Decadal Variability in the Relationship between May Rainfall over Southwest China and the Arabian Sea Monsoon
-
摘要: 本文利用1960~2017年中国西南地区115个台站观测降水资料和日本气象厅发布的55年再分析资料集,研究了中国西南地区5月降水变异的主导模态及其与阿拉伯海季风的关系。结果显示,中国西南地区5月降水的第一主导模态主要表现为全区一致的变异特征;该模态与同期5月阿拉伯海季风强度异常关系密切,但两者的关系在20世纪70年代后期发生了显著的年代际变化。在1960~1976年,阿拉伯海季风异常所引起的低层大气环流和水汽输送异常主要集中在阿拉伯海到孟加拉湾一带;阿拉伯海季风异常所引起的大气环流不能到达中国西南地区,因此它对中国西南地区5月降水的影响偏弱。但在1981~2017年,阿拉伯海季风异常可以导致整个北印度洋到南海地区的大气环流异常,进而引起中国西南地区水汽和垂直运动的变化,最终对该地区5月降水产生显著的影响。进一步的研究显示,阿拉伯海季风与中国西南地区5月降水关系的变化可能与季风自身的年代际变率有关。阿拉伯海季风在20世纪70年代末之前变率偏弱,其引起的环流异常也偏弱;相反在20世纪70年代末之后,其变率增强,它引起的大气环流异常也偏强,可以延伸到中国西南地区,进而影响到西南地区的5月降水。因此,季风变率的强弱可能在季风对西南地区5月降水的影响中起着非常重要的作用。Abstract: The dominant mode of anomalous precipitation in May over Southwest China and its association with the Arabian Sea monsoon are investigated in this study using the 115 observation stations and Japanese 55-year reanalysis for the period of 1960–2017. The result showed approximately consistent variabilities of the leading mode of May precipitation over Southwest China, exhibiting a close relationship with the Arabian Sea monsoon. However, around the late 1970s, the relationship experienced an interdecadal change. In 1960–1976, the anomalous atmospheric circulations and water vapor transportation associated with the Arabian Sea monsoon were mainly over the Arabian Sea to the Bay of Bengal, showing a weak influence on the May precipitation over Southwest China. However, in 1981–2017, the anomalous Arabian Sea monsoon was related to large-scale atmospheric anomalies from the northern Indian Ocean to the South China Sea, leading to anomalous water vapor and vertical motion over Southwest China. Therefore, the Arabian Sea monsoon can significantly influence May precipitation over Southwest China during 1981–2017. Further analysis indicated that the change in the relationship between the Arabian Sea monsoon and May precipitation over Southwest China could be related to the change in decadal variability of the Arabian Sea monsoon. Over the period before the late 1970s, the Arabian Sea monsoon’s variability was relatively weaker, and its related atmospheric circulation anomalies were also weaker. Whereas, after the late 1970s, the Arabian Sea monsoon’ s variability became stronger, and the related atmospheric circulation anomalies extended more eastward, covering Southwest China. Consequently, the Arabian Sea monsoon can significantly influence the May precipitation over Southwest China after the late 1970s. This result indicated the important role of monsoon variability in precipitation.
-
Key words:
- Southwest China /
- Precipitation /
- Arabian Sea monsoon /
- Decadal variability
-
图 2 1960~2017年西南地区5月降水的(a)EOF1模态及其对应的(b)PC1时间序列(柱状)和RPI时间序列(折线)
Figure 2. (a) The first mode of EOF (Empirical Orthogonal Function) and (b) the time series of corresponding principal component (PC1, bars) and RPI (Regional Precipitation Index, curve) of precipitation in May over Southwest China during 1960–2017
图 4 标准化的ASMI回归的(a)1960~1976和(b)1981~2017西南地区5月降水异常场(单位:mm d−1)。打点区域表示降水异常场通过95%信度水平的显著性检验
Figure 4. Precipitation anomalies (units: mm d−1) in May over Southwest China regressed onto standardized ASMI during (a) 1960–1976 and (b) 1981–2017. The dotted areas indicate anomalies passing test at the 95% confidence level
图 5 标准化的ASMI回归的1960~1976年5月(a)500 hPa和(b)700 hPa位势高度异常(彩色阴影,单位:gpm)和风场异常(绿色矢量,单位:m s−1)。(c–d)同(a–b),但为1981~2017年的回归结果。打点区域(绿色矢量)表示位势高度(风场)异常通过95%信度水平的显著性检验
Figure 5. Geopotential height anomalies (color shadings, units: gpm) and wind anomalies (green vectors, units: m s−1) regressed onto standardized ASMI at (a) 500 hPa and (b) 700 hPa in May during 1960–1976. (c–d) As in (a–b), but for 1981–2017. The dotted areas (green vectors) indicate geopotential height (wind) anomalies passing test at the 95% confidence level
图 6 西南地区5月标准化的RPI回归的1981~2017年5月(a)500 hPa和(b)700 hPa位势高度异常(单位:gpm)。打点区域表示异常通过95%信度水平的显著性检验
Figure 6. Geopotential height anomalies (units: gpm) regressed onto standardized RPI at (a) 500 hPa and (b) 700 hPa over Southwest China in May during 1981–2017. The dotted areas indicate anomalies passing test at the 95% confidence level
图 7 标准化的ASMI回归的(a)1960~1976年和(b)1981~2017年5月可降水量异常(阴影,单位:kg m−2)。(c–d)同(a–b),但为回归的整层积分水汽通量异常(蓝色矢量,单位:kg m−1 s−1)。(e–f)同(a–b),但为回归的整层积分水汽通量散度异常(阴影,单位:10−5 kg m−2 s−1)。图a、b、e、f中的打点区域和图c、d中的阴影区域代表异常通过95%信度水平的显著性检验
Figure 7. Precipitable water anomalies (shadings, units: kg m−2) regressed onto standardized ASMI during (a) 1960–1976 and (b) 1981–2017. (c–d) As in (a–b), but for regressed vertical integrated water vapor fluxes anomalies (blue vectors, units: kg m−1 s−1). (e–f) As in (a–b), but for regressed divergence anomalies (shadings, units: 10−5 kg m−2 s−1) of the vertical integrated water vapor fluxes. The dotted areas in Figs. a, b, e, f and shadings in Figs. c, d indicate anomalies passing test at the 95% confidence level
图 8 标准化的ASMI回归的(a)1960~1976年和(b)1981~2017年5月沿95°~105°E平均的经圈环流异常(经向风单位:m s−1;垂直速度单位:Pa s−1;垂直速度乘以了−150)。阴影区域表示异常通过95%信度水平的显著性检验
Figure 8. Mean meridional circulation anomalies [meridional wind (units: m s−1), vertical velocity (units: Pa s−1), the vertical velocity is multiplied by −150] along 95°–105°E regressed onto standardized ASMI in May during (a) 1960–1976 and (b) 1981–2017. The shadings indicate anomalies passing test at the 95% confidence level
图 9 (a)1960~1976和(b)1981~2017年ASM强、弱年合成的5月位势高度异常(单位:gpm)。(c–d)同(a–b),但为合成的整层积分水汽通量异常(单位:kg m−1 s−1)。(e–f)同(a–b),但为合成的沿95°~105°E平均的经圈环流异常(经向风单位:m s−1;垂直速度单位:Pa s−1;垂直速度乘以了−150)。图a、b中的打点区域和图c–f中的阴影区域代表异常通过95%信度水平的显著性检验
Figure 9. Composited geopotential height anomalies (units: gpm) between strong and weak ASM years in May during (a) 1960–1976 and (b) 1981–2017. (c–d) As in (a–b), but for composited vertical integrated water vapor fluxes anomalies (units: kg m−1 s−1). (e–f) As in (a–b), but for a composited latitude–pressure cross section of meridional circulation [meridional wind (units: m s−1), vertical velocity (units: Pa s−1), the vertical velocity is multiplied by −150] averaged between 95°E and 105°E. The dotted areas in Figs. a, b and shadings in Figs. c–f indicate anomalies passing test at the 95% confidence level
图 10 ASMI的19年滑动标准差与ASMI–RPI(ASMI和中国西南地区5月RPI)的19年滑动相关系数的散点图。横虚线为95%信度水平对应的相关系数值,竖虚线为1.67。蓝色(黄色)圆点代表滑动窗口的中心年份位于1960–1976(1981–2017)年的时段
Figure 10. Scatter plot of 19-year sliding standard deviations of ASMI and 19-year sliding correlation coefficients between ASMI and RPI in May over Southwest China. The horizontal dotted line indicates a significant correlation at the 95% confidence level, and the vertical dotted line is at 1.67. The blue and yellow dots represent the periods with central years in 1960–1976 and 1981–2017, respectively
表 1 RPI与ASMI在各时段的相关系数
Table 1. The correlation coefficients between RPI (Regional Precipitation Index) and ASMI (Arabian Sea Monsoon Index) in each period
相关系数 RPI(1960~2017) RPI(1960~1976) RPI(1981~2017) ASMI 0.39* −0.39 0.55* 注:*代表通过99%信度水平的显著性检验 -
[1] 鲍媛媛, 康志明, 金荣花, 等. 2007. 川渝地区夏季旱涝与海温异常浅析 [J]. 气象, 33(5): 89−93. doi: 10.3969/j.issn.1000-0526.2007.05.013Bao Y Y, Kang Z M, Jin R H, et al. 2007. Analysis of floods and droughts in Chongqing and East Sichuan [J]. Meteorological Monthly (in Chinese), 33(5): 89−93. doi: 10.3969/j.issn.1000-0526.2007.05.013 [2] Cao J, Zhang W K, Tao Y. 2017. Thermal configuration of the Bay of Bengal–Tibetan Plateau region and the May precipitation anomaly in Yunnan [J]. J. Climate, 30(22): 9303−9319. doi: 10.1175/JCLI-D-16-0802.1 [3] 陈忠明, 闵文彬, 刘富明. 2003. 青藏高原地表热源异常与四川盆地夏季降水的关联 [J]. 气象, 29(5): 9−12. doi: 10.3969/j.issn.1000-0526.2003.05.002Chen Z M, Min W B, Liu F M. 2003. Relationship between surface heating fields over Qinghai–Xizang Plateau and precipitation in Sichuan Basin during summer [J]. Meteorological Monthly (in Chinese), 29(5): 9−12. doi: 10.3969/j.issn.1000-0526.2003.05.002 [4] Deng M Y, Lu R Y, Chen W, et al. 2016. Interannual variability of precipitation in May over the South Asian monsoonal region [J]. Int. J. Climatol., 36(4): 1724−1732. doi: 10.1002/JOC.4454 [5] 杜银, 谢志清. 2002. 中国西南地区夏季降水的年际变化及与南亚高压的关系 [J]. 四川气象, 22(4): 8−13. doi: 10.3969/j.issn.1674-2184.2002.04.004Du Y, Xie Z Q. 2002. Relationship between annual changes of summer precipitation over the southwestern area of China and the South Asia High [J]. Journal of Sichuan Meteorology (in Chinese), 22(4): 8−13. doi: 10.3969/j.issn.1674-2184.2002.04.004 [6] 桓玉, 李跃清. 2018. 夏季东亚季风和南亚季风协同作用与我国南方夏季降水异常的关系 [J]. 高原气象, 37(6): 1563−1577. doi: 10.7522/j.issn.1000-0534.2018.00044Huan Y, Li Y Q. 2018. The synergy between the East Asian summer monsoon and the South Asian summer monsoon and its relations with anomalous rainfall in southern China [J]. Plateau Meteorology (in Chinese), 37(6): 1563−1577. doi: 10.7522/j.issn.1000-0534.2018.00044 [7] Huang Y J, Cui X P. 2015. Moisture sources of torrential rainfall events in the Sichuan basin of China during summers of 2009–13 [J]. Journal of Hydrometeorology, 16(4): 1906−1917. doi: 10.1175/JHM-D-14-0220.1 [8] 琚建华, 李绚丽. 1999. 云南初夏降水与前期大气环流的关系 [J]. 高原气象, 18(1): 63−70. doi: 10.3321/j.issn:1000-0534.1999.01.008Jü J H, Li X L. 1999. A study on relation between the preceding circulation and the rainfall in Yunnan during early summer [J]. Plateau Meteorology (in Chinese), 18(1): 63−70. doi: 10.3321/j.issn:1000-0534.1999.01.008 [9] Kobayashi S, Ota Y, Harada Y, et al. 2015. The JRA-55 reanalysis: General specifications and basic characteristics [J]. J. Meteor. Soc. Japan, 93(1): 5−48. doi: 10.2151/jmsj.2015-001 [10] Li G, Chen J P, Wang X, et al. 2018. Remote impact of North Atlantic sea surface temperature on rainfall in southwestern China during boreal spring [J]. Climate Dyn., 50(1–2): 541−553. doi: 10.1007/s00382-017-3625-x [11] 李永华, 卢楚翰, 徐海明, 等. 2011. 夏季青藏高原大气热源与西南地区东部旱涝的关系 [J]. 大气科学, 35(3): 422−434. doi: 10.3878/j.issn.1006-9895.2011.03.04Li Y H, Lu C H, Xu H M, et al. 2011. Contemporaneous relationships between summer atmospheric heat source over the Tibetan Plateau and drought/ flood in eastern Southwest China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35(3): 422−434. doi: 10.3878/j.issn.1006-9895.2011.03.04 [12] 李永华, 卢楚翰, 徐海明, 等. 2012a. 热带太平洋—印度洋海表温度变化及其对西南地区东部夏季旱涝 [J]. 热带气象学报, 28(2): 145−156. doi: 10.3969/j.issn.1004-4965.2012.02.001Li Y H, Lu C H, Xu H M, et al. 2012a. Anomalies of sea surface temperature in Pacific–Indian Ocean and effects on drought/flood in summer over eastern of Southwest China [J]. Journal of Tropical Meteorology (in Chinese), 28(2): 145−156. doi: 10.3969/j.issn.1004-4965.2012.02.001 [13] 李永华, 青吉铭, 李强, 等. 2012b. 夏季南亚高压的年(代)际变化特征及其对西南地区东部旱涝的影响 [J]. 西南大学学报(自然科学版), 34(9): 71−81. doi: 10.13718/j.cnki.xdzk.2012.09.006Li Y H, Qing J M, Li Q, et al. 2012b. Inter-annual and inter-decadal variations of South Asian high in summer and its influences on flood/drought over Western Southwest China [J]. Journal of Southwest University (Natural Science Edition) (in Chinese), 34(9): 71−81. doi: 10.13718/j.cnki.xdzk.2012.09.006 [14] 刘新, 李伟平, 吴国雄. 2002. 夏季青藏高原加热和北半球环流年际变化的相关分析 [J]. 气象学报, 60(3): 267−277. doi: 10.3321/j.issn:0577-6619.2002.03.002Liu X, Li W P, Wu G X. 2002. Interannual variation of the diabatic heating over the Tibetan Plateau and the northern hemispheric circulation in summer [J]. Acta Meteorogica Sinica (in Chinese), 60(3): 267−277. doi: 10.3321/j.issn:0577-6619.2002.03.002 [15] Liu J P, Ren H L, Li W J, et al. 2018. Diagnosing the leading mode of interdecadal covariability between the Indian Ocean sea surface temperature and summer precipitation in southern China [J]. Theor. Appl. Climatol., 135(3–4): 1295−1306. doi: 10.1007/s00704-018-2430-8 [16] Liu Y, Chen H P, Zhang G Q, et al. 2019. The advanced South Asian monsoon onset accelerates lake expansion over the Tibetan Plateau [J]. Science Bulletin, 64(20): 1486−1489. doi: 10.1016/j.scib.2019.08.011 [17] 罗玉, 范广洲, 周定文, 等. 2015. 西南地区极端降水变化趋势 [J]. 气象科学, 35(5): 581−586. doi: 10.3969/2014jms.0084Luo Y, Fan G Z, Zhou D W, et al. 2015. Extreme precipitation trend of Southwest China in recent 41 years [J]. Journal of the Meteorological Sciences (in Chinese), 35(5): 581−586. doi: 10.3969/2014jms.0084 [18] 马振锋, 谭友邦. 2004. 预测川渝地区汛期降水量的一种物理统计模型 [J]. 大气科学, 28(1): 138−145. doi: 10.3878/j.issn.1006-9895.2004.01.13Ma Z F, Tan Y B. 2004. A physical statistic model for predicting the rainfall during flood season in Sichuan–Chongqing region [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 28(1): 138−145. doi: 10.3878/j.issn.1006-9895.2004.01.13 [19] 马洁华, 孙建奇, 汪君, 等. 2019. 2018年夏季我国极端降水及滑坡泥石流灾害预测 [J]. 大气科学学报, 42(1): 93−99. doi: 10.13878/j.cnki.dqkxxb.20181214001Ma J H, Sun J Q, Wang J, et al. 2019. Real-time prediction for 2018 JJA extreme precipitation and landslides [J]. Transactions of Atmospheric Sciences (in Chinese), 42(1): 93−99. doi: 10.13878/j.cnki.dqkxxb.20181214001 [20] 秦剑, 琚建华, 解明恩, 等. 1997. 低纬高原天气气候 [M]. 北京: 气象出版社, 210pp.Qin J, Ju J H, Xie M E, et al. 1997. Weather & Climate over Low Latitude Plateau (in Chinese) [M]. Beijing: China Meteorological Press, 210pp. [21] Sun J Q, Yuan W. 2009. Contribution of the sea surface temperature over the Mediterranean–Black Sea to the decadal shift of the summer North Atlantic Oscillation [J]. Adv. Atmos. Sci., 26(4): 717−726. doi: 10.1007/s00376-009-8210-8 [22] 汤阳, 杨若文, 胡金明, 等. 2013. 海表温度异常与中国低纬高原5月降水的ESVD研究 [J]. 热带气象学报, 29(3): 449−457. doi: 10.3969/j.issn.1004-4965.2013.03.011Tang Y, Yang R W, Hu J M, et al. 2013. ESVD analyses of the anomaly of sea surface temperature and the precipitation in May over low-latitude Plateau of China [J]. Journal of Tropical Meteorology (in Chinese), 29(3): 449−457. doi: 10.3969/j.issn.1004-4965.2013.03.011 [23] 唐佑民, 翟武全, 许金洪. 1997. 我国西南地区夏季降水异常与太平洋海温季节演变的关系 [J]. 海洋与湖沼, 28(1): 88−95. doi: 10.3321/j.issn:0029-814X.1997.01.014Tang Y M, Zhai W Q, Xu J H. 1997. The relation between the summer precipitation anomaly in southwestern China and the seasonal SST variation in the Pacific Ocean [J]. Oceanologia et Limnologia Sinica (in Chinese), 28(1): 88−95. doi: 10.3321/j.issn:0029-814X.1997.01.014 [24] Wang B, LinHo. 2002. Rainy season of the Asian–Pacific summer monsoon [J]. J. Climate, 15(4): 386−398. doi:10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2 [25] Wang L, Huang G, Chen W, et al. 2018. Wet-to-dry shift over Southwest China in 1994 tied to the warming of tropical warm pool [J]. Climate Dyn., 51(7–8): 3111−3123. doi: 10.1007/s00382-018-4068-8 [26] 魏维, 张人禾, 温敏. 2012. 南亚高压的南北偏移与我国夏季降水的关系 [J]. 应用气象学报, 23(6): 650−659. doi: 10.3969/j.issn.1001-7313.2012.06.002Wei W, Zhang R H, Wen M. 2012. Meridional variation of South Asian high and its relationship with the summer precipitation over China [J]. Journal of Applied Meteorological Science (in Chinese), 23(6): 650−659. doi: 10.3969/j.issn.1001-7313.2012.06.002 [27] Wei W, Zhang R H, Wen M, et al. 2015. Interannual variation of the South Asian high and its relation with Indian and East Asian summer monsoon rainfall [J]. J. Climate, 28(7): 2623−2634. doi: 10.1175/JCLI-D-14-00454.1 [28] Xiang B Q, Wang B. 2013. Mechanisms for the advanced Asian summer monsoon onset since the mid-to-late 1990s [J]. J. Climate, 26(6): 1993−2009. doi: 10.1175/JCLI-D-12-00445.1 [29] 严华生, 吕俊梅, 琚建华, 等. 2002. 冬季太平洋海温变化对中国5月降水的影响 [J]. 气象科学, 22(4): 410−415. doi: 10.3969/j.issn.1009-0827.2002.04.005Yan H S, Lü J M, Jü J H, et al. 2002. The influencing of winter Pacific SST upon May precipitation of China [J]. Scientia Meteorologica Sinica (in Chinese), 22(4): 410−415. doi: 10.3969/j.issn.1009-0827.2002.04.005 [30] 晏红明, 肖子牛, 王灵. 2003. 孟加拉湾季风活动与云南5月降雨量 [J]. 高原气象, 22(6): 624−630. doi: 10.3321/j.issn:1000-0534.2003.06.015Yan H M, Xiao Z N, Wang L. 2003. Activities of Bay of Bengal monsoon and beginning date of rain season in Yunnan [J]. Plateau Meteorology (in Chinese), 22(6): 624−630. doi: 10.3321/j.issn:1000-0534.2003.06.015 [31] 杨亚力, 杜岩, 陈海山, 等. 2011. ENSO事件对云南及临近地区春末初夏降水的影响 [J]. 大气科学, 35(4): 729−738. doi: 10.3878/j.issn.1006-9895.2011.04.12Yang Y L, Du Y, Chen H S, et al. 2011. Influence of ENSO event on rainfall anomaly over Yunnan Province and its neighboring regions during late spring-early summer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35(4): 729−738. doi: 10.3878/j.issn.1006-9895.2011.04.12 [32] 杨柳, 赵俊虎, 封国林. 2018. 中国东部季风区夏季四类雨型的水汽输送特征及差异 [J]. 大气科学, 42(1): 81−95. doi: 10.3878/j.issn.1006-9895.1706.16273Yang L, Zhao J H, Feng G L. 2018. Characteristics and differences of summertime moisture transport associated with four rainfall patterns over eastern China monsoon region [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(1): 81−95. doi: 10.3878/j.issn.1006-9895.1706.16273 [33] Zhang R H. 2001. Relations of water vapor transport from Indian monsoon with that over East Asia and the summer rainfall in China [J]. Adv. Atmos. Sci., 18(5): 1005−1017. doi: 10.1007/BF03403519 [34] 张宇, 李耀辉, 魏林波, 等. 2013. 南亚高压与西太平洋副热带高压对我国西南地区夏季降水异常的影响 [J]. 干旱气象, 31(3): 464−470. doi: 10.11755/j.issn.1006-7639(2013)-03-0464Zhang Y, Li Y H, Wei L B, et al. 2013. Effects of South Asia High and Western Pacific Subtropical High on the summer precipitation anomalies over Southwest China [J]. Journal of Arid Meteorology (in Chinese), 31(3): 464−470. doi: 10.11755/j.issn.1006-7639(2013)-03-0464 [35] 赵平, 陈隆勋. 2001. 35年来青藏高原大气热源气候特征及其与中国降水的关系 [J]. 中国科学(D辑), 44(9): 858−864. doi: 10.3969/j.issn.1674-7240.2001.04.009Zhao P, Chen L X. 2001. Climatic features of atmospheric heat source/sink over the Qinghai–Xizang Plateau in 35 years and its relation to rainfall in China [J]. Science in China Series D: Earth Sciences, 44(9): 858−864. doi: 10.3969/j.issn.1674-7240.2001.04.009 [36] 周浩, 唐红玉, 程炳岩. 2010. 青藏高原冬春季积雪异常与西南地区夏季降水的关系 [J]. 冰川冻土, 32(6): 1144−1151.Zhou H, Tang H Y, Cheng B Y. 2010. Relation between the abnormal snow cover in winter and spring over the Tibetan Plateau and summer precipitation over the Southwest China [J]. Journal of Glaciology and Geocryology (in Chinese), 32(6): 1144−1151. [37] 朱敏, 张铭. 2006. 南亚夏季风爆发前后降水量时空变化特征 [J]. 热带气象学报, 22(2): 155−160. doi: 10.3969/j.issn.1004-4965.2006.02.007Zhu M, Zhang M. 2006. EOF expansion of precipitation during the Indian summer monsoon onset [J]. Journal of tropical meteorology (in Chinese), 22(2): 155−160. doi: 10.3969/j.issn.1004-4965.2006.02.007 [38] Zuo J Q, Li W J, Sun C H, et al. 2013. Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon [J]. Adv. Atmos. Sci., 30(4): 1173−1186. doi: 10.1007/s00376-012-2125-5 -