭头,单位:m s−1)及经向风分量距平(等值线,单位:m s−1);(c)地面至300 hPa整层积分水汽通量距平场(箭头,单位:kg m−1 s−1)及水汽通量散度距平场(填色,单位:10−5 g m−2 s−1);(d)沿113°~122°E纬向平均的经向垂直环流(箭头,两个分量为经向风和垂直速度,单位分别为m s−1和−10−2 Pa s−1)和纬向风(蓝色等值线,单位:m s−1)及其距平场(黑色等值线,单位:m s−1)、垂直速度距平场(填色,单位:−10−2 Pa s−1

    Figure  4.  Atmospheric circulation and its anomalies in fall of 2016: (a) Geopotential height (black contours, units: gpm) and its anomalies (shaded, units: gpm) at 500 hPa (the thick red line denotes the 5880 contours of the climatological mean), winds at 850 hPa (arrows, units: m s−1), and zonal winds at 200 hPa (blue contours, units: m s−1); (b) wind anomalies (arrows, units: m s−1) and meridional wind anomalies (contours, units: m s−1) at 850 hPa; (c) anomalies of moisture flux integrated from the surface up to 300 hPa (arrows, units: kg m−1 s−1) and its divergences (shaded, units: 10−5 g m−2 s−1); (d) meridional vertical circulation averaged from 113°E to 122°E (arrows, meridional wind, and vertical velocity in m s−1 and −10−2 Pa s−1, respectively), zonal wind (blue contours, units: m/s) and its anomalies (black contours, unit: m s−1), vertical velocity anomalies (shaded, units: −10−2 Pa s−1)

    图  5  2016年秋季海温异常分布:(a)2016年秋季海温与多年(1956~2005年)平均的秋季海温之差,单位:°C;(b)2016年秋季海温与近十年(2006~2015年)秋季平均海温之差(填色,单位:°C)和850 hPa风场距平(箭头,单位:m s−1);(c)近十年秋季平均海温与多年平均的秋季海温之差(单位:°C)

    Figure  5.  Distributions of SST (Sea Surface Temperature) anomalies in fall of 2016: (a) Differences between SST in 2016 and multiyear-averaged (1956–2005) SST, units: °C; (b) differences (shaded, units: °C) between SST in 2016 and averaged SST in the past ten years (2006–2015) in fall and corresponding wind differences at 850 hPa (arrows, units: m s−1); (c) differences between averaged SST in the past ten years and multiyear-averaged SST in fall (units: °C)

    图  6  2016年秋季相对近十年秋季平均的气象要素差值场分布:(a)降水(台风除外)距平百分比;(b)位势高度距平场(填色,单位:gpm;等值线为2016年秋季的500 hPa位势高度场)及850 hPa风场距平(箭头,单位:m s−1

    Figure  6.  Distributions of differences of fall meteorological variables between 2016 and the past 10-year average: (a) Precipitation (typhoon-related precipitation removed) anomaly percentage; (b) geopotential height anomalies at 500 hPa (shaded, units: gpm; contours denote a 500 hPa geopotential height in fall of 2016.) and wind anomalies at 850 hPa (arrows, units: m s−1)

    图  7  年际尺度上的中国南方秋季降水指数与全球同期海温的相关(填色,斜线区域表示通过信度为95%的显著性检验)及850 hPa回归风场(箭头,单位:m s−1,粗箭头表示通过信度为95%的显著性检验)

    Figure  7.  Simultaneous correlation coefficients between the fall precipitation index in southern China and global SST on interannual time scales (shaded; the slashed areas denote the values significant at a confidence level of 95%) and regression coefficients of wind at 850 hPa (arrows; the thick arrows denote the values significant at a confidence level of 95%)

    图  8  近十年秋季平均相对多年秋季平均的气象要素差值场分布:(a)降水距平百分比;(b)位势高度距平场(填色,单位:gpm;等值线为近十年秋季平均的500 hPa位势高度场)及850 hPa风场距平分布(箭头,单位:m s−1

    Figure  8.  Distributions of differences of fall meteorological variables between average in the last ten years and multiyear average: (a) Precipitation anomaly percentage; (b) geopotential height anomalies at 500 hPa (shaded, units: gpm; contours denote a 500 hPa geopotential height in fall of 2016) and wind anomalies at 850 hPa (arrows, units: m s−1)

