高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2016年和1998年长江中下游梅雨季风环流异同点及物理机制对比分析

鲍媛媛

鲍媛媛. 2021. 2016年和1998年长江中下游梅雨季风环流异同点及物理机制对比分析[J]. 大气科学, 45(5): 1−13 doi: 10.3878/j.issn.1006-9895.2101.20174
引用本文: 鲍媛媛. 2021. 2016年和1998年长江中下游梅雨季风环流异同点及物理机制对比分析[J]. 大气科学, 45(5): 1−13 doi: 10.3878/j.issn.1006-9895.2101.20174
BAO Yuanyuan. 2021. Similarities and Differences of Monsoon Circulations between 2016 and 1998 Meiyu Periods in the Middle and Lower Reaches of the Yangtze River and the Comparison of Their Physical Mechanisms [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(5): 1−13 doi: 10.3878/j.issn.1006-9895.2101.20174
Citation: BAO Yuanyuan. 2021. Similarities and Differences of Monsoon Circulations between 2016 and 1998 Meiyu Periods in the Middle and Lower Reaches of the Yangtze River and the Comparison of Their Physical Mechanisms [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(5): 1−13 doi: 10.3878/j.issn.1006-9895.2101.20174

2016年和1998年长江中下游梅雨季风环流异同点及物理机制对比分析

doi: 10.3878/j.issn.1006-9895.2101.20174
基金项目: 国家科技支撑计划课题2015BAC03B06,国家重点研发计划重点专项项目2018YFC1507804,中国气象局气象预报业务关键技术发展专项YBGJXM(2020)04,国家自然科学基金项目42030611、91937301
详细信息
    作者简介:

    鲍媛媛,女,1970年出生,正研级高级工程师,主要从事中期延伸期天气预报及灾害性天气研究。E-mail: baoyy@cma.gov.cn

  • 中图分类号: P466

Similarities and Differences of Monsoon Circulations between 2016 and 1998 Meiyu Periods in the Middle and Lower Reaches of the Yangtze River and the Comparison of Their Physical Mechanisms

Funds: National Science and Technology Support Program (Grant 2015BAC03B06), Key Special Projects of National Key R&D Program of China (Grant 2018YFC1507804), Key Technology Development Project of Meteorological Forecast of CMA [Grant YBGJXM(2020)04], National Natural Science Foundation of China (NSFC) (Grants 42030611, 91937301)
  • 摘要: 对比强厄尔尼诺次年2016年和1998年长江中下游梅雨季风环流异同点,并探讨其物理机制,结果表明:(1)2016年梅雨集中期和1998年两段梅雨期季风环流有诸多相似特征:西北太平洋副热带高压(副高)偏强偏西、南亚高压偏强偏东、孟加拉湾到南海西南季风偏弱;此外,华北东部到江淮均有冷槽维持;副高持续稳定地将西南季风引导至长江中下游形成强西南暖湿气流,并与来自冷槽的北方南下干冷空气辐合,在高层辐散形势配合下形成强降雨。(2)三段梅雨期,青藏高原附近均为高压脊控制,受暖平流及高原热源、梅雨凝结潜热等因素影响,青藏高原到江南、华南一带大气中高层呈大范围强温度正距平;印度尼西亚群岛附近洋面为海温正距平,对流和热源偏强;这是季风环流相似特征形成的两个重要因素。(3)2016年梅雨集中期,青藏高原暖脊最强,东部冷槽最浅,海温正距平范围最大最北,因而南亚高压和副高位置最北,梅雨雨带也最北;梅雨集中期的结束与冷空气减弱以及台湾以东洋面等海域海温正距平显著增强引起超强台风“尼伯特”登陆有关;7月第4候之后,菲律宾以东洋面、南海及东海海域海温正距平增强,对流活跃,导致7月21日之后副高显著偏北;因而没能出现第2段梅雨集中期。(4)1998年7月中旬至8月初,青藏高原上空高压脊较浅,北部呈位势高度负距平,冷空气势力较强,温度偏低,东部冷槽深,西北太平洋海温正距平区域维持不变,故南亚高压和副高异常偏南,从而出现第2段梅雨。
  • 图  1  (a)2016年和(b)1998年的6月1日至8月20日107.5°~120°E平均日降雨量(单位:mm)的纬度—时间剖面

    Figure  1.  Latitude-time profile of average daily precipitation (units: mm) along 107.5°–120°E from June 1 to August 20 in (a) 2016 and (b) 1998

    图  2  (a)2016年梅雨集中期和1998年(b)第1段、(c)第2段梅雨期累计降雨量(单位:mm)

    Figure  2.  Accumulated precipitation (units: mm) during Meiyu concentrated period in (a) 2016, and (b) the first and (c) the second period of Meiyu in 1998

    图  3  (a)2016年梅雨集中期、1998年(b)第1段和(c)第2段梅雨期平均500 hPa(黑色等值线)和200 hPa(阴影)位势高度(单位:dagpm)及850 hPa风(矢量,单位:m s−1)(红色虚线为多年平均500 hPa 588 dagpm等值线,红色实线为多年平均200 hPa位势高度等值线);(d)、(e)、(f)分别为相应时段500 hPa位势高度距平(等值线,阴影表示位势高度距平为负,单位:dagpm)和850 hPa风矢量距平(单位:m s−1)分布图

    Figure  3.  Mean 500 hPa (black solid contours) and 200 hPa (shaded) geopotential heights (units: dagpm) and 850 wind vectors (units: m s−1) during (a) Meiyu concentrated period in 2016, (b) the first and (c) the second period of Meiyu in 1998 (Red dotted contours represent climatological mean 500 hPa 588 dagpm contours, red solid contours represent climatological mean 200 hPa heights); (d), (e), and (f) represent the distribution of the anomