高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CoLM模式地表温度变分同化研究

孟春雷 张朝林 刘长友

孟春雷, 张朝林, 刘长友. CoLM模式地表温度变分同化研究[J]. 大气科学, 2012, 36(5): 985-994. doi: 10.3878/j.issn.1006-9895.2012.11184
引用本文: 孟春雷, 张朝林, 刘长友. CoLM模式地表温度变分同化研究[J]. 大气科学, 2012, 36(5): 985-994. doi: 10.3878/j.issn.1006-9895.2012.11184
MENG Chunlei, ZHANG Chaolin, LIU Changyou. Variational Assimilation of Land Surface Temperature from Common Land Model (CoLM)[J]. Chinese Journal of Atmospheric Sciences, 2012, 36(5): 985-994. doi: 10.3878/j.issn.1006-9895.2012.11184
Citation: MENG Chunlei, ZHANG Chaolin, LIU Changyou. Variational Assimilation of Land Surface Temperature from Common Land Model (CoLM)[J]. Chinese Journal of Atmospheric Sciences, 2012, 36(5): 985-994. doi: 10.3878/j.issn.1006-9895.2012.11184

CoLM模式地表温度变分同化研究

doi: 10.3878/j.issn.1006-9895.2012.11184
基金项目: 国家自然科学基金资助项目41005156,国家科技支撑计划重点项目2008BAC37B04

Variational Assimilation of Land Surface Temperature from Common Land Model (CoLM)