    图  9  TWP试验与CTL试验模拟结果的差值场分布:(a)降水距平百分比(斜线区域表示通过信度为90%的显著性检验);(b)500 hPa位势高度距平场(等值线,单位:gpm,阴影表示通过信度为90%的显著性检验)及850 hPa风场距平分布(箭头,单位:m s−1,粗箭头表示通过信度为90%的显著性检验),“A”和“C”分别表示反气旋和气旋

    Figure  9.  Distributions of differences of simulations between TWP (Tropical Warm Pool) and CTL experiments: (a) Precipitation anomaly percentage (slashed areas denote the values significant at a confidence level of 90%); (b) geopotential height anomalies at 500 hPa (contours, units: gpm; shaded areas denote the values significant at a confidence level of 90%) and wind anomalies at 850 hPa (arrows, units: m s−1; the thick arrows denote the values significant at a confidence level of 90%), “A” and “C” represent the cyclone and anticyclone, respectively

    图  10  (a)CTL试验和(b)TWP试验模拟的秋季西太平洋和西北太平洋上空逐个涡旋生成位置(圆点)及移动路径(折线)

    Figure  10.  Vortex generation positions (dots) and moving tracks (broken lines) over the western and northwestern Pacific in fall by (a) CTL and (b) TWP experiment

    图  11  图9,但为SEP试验与CTL试验的差值场

    Figure  11.  Same as Fig. 9, but for the differences between SEP and CTL experiments

    图  12  图9,但为NA试验与CTL试验的差值场

    Figure  12.  Same as Fig. 9, but for the differences between NA and CTL experiments

    表  1  试验方案

    Table  1.   Schemes of the numerical experiments

    数值试验名称下边界强迫区域
    控制试验CTL气候态海温
    赤道西太平洋试验TWP叠加2016年秋季赤道西太平洋(15°S~15°N,100°~160°W)的海温异常
    赤道中东太平洋试验TCEP叠加2016年秋季赤道中东太平洋(7°S~10°N,180°~80°W)的海温异常
    北太平洋试验NP叠加2016年秋季北太平洋(40°~60°N,150°E~120°W)的海温异常
    西北太平洋试验WNP叠加2016年秋季西北太平洋(20°~40°N,120°~150°E)的海温异常
    东南太平洋试验SEP叠加2016年秋季东南太平洋(10°~30°S,160°~70°W)的海温异常
    赤道大西洋试验TA叠加2016年秋季赤道大西洋(7°S~7°N,28°W~10°E)的海温异常
    北大西洋试验NA叠加近10年秋季平均的北大西洋(0°~66°N,90°W~0°)海温异常
    印度洋试验IO叠加近10年秋季平均的印度洋(30°S~20°N,40°~110°E)海温异常
    中纬度北太平洋试验MNP叠加近10年秋季平均的北太平洋中纬度地区(23°~60°N,130°~202°E)的海温异常
    下载: 导出CSV
  • [1] Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies [J]. Progress in Oceanography, 91(2): 167−216. doi: 10.1016/j.pocean.2011.01.002
    [2] Chen G H, Huang R H. 2008. Influence of monsoon over the warm pool on interannual variation on tropical cyclone activity over the western North Pacific [J]. Advances in Atmospheric Sciences, 25(2): 319−328. doi: 10.1007/s00376-008-0319-7
    [3] 陈海山, 周晶. 2013. 土壤湿度年际变化对中国区域极端气候事件模拟的影响研究II. 敏感性试验分析 [J]. 大气科学, 37(1): 1−13. doi: 10.3878/j.issn.1006-9895.2012.11048

    Chen H S, Zhou J. 2013. Impact of interannual soil moisture anomaly on simulation of extreme climate events in China. Part II: Sensitivity experiment analysis [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(1): 1−13. doi: 10.3878/j.issn.1006-9895.2012.11048
    [4] Chen Y, Zhai P M. 2014. Two types of typical circulation pattern for persistent extreme precipitation in central–eastern China [J]. Quart. J. Roy. Meteor. Soc., 140(682): 1467−1478. doi: 10.1002/qj.2231
    [5] 陈剀, 钟霖浩, 华丽娟, 等. 2020. 华西秋雨趋势变化的年代际转折及其成因分析 [J]. 气候与环境研究, 25(1): 90−102. doi: 10.3878/j.issn.1006-9585.2019.18116

    Chen K, Zhong L H, Hua L J, et al. 2020. Analysis on the interdecadal transition and its causes of the autumn precipitation trend in West China [J]. Climatic and Environmental Research (in Chinese), 25(1): 90−102. doi: 10.3878/j.issn.1006-9585.2019.18116
    [6] Coumou D, Rahmstorf S. 2012. A decade of weather extremes [J]. Nature Climate Change, 2(7): 491−496. doi: 10.1038/nclimate1452
    [7] 丁一汇. 2015. 论河南“75.8”特大暴雨的研究: 回顾与评述 [J]. 气象学报, 73(3): 411−424. doi: 10.11676/qxxb2015.067

    Ding Yihui. 2015. On the study of the unprecedented heavy rainfall in Henan Province during 4-8 August 1975: Review and assessment [J]. Acta Meteorologica Sinica (in Chinese), 73(3): 411−424. doi: 10.11676/qxxb2015.067
    [8] 丁一汇, 王遵娅, 宋亚芳, 等. 2008. 中国南方2008年1月罕见低温雨雪冰冻灾害发生的原因及其与气候变暖的关系 [J]. 气象学报, 66(5): 808−825. doi: 10.3321/j.issn:0577-6619.2008.05.014

    Ding Y H, Wang Z Y, Song Y F, et al. 2008. Causes of the unprecedented freezing disaster in January 2008 and its possible association with the global warming [J]. Acta Meteorologica Sinica (in Chinese), 66(5): 808−825. doi: 10.3321/j.issn:0577-6619.2008.05.014
    [9] 方浩, 乔云亭. 2019. 中国东部夏季极端降水时空分布及环流背景 [J]. 热带气象学报, 35(4): 517−527. doi: 10.16032/j.issn.1004-4965.2019.047

    Fang H, Qiao Y T. 2019. Temporal and spatial distribution of summer extreme precipitation and circulation background over eastern China [J]. Journal of Tropical Meteorology (in Chinese), 35(4): 517−527. doi: 10.16032/j.issn.1004-4965.2019.047
    [10] Feng S, Hu Q. 2004. Variations in the teleconnection of ENSO and summer rainfall in northern China: A role of the Indian summer monsoon [J]. J. Climate, 17(24): 4871−4881. doi: 10.1175/JCLI-3245.1
    [11] 高荣, 宋连春, 钟海玲. 2018. 2016年汛期中国降水极端特征及与1998年对比 [J]. 气象, 44(5): 699−703. doi: 10.7519/j.issn.1000-0526.2018.05.011

    Gao R, Song L C, Zhong H L. 2018. Characteristics of extreme precipitation in China during the 2016 flood season and comparison with the 1998 situation [J]. Meteorological Monthly (in Chinese), 44(5): 699−703. doi: 10.7519/j.issn.1000-0526.2018.05.011
    [12] Gill A E. 1980. Some simple solutions for heat-induced tropical circulation [J]. Quart. J. Roy. Meteor. Soc., 106(449): 447−462. doi: 10.1002/qj.49710644905
    [13] Ham Y G, Kug J S, Park J Y, et al. 2013. Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/southern Oscillation events [J]. Nature Geoscience, 6(2): 112−116. doi: 10.1038/ngeo1686
    [14] 何金海, 吴志伟, 江志红, 等. 2006. 东北冷涡的“气候效应”及其对梅雨的影响 [J]. 科学通报, 51(23): 2803−2809. doi: 10.3321/j.issn:0023-074X.2006.23.016
    [15] He J H, Wu Z W, Jiang Z H, et al. 2007. “Climate effect” of the Northeast cold vortex and its influences on Meiyu [J]. Chinese Science Bulletin, 52(5): 671−679. doi: 10.3321/j.issn:0023-074X.2006.23.016
    [16] 何金海, 刘伯奇, 吴国雄. 2014. 春末夏初南亚高压的形成过程及其与ENSO事件的联系 [J]. 大气科学, 38(4): 670−684. doi: 10.3878/j.issn.1006-9895.1401.13221

    He J H, Liu B Q, Wu G X. 2014. Formation of South Asia high from late spring to early summer and its association with ENSO events [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(4): 670−684. doi: 10.3878/j.issn.1006-9895.1401.13221
    [17] Huang R H, Li W J. 1987. Influence of the heat source anomaly over the tropical western Pacific on the subtropical high over East Asia [C]//Proceedings of International Conference on the General Circulation of East Asia. Chengdu, China, 40–51.
    [18] 黄荣辉, 孙凤英. 1994. 热带西太平洋暖池的热状态及其上空的对流活动对东亚夏季气候异常的影响 [J]. 大气科学, 18(2): 140−151. doi: 10.3878/j.issn.1006-9895.1994.02.02

    Huang R H, Sun F Y. 1994. Impacts of the thermal state and the convective activities in the tropical western Pacific warm pool on the summer climate anomalies in East Asia [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 18(2): 140−151. doi: 10.3878/j.issn.1006-9895.1994.02.02
    [19] 黄士松, 汤明敏. 1995. 我国南方初夏汛期和东亚夏季风环流 [J]. 热带气象学报, 11(3): 203−213.

    Huang S S, Tang M M. 1995. The early summer flood periods of southern China and the summer monsoon circulation of East Asia [J]. Journal of Tropical Meteorology (in Chinese), 11(3): 203−213.
    [20] 黄荣辉, 徐予红, 周连童. 1999. 我国夏季降水的年代际变化及华北干旱化趋势 [J]. 高原气象, 18(4): 465−476. doi: 10.3321/j.issn:1000-0534.1999.04.001

    Huang R H, Xu Y H, Zhou L T. 1999. The interdecadal variation of summer precipitations in China and the drought trend in North China [J]. Plateau Meteorology (in Chinese), 18(4): 465−476. doi: 10.3321/j.issn:1000-0534.1999.04.001
    [21] 黄荣辉, 刘永, 冯涛. 2013. 20世纪90年代末中国东部夏季降水和环流的年代际变化特征及其内动力成因 [J]. 科学通报, 58(12): 1339−1349. doi: 10.1007/s11434-012-5545-9

    Huang R H, Liu Y, Feng T. 2013. Interdecadal change of summer precipitation over eastern China around the late-1990s and associated circulation anomalies, internal dynamical causes [J]. Chinese Science Bulletin, 58(12): 1339−1349. doi: 10.1007/s11434-012-5545-9
    [22] 黄菱芳, 陈海山, 郑旭程, 等. 2015. 欧亚大陆夏季地表热力异常与同期中国东部夏季降水的可能联系 [J]. 气候与环境研究, 20(6): 620−634. doi: 10.3878/j.issn.1006-9585.2015.15110

    Huang L F, Chen H S, Zheng X C, et al. 2015. Summer land surface thermal anomalies over Eurasia and their relationship with summer rainfall in East China [J]. Climatic and Environmental Research (in Chinese), 20(6): 620−634. doi: 10.3878/j.issn.1006-9585.2015.15110
    [23] 黄刚, 胡开明, 屈侠, 等. 2016. 热带印度洋海温海盆一致模的变化规律及其对东亚夏季气候影响的回顾 [J]. 大气科学, 40(1): 121−130. doi: 10.3878/j.issn.1006-9895.1505.15143

    Huang G, Hu K M, Qu X, et al. 2016. A review about Indian Ocean basin mode and its impacts on East Asian summer climate [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(1): 121−130. doi: 10.3878/j.issn.1006-9895.1505.15143
    [24] 黄挺, 周锋, 田娣, 等. 2020. 孟加拉湾及其毗邻海域中尺度涡旋活动的冬、夏季差异 [J]. 海洋学研究, 38(3): 21−30. doi: 10.3969/j.issn.1001-909X.2020.03.003

    Huang T, Zhou F, Tian D, et al. 2020. Seasonal variations of mesoscale eddy in the Bay of Bengal and its adjacent regions [J]. Journal of Marine Sciences (in Chinese), 38(3): 21−30. doi: 10.3969/j.issn.1001-909X.2020.03.003
    [25] Izrael Y A, Semenov S M, Anisimov O A, et al. 2007. The fourth assessment report of the intergovernmental panel on climate change: Working group II contribution [J]. Russian Meteorology and Hydrology, 32(9): 551−556. doi: 10.3103/S1068373907090014
    [26] 金荣花, 李维京, 张博, 等. 2012. 东亚副热带西风急流活动与长江中下游梅雨异常关系的研究 [J]. 大气科学, 36(4): 722−732. doi: 10.3878/j.issn.1006-9895.2011.11076

    Jin R H, Li W J, Zhang B, et al. 2012. A study of the relationship between East Asia subtropical westerly jet and abnormal Meiyu in the middle-lower reaches of the Yangtze River [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36(4): 722−732. doi: 10.3878/j.issn.1006-9895.2011.11076
    [27] Johnson N C, Xie S P. 2010. Changes in the sea surface temperature threshold for tropical convection [J]. Nature Geoscience, 3(12): 842−845. doi: 10.1038/ngeo1008
    [28] Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project [J]. Bull. Amer. Meteor. Soc., 77(3): 437−472. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [29] Kucharski F, Ikram F, Molteni F, et al. 2016. Atlantic forcing of Pacific decadal variability [J]. Climate Dyn., 46(7-8): 2337−2351. doi: 10.1007/s00382-015-2705-z
    [30] 李崇银, 穆明权. 2001. 赤道印度洋海温偶极子型振荡及其气候影响 [J]. 大气科学, 25(4): 433−443. doi: 10.3878/j.issn.1006-9895.2001.04.01

    Li C Y, Mu M Q. 2001. The dipole in the equatorial Indian Ocean and its impacts on climate [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 25(4): 433−443. doi: 10.3878/j.issn.1006-9895.2001.04.01
    [31] 李业进, 王黎娟. 2016. 西太平洋暖池热状态变异及其邻近地区对流活动特征 [J]. 大气科学学报, 39(2): 156−165. doi: 10.13878/j.cnki.dqkxxb.20140915043

    Li Y J, Wang L J. 2016. Variability of the thermal state of the western Pacific warm pool and the characteristics of its adjacent convective activities [J]. Transactions of Atmospheric Sciences (in Chinese), 39(2): 156−165. doi: 10.13878/j.cnki.dqkxxb.20140915043
    [32] 李崇银, 朱锦红, 孙照渤. 2002. 年代际气候变化研究 [J]. 气候与环境研究, 7(2): 209−219. doi: 10.3969/j.issn.1006-9585.2002.02.008

    Li C Y, Zhu J H, Sun Z B. 2002. The study interdecadel climate variation [J]. Climatic and Environmental Research (in Chinese), 7(2): 209−219. doi: 10.3969/j.issn.1006-9585.2002.02.008
    [33] Li X C, Xie S P, Gille S T, et al. 2016. Atlantic-induced pan-tropical climate change over the past three decades [J]. Nature Climate Change, 6(3): 275−279. doi: 10.1038/nclimate2840
    [34] 梁萍, 周兵, 马悦, 等. 2019. 2017年秋季华西秋雨的多时间尺度变化特征及成因分析 [J]. 气象, 45(8): 1104−1112. doi: 10.7519/j.issn.1000-0526.2019.08.007

    Liang P, Zhou B, Ma Y, et al. 2019. Characteristics of variability on multiple timescales and cause analysis of autumn rainfall in West China During 2017 [J]. Meteorological Monthly (in Chinese), 45(8): 1104−1112. doi: 10.7519/j.issn.1000-0526.2019.08.007
    [35] Liu K S, Chan J C L. 2003. Climatological characteristics and seasonal forecasting of tropical cyclones making landfall along the South China coast [J]. Mon. Wea. Rev., 131(8): 1650−1662. doi: 10.1175//2554.1
    [36] 刘慧斌, 温敏, 何金海, 等. 2012. 东北冷涡活动的季节内振荡特征及其影响 [J]. 大气科学, 36(5): 959−973. doi: 10.3878/j.issn.1006-9895.2012.11167

    Liu H B, Wen M, He J H, et al. 2012. Characteristics of the Northeast cold vortex at intraseasonal timescale and its impact [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36(5): 959−973. doi: 10.3878/j.issn.1006-9895.2012.11167
    [37] Liu X, Ma P L, Wang H, et al. 2016. Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model [J]. Geoscientific Model Development, 9(2): 505−522. doi: 10.5194/gmd-9-505-2016
    [38] 刘晓云, 王劲松, 杨金虎, 等. 2016. APO异常对我国西北地区东部秋季干湿变化影响 [J]. 应用气象学报, 27(4): 454−462. doi: 10.11898/1001-7313.20160408

    Liu X Y, Wang J S, Yang J H, et al. 2016. The relationship between the autumn drought in the eastern part of Northwest China and the summer Asian–Pacific oscillation [J]. Journal of Applied Meteorological Science (in Chinese), 27(4): 454−462. doi: 10.11898/1001-7313.20160408
    [39] Luo J J, Sasaki W, Masumoto Y. 2012. Indian Ocean warming modulates Pacific climate change [J]. Proceedings of the National Academy of Sciences of the United States of America, 109(46): 18701−18706. doi: 10.1073/pnas.1210239109
    [40] 梅双丽, 牛若芸. 2017. 2016年11月大气环流和天气分析 [J]. 气象, 43(2): 249−256. doi: 10.7519/j.issn.1000-0526.2017.02.013

