高级检索
高峰, 辛晓歌, 吴统文. BCC_CSM1.1对10年尺度全球及区域温度的预测研究[J]. 大气科学, 2012, 36(6): 1165-1179. DOI: 10.3878/j.issn.1006-9895.2012.11243
引用本文: 高峰, 辛晓歌, 吴统文. BCC_CSM1.1对10年尺度全球及区域温度的预测研究[J]. 大气科学, 2012, 36(6): 1165-1179. DOI: 10.3878/j.issn.1006-9895.2012.11243
GAO Feng, XIN Xiaoge, WU Tongwen. A Study of the Prediction of Regional and Global Temperature on Decadal Time Scale with BCC_CSM1.1 Model[J]. Chinese Journal of Atmospheric Sciences, 2012, 36(6): 1165-1179. DOI: 10.3878/j.issn.1006-9895.2012.11243
Citation: GAO Feng, XIN Xiaoge, WU Tongwen. A Study of the Prediction of Regional and Global Temperature on Decadal Time Scale with BCC_CSM1.1 Model[J]. Chinese Journal of Atmospheric Sciences, 2012, 36(6): 1165-1179. DOI: 10.3878/j.issn.1006-9895.2012.11243

BCC_CSM1.1对10年尺度全球及区域温度的预测研究

A Study of the Prediction of Regional and Global Temperature on Decadal Time Scale with BCC_CSM1.1 Model

  • 摘要: 近期10~30年时间尺度的年代际预测是第五次耦合模式国际比较计划(CMIP5)重要内容之一。按照CMIP5试验要求, 国家气候中心利用气候系统模式BCC_CSM1.1完成并提交了年代际试验结果。本文评估了该模式年代际试验对10年尺度全球及区域地表温度的预测能力, 并通过与20世纪历史气候模拟试验的对比分析, 研究模式模拟对海洋初始观测状态的依赖程度。分析结果表明:(1)在有、无海洋初始化条件下, 模式均能模拟出1960~2005年间全球10年平均实测地表温度的变暖趋势, 但在有海洋初始化条件下, 可以明显减小BCC_CSM1.1模式模拟的全球升温趋势, 使得年代际试验比历史试验的结果更接近观测值。这一特点在观测资料相对丰富的南北纬50°以内地区更为显著。(2)在年代际试验预测前期, 通过Nudging方法, 利用SODA再分析海洋温度资料对模式进行初始化, 经过前期8~12月的协调后, 模式预测的第1年南北纬50°范围海洋、陆面的平均地表气温接近于观测值(CRUTEM3, HadSST2)。由于模式初值SODA再分析SST资料与HadSST2观测值存在明显的全球大洋系统暖偏差以及模式本身系统偏差的影响, 年代际试验模拟的地表气温在2~7年之内, 从观测SST状态逐渐恢复到模式系统本身状态。在同组Decadal试验中, 陆面和海洋恢复调整的时间长度几乎一致。(3) 从10年平均气候异常在区域尺度上的预报技巧来看, 有、无海洋初始同化对预测结果影响不大, 高预测技巧区主要分布在南半球印度洋中高纬度、热带西太平洋以及热带大西洋区域。(4)SST变化与下垫面热通量密切相关, 在热带和副热带海洋区域, 长波辐射和感热通量是影响10年时间尺度SST变化较大的物理量, 在中高纬度海洋, 洋面温度变化主要受潜热通量的影响相对较大。

     

    Abstract: Decadal prediction on 10-30 year time scale is one of the most important contents of the 5th phase of the Coupled Model Inter-comparison Project (CMIP5). According to the experiment requirement of CMIP5, a set of decadal experiments were performed using the Beijing Climate Center Climate System Model (BCC-CSM1.1) which is one of models jointed in CMIP5. This study evaluated the model’s prediction capability in regional and global surface temperatures on decadal time scale, and aimed to explore their dependences on the initial observed states of ocean in comparison with the historical experiment in the 20th century using BCC-CSM1.1. The results show as following: (1) BCC_CSM1.1 can simulate the warming trend of 10-year mean global surface temperature not only for oceanic initialization condition but also for without oceanic initialization condition. Nevertheless, the global warming trend simulated by BCC-CSM1.1 can be obviously decreased under the condition of oceanic initialization, which is closer to the observation than that in the historical experiment without oceanic initialization. This feature is much more remarkable in the area between 50°N and 50°S where there are abundant observation data. (2) The nudging method is used to initialize the model with the SODA temperature data. After a “training” period of 8-12 months, predicted surface temperatures in the first year not only in ocean but also in land between 50°S and 50°N are close to CRU observations. Due to the warmer SST bias of SODA reanalysis contrast to HadSST2, there is about a period of 2 to 7 years in decadal experiments that adjusts from the observed ocean state to model basic state. The adjustment time for the ocean and land is almost identical in the same decadal experiment. (3) The prediction skill for decadal-mean SST has strong feature. The high correlations with the CRU observations are mainly near the middle- and high-latitude Indian Ocean in the Southern Hemisphere, the western Pacific Ocean, and the Atlantic Ocean. The oceanic initialization does not significantly influence the prediction results. (4) The variation of decadal-mean predicted SST is closely correlated with the surface heat flux. In the tropical and subtropical region, the net long wave radiation and sensible heating flux has larger influence on the decadal mean SST variation than the net short wave radiation and the latent heating flux, but in oceans at higher latitudes, the variation of decadal mean SST is mostly determined by the latent heating flux.

     

/

返回文章
返回