  • 摘要: 本文采用变分方法对通用陆面模式 (CoLM) 中的地表温度进行同化.同化伴随约束条件采用CoLM模式中的地表及植被能量平衡方程,调节因子采用裸土及植被蒸发比.采用美国通量网 (AmeriFlux) 中的Bonville站数据对同化方法进行了单点验证,验证结果表明同化后地表温度以及蒸散结果更加接近于实测值.选取中国华北地区对同化方法进行区域验证,结果显示每天仅采用白天一次观测值对地表温度进行同化的方法是有效的.通过对同化前后地表温度误差直方图比较可以发现,在有MODIS观测值的区域,同化后白天地表温度误差大大降低,同时,同化后地表蒸散空间分布图也发生了变化.单点验证以及区域验证结果都表明了变分同化方法是可靠的.变分同化方法可以改进陆面模式模拟结果,对于地表过程研究中的植被生态、水文等研究具有重要意义,同时,陆面模式可以与数值预报模式进行耦合,改进数值预报结果.
  • [1] Baldocchi D D, Falge E, Gu Lianhong, et al. 2001. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities [J]. Bull. Amer. Meteor. Soc., 82 (11): 2415-2434.
    [2] Bonan G B, Oleson K W, Vertenstein M, et al. 2002. The land surface climatology of the community land model coupled to the NCAR community climate model [J]. J. Climate, 15 (22): 3123-3149.
    [3] Boni G, Castelli F, Entekhabi D. 2001a. Sampling strategies and assimilation of ground temperature for the estimation of surface energy balance components [J]. IEEE Trans. Geosci. Remote Sens., 39 (1): 165-172.
    [4] Boni G, Entekhabi D, Castelli F. 2001b. Land data assimilation with satellite measurements for the estimation of surface energy balance components and surface control on evaporation [J]. Water Resour. Res., 37 (6): 1713-1722.
    [5] Caparrini F, Castelli F, Entekhabi D. 2003. Mapping of land-atmosphere heat fluxes and surface parameters with remote sensing data [J]. Bound.-Layer Meteor., 107 (3): 605-633.
    [6] Caparrini F, Castelli F, Entekhabi D. 2004a. Variational estimation of soil and vegetation turbulent transfer and heat flux parameters from sequences of multisensor imagery [J]. Water Resour. Res., 40: W12515, doi: 10.1029/2004WR003358.
    [7] Caparrini F, Castelli F, Entekhabi D. 2004b. Estimation of surface turbulent fluxes through assimilation of radiometric surface temperature sequences [J]. Journal of Hydrometeorology, 5 (1): 145-159.
    [8] Castelli F, Entekhabi D, Caporali E. 1999. Estimation of surface heat flux and an index of soil moisture using adjoint-state surface energy balance [J]. Water Resour. Res., 35 (10): 3115-3125.
    [9] Dai Yongjiu, Zeng Xubin, Dickinson R E, et al. 2003. The common land model [J]. Bull. Amer. Meteor. Soc., 84 (8): 1013-1023.
    [10] Dai Yongjiu, Dickinson R E, Wang Yingping. 2004. A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance [J]. J. Climate, 17 (12): 2281-2299.
    [11] 贾炳浩, 谢正辉, 田向军, 等. 2010. 基于微波亮温及集合Kalman滤波的土壤湿度同化方案 [J]. 中国科学 (D辑): 地球科学, 40 (2): 239-251. Jia Binghao, Xie Zhenghui, Tian Xiangjun, et al. 2009. A soil moisture assimilation scheme based on the ensemble Kalman filter using microwave brightness temperature [J]. Science in China (Series D): Earth Sciences (in Chinese), 52 (11): 1835-1848, doi: 10.1007/s11430-009-0122-z.
    [12] Li Xin, Huang Chunlin, Che Tao, et al. 2007. Development of a Chinese land data assimilation system: Its progress and prospects [J]. Progress in Natural Science, 17 (8): 881-892.
    [13] Margulis S A, Entekhabi D. 2003. Variational assimilation of radiometric surface temperature and reference-level micrometeorology into a model of the atmospheric boundary layer and land surface [J]. Mon. Wea. Rev., 131 (7): 1272-1288.
    [14] 聂肃平, 朱江, 罗勇. 2010. 不同模式误差方案在集合Kalman滤波土壤 湿度同化中的比较试验 [J]. 大气科学, 34 (3): 580-590.
    [15] Nie Suping, Zhu Jiang, Luo Yong. 2010. Comparison experiments of different model error schemes in ensemble Kalman filter soil moisture assimilation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34 (3): 580-590.
    [16] Oleson K W, Dai Y J, Bonan G B, et al. 2004. Technical Description of the Community Land Model (CLM) [R]. NCAR Technical Note NCAR/TN-461+STR.
    [17] Reichle R H, Entekhabi D, McLaughlin D B. 2001a. Downscaling of radio brightness measurements for soil moisture estimation: a four-dimensional variational data assimilation approach [J]. Water Resour. Res., 37 (9): 2353-2364.
    [18] Reichle R H, McLaughlin D B, Entekhabi D. 2001b. Variational data assimilation of microwave radiobrightness observations for land surface hydrology applications [J]. IEEE Trans. Geosci. Remote Sens., 39 (8): 1708-1718.
    [19] Rodell M, Houser P R, Jambor U, et al. 2004. The global land data assimilation system [J]. Bull. Amer. Meteor. Soc., 85 (3): 381-394.
    [20] 师春香, 谢正辉, 钱辉, 等. 2011. 基于卫星遥感资料的中国区域土壤湿 度EnKF数据同化 [J]. 中国科学: 地球科学, 41 (3)漺椠氳?洵漭椳猸琵甮爠敓?慩猠獃楨浵楮汸慩瑡楮潧測?存?嵥???桥楮湧敨獵敩??潑畩牡湮愠汈?潩昬??瑴洠潡獬瀮栠攲爰椱挱?匠捃楨敩湮捡攠獬??楤渠??桩楬渠敭獯敩???????????????????ど??lation based on satellite remote sensing data [J]. Science China: Earth Sciences (in Chinese), 54 (9): 1430-1440, doi: 10.1007/s11430-010-4160-3.
    [21] Tian Xiangjun, Xie Zhenghui, Dai Aiguo, 2008a. An ensemble-based explicit four-dimensional variational assimilation method [J]. J. Geophys. Res., 113: D21124, doi: 10.1029/2008JD010358.
    [22] Tian Xiangjun, Xie Zhenghui, Dai Aiguo, 2008b. A land surface soil moisture data assimilation system based on the dual-UKF method and the Community Land Model [J]. J. Geophys. Res., 113: D14127, doi: 10.1029/2007JD009650.
    [23] Tian Xiangjun, Xie Zhenghui, Dai Aiguo, et al. 2009. A dual-pass variational data assimilation framework for estimating soil moisture profiles from AMSR-E microwave brightness temperature [J]. J. Geophys. Res., 114: D16102, doi: 10.1029/2008JD011600.
    [24] Tian Xiangjun, Xie Zhengxie, Dai Aiguo. 2010. An ensemble conditional nonlinear optimal perturbation approach: Formulation and applications to parameter calibration [J]. Water Resour. Res., 46: W09540, doi: 10.1029/2009WR008508.
    [25] Yang K, Watanabe T, Koike T, et al. 2007. Auto-calibration system developed to assimilate AMSR-E data into a land surface model for estimating soil moisture and the surface energy budget [J]. J. Meteor. Soc. Japan, 85A: 229-242, doi: 10.2151/jmsj. 85A. 229.
    [26] Zeng X, Shaikh M, Dai Y, et al. 2002. Coupling of the common land model to the NCAR community climate model [J]. J. Climate, 15 (14): 1832-1854.
    [27] 张生雷, 谢正辉, 田向军, 等. 2006. 基于土壤水模型及站点资料的土壤 湿度同化方法 [J]. 地球科学进展, 21 (12): 1350-1362. Zhang Shenglei, Xie Zhenghui, Tian Xiangjun, et al. 2006. A soil moisture assimilation scheme with an unsaturated soil water flow model and in-site observation [J]. Advances in Earth Science (in Chinese), 21 (12): 1350-1362.
    [28] 张生雷, 谢正辉, 师春香, 等. 2008. 集合Kalman滤波在土壤湿度同化 中的应用 [J]. 大气科学, 32 (6): 1419-1430. Zhang Shenglei, Xie Zhenghui, Shi Chunxiang, et al. 2008. Applications of ensemble Kalman filter in s
  • 加载中
计量
  • 文章访问数:  3144
  • HTML全文浏览量:  0
  • PDF下载量:  3736
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-09
  • 修回日期:  2012-02-10

目录

    /

    返回文章
    返回