    Mei S L, Niu R Y. 2017. Analysis of the November 2016 atmospheric circulation and weather [J]. Meteorological Monthly (in Chinese), 43(2): 249−256. doi: 10.7519/j.issn.1000-0526.2017.02.013
    [41] Mo K C, Ghil M. 1987. Statistics and dynamics of persistent anomalies [J]. J. Atmos. Sci., 44(5): 877−902. doi:10.1175/1520-0469(1987)044<0877:SADOPA>2.0.CO;2
    [42] Rayner N A, Parker D E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century [J]. J Geophys Res, 108(D14): 4407. doi: 10.1029/2002JD002670
    [43] 任福民, Gleason B, Easterling D. 2001. 一种识别热带气旋降水的数值方法 [J]. 热带气象学报, 17(3): 308−313. doi: 10.3969/j.issn.1004-4965.2001.03.015

    Ren F M, Gleason B, Easterling D. 2001. A numerical technique for partitioning cyclone tropical precipitation [J]. Journal of Tropical Meteorology (in Chinese), 17(3): 308−313. doi: 10.3969/j.issn.1004-4965.2001.03.015
    [44] 容新尧, 张人禾, Li T. 2010. 大西洋海温异常在ENSO影响印度—东亚夏季风中的作用 [J]. 科学通报, 55(22): 2458−2468. doi: 10.1007/s11434-010-3098-3

    Rong X Y, Zhang R H, Li T. 2010. Impacts of Atlantic sea surface temperature anomalies on Indo—East Asian summer monsoon–ENSO relationship [J]. Chinese Science Bulletin, 55(22): 2458−2468. doi: 10.1007/s11434-010-3098-3
    [45] 沙天阳, 徐海明, 邹松佐. 2013. 中国西南地区东部秋季干旱的环流特征及其成因分析 [J]. 大气科学学报, 36(5): 593−603. doi: 10.3969/j.issn.1674-7097.2013.05.010

    Sha T Y, Xu H M, Zou S Z. 2013. Atmospheric circulation characteristics and cause analysis for autumn drought in the eastern region of Southwest China [J]. Transactions of Atmospheric Sciences (in Chinese), 36(5): 593−603. doi: 10.3969/j.issn.1674-7097.2013.05.010
    [46] Sun C, Kucharski F, Li J P, et al. 2017. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation [J]. Nature Communications, 8: 15998. doi: 10.1038/ncomms15998
    [47] Szeredi I, Karoly D. 1987a. The vertical structure of monthly fluctuations of the southern Hemisphere troposphere [J]. Aust. Meteor. Mag., 35(1): 19−30.
    [48] Szeredi I, Karoly D. 1987b. The horizontal structure of monthly fluctuations of the southern Hemisphere troposphere from station data [J]. Aust. Meteor. Mag., 35(3): 119−129.
    [49] 陶诗言, 张庆云. 1998. 亚洲冬夏季风对ENSO事件的响应 [J]. 大气科学, 22(4): 399−407. doi: 10.3878/j.issn.1006-9895.1998.04.02

    Tao S Y, Zhang Q Y. 1998. Response of the Asian winter and summer monsoon to ENSO events [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 22(4): 399−407. doi: 10.3878/j.issn.1006-9895.1998.04.02
    [50] 陶诗言, 卫捷. 2006. 再论夏季西太平洋副热带高压的西伸北跳 [J]. 应用气象学报, 17(5): 513−525. doi: 10.3969/j.issn.1001-7313.2006.05.001

    Tao S Y, Wei J. 2006. The westward, northward advance of the subtropical high over the West Pacific in summer [J]. Journal of Applied Meteorological Science (in Chinese), 17(5): 513−525. doi: 10.3969/j.issn.1001-7313.2006.05.001
    [51] Trenberth K E, Fasullo J T. 2012. Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010 [J]. J. Geophys. Res., 117(D17): D17103. doi: 10.1029/2012JD018020
    [52] 王咏梅, 任福民, 王小玲, 等. 2006. 中国台风降水分离客观方法的改进研究 [J]. 气象, 32(3): 6−10. doi: 10.3969/j.issn.1000-0526.2006.03.002

    Wang Y M, Ren F M, Wang X L, et al. 2006. The study on the objective technique for partitioning tropical cyclone precipitation in China [J]. Meteorological Monthly (in Chinese), 32(3): 6−10. doi: 10.3969/j.issn.1000-0526.2006.03.002
    [53] 王黎娟, 管兆勇, 何金海, 等. 2009. “05.6”华南强降水期间副热带高压活动与加热场的关系 [J]. 气象学报, 67(4): 666−673. doi: 10.11676/qxxb2009.066

    Wang L J, Guan Z Y, He J H, et al. 2009. Relationship between activity of western Pacific subtropical high and diabatic heating during heavy rain in South China in June 2005 [J]. Acta Meteorologica Sinica (in Chinese), 67(4): 666−673. doi: 10.11676/qxxb2009.066
    [54] Wang C, Wu L G, Zhao H K, et al. 2019. Is there a quiescent typhoon season over the western North Pacific following a strong El Niño event? [J]. International Journal of Climatology, 39(1): 61−73. doi: 10.1002/joc.5782
    [55] Whitney L F Jr. 1977. Relationship of the subtropical Jet Stream to severe local storms [J]. Mon. Wea. Rev., 105(4): 398−412. doi:10.1175/1520-0493(1977)105<0398:ROTSJS>2.0.CO;2
    [56] Wu M C, Chang W L, Leung W M. 2004. Impacts of El Niño-southern Oscillation events on tropical cyclone landfalling activity in the western North Pacific [J]. J. Climate, 17(6): 1419−1428. doi:10.1175/1520-0442(2004)017<1419:IOENOE>2.0.CO;2
    [57] 吴萍, 丁一汇, 柳艳菊. 2017. 厄尔尼诺事件对中国夏季水汽输送和降水分布影响的新研究 [J]. 气象学报, 75(3): 371−383. doi: 10.11676/qxxb2017.033

    Wu P, Ding Y H, Liu Y J. 2017. A new study of El Niño impacts on summertime water vapor transport and rainfall in China [J]. Acta Meteorologica Sinica (in Chinese), 75(3): 371−383. doi: 10.11676/qxxb2017.033
    [58] 徐金霞, 闫彩霞, 钟燕川, 等. 2017. 北半球秋季欧亚遥相关与华西秋雨的关系 [J]. 气象科技, 45(3): 492−498. doi: 10.19517/j.1671-6345.20160491

    Xu J X, Yan C X, Zhong Y C, et al. 2017. Relationships between Eurasian teleconnection pattern in northern Hemisphere autumn and autumn rainfall in West China [J]. Meteorological Science and Technology (in Chinese), 45(3): 492−498. doi: 10.19517/j.1671-6345.20160491
    [59] 杨修群, 黄士松. 1993. 外强迫引起的夏季大气环流异常及其机制探讨 [J]. 大气科学, 17(6): 697−702. doi: 10.3878/j.issn.1006-9895.1993.06.08

    Yang X Q, Huang S S. 1993. On the mechanism of summertime atmospheric anomalies induced by external forcing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 17(6): 697−702. doi: 10.3878/j.issn.1006-9895.1993.06.08
    [60] Yang Q, Ma Z G, Xu B L. 2017. Modulation of monthly precipitation patterns over East China by the Pacific decadal oscillation [J]. Climatic Change, 144(3): 405−417. doi: 10.1007/s10584-016-1662-9
    [61] Ying M, Zhang W, Yu H, et al. 2014. An overview of the China meteorological administration tropical cyclone database [J]. J. Atmos. Oceanic Technol., 31(2): 287−301. doi: 10.1175/JTECH-D-12-00119.1
    [62] 袁媛, 高辉, 李维京, 等. 2017. 2016年和1998年汛期降水特征及物理机制对比分析 [J]. 气象学报, 75(1): 19−38. doi: 10.11676/qxxb2017.019

    Yuan Y, Gao H, Li W J, et al. 2017. Analysis and comparison of summer precipitation features and physical mechanisms between 2016 and 1998 [J]. Acta Meteorologica Sinica (in Chinese), 75(1): 19−38. doi: 10.11676/qxxb2017.019
    [63] 翟盘茂, 李蕾, 周佰铨, 等. 2016. 江淮流域持续性极端降水及预报方法研究进展 [J]. 应用气象学报, 27(5): 631−640. doi: 10.11898/1001-7313.20160511

    Zhai P M, Li L, Zhou B Q, et al. 2016. Progress on mechanism and prediction methods for persistent extreme precipitation in the Yangtze–Huai River valley [J]. Journal of Applied Meteorological Science (in Chinese), 27(5): 631−640. doi: 10.11898/1001-7313.20160511
    [64] Zhan R F, Wang Y Q, Liu Q Y. 2017. Salient differences in tropical cyclone activity over the western North Pacific between 1998 and 2016 [J]. J. Climate, 30(24): 9979−9997. doi: 10.1175/JCLI-D-17-0263.1
    [65] 张庆云, 陶诗言. 2003. 夏季西太平洋副热带高压异常时的东亚大气环流特征 [J]. 大气科学, 27(3): 369−380. doi: 10.3878/j.issn.1006-9895.2003.03.07

    Zhang Q Y, Tao S Y. 2003. The anomalous subtropical anticyclone in western Pacific and their association with circulation over East Asia during summer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 27(3): 369−380. doi: 10.3878/j.issn.1006-9895.2003.03.07
    [66] 张耀存, 况雪源. 2008. 东亚副热带西风急流位置变化与亚洲夏季风爆发的关系 [J]. 暴雨灾害, 27(2): 97−103. doi: 10.3969/j.issn.1004-9045.2008.02.001

    Zhang Y C, Kuang X Y. 2008. The relationship between the location change of the East Asian subtropical westerly jet and Asian summer monsoon onset [J]. Torrential Rain and Disasters (in Chinese), 27(2): 97−103. doi: 10.3969/j.issn.1004-9045.2008.02.001
    [67] 张庆云, 郭恒. 2014. 夏季长江淮河流域异常降水事件环流差异及机理研究 [J]. 大气科学, 38(4): 656−669. doi: 10.3878/j.issn.1006-9895.1402.13240

    Zhang Q Y, Guo H. 2014. Circulation differences in anomalous rainfall over the Yangtze River and Huaihe River valleys in summer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(4): 656−669. doi: 10.3878/j.issn.1006-9895.1402.13240
    [68] 张庆云, 吕俊梅, 杨莲梅, 等. 2007. 夏季中国降水型的年代际变化与大气内部动力过程及外强迫因子关系 [J]. 大气科学, 31(6): 1290−1300. doi: 10.3878/j.issn.1006-9895.2007.06.23

    Zhang Q Y, Lü J M, Yang L M, et al. 2007. The interdecadal variation of precipitation pattern over China during summer and its relationship with the atmospheric internal dynamic processes and extra-forcing factors [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31(6): 1290−1300. doi: 10.3878/j.issn.1006-9895.2007.06.23
    [69] 张顾炜, 曾刚, 倪东鸿, 等. 2016. 西南地区秋季干旱的年代际转折及其可能原因分析 [J]. 大气科学, 40(2): 311−323. doi: 10.3878/j.issn.1006-9895.1503.14294

    Zhang G W, Zeng G, Ni D H, et al. 2016. Decadal shift of autumn drought in Southwest China and its possible causes [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(2): 311−323. doi: 10.3878/j.issn.1006-9895.1503.14294
    [70] 张福颖, 潘爱军, 范伶俐. 2018. 中国南方冬雨与El Niño事件相关关系的年代际差异及其成因 [J]. 海洋气象学报, 38(4): 38−44. doi: 10.19513/j.cnki.issn2096-3599.2018.04.005

    Zhang F Y, Pan A J, Fan L L. 2018. Interdecadal differences in correlations between the winter precipitation over the southern China and El Niño events and their causes [J]. Journal of Marine Meteorology, 38(4): 38−44. doi: 10.19513/j.cnki.issn2096-3599.2018.04.005
    [71] 竺可桢. 1934. 东南季风与中国之雨量 [J]. 地理学报, 1(1): 1−27. doi: 10.11821/xb193401001

    Chu C. 1934. The enigma of southeast monsoon in China [J]. Acta Geographica Sinica (in Chinese), 1(1): 1−27. doi: 10.11821/xb193401001
    [72] 竺夏英, 宋文玲. 2017. 2016年秋季中国气候特征及其可能成因 [J]. 气象, 43(4): 495−500. doi: 10.7519/j.issn.1000-0526.2017.04.012

    Zhu X Y, Song W L. 2017. Features of climatic anomalies in China during the fall of 2016 and the possible causes [J]. Meteorological Monthly (in Chinese), 43(4): 495−500. doi: 10.7519/j.issn.1000-0526.2017.04.012
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  16
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-14
  • 录用日期:  2020-12-10
  • 网络出版日期:  2020-12-23

目录

    /

    返回文章
    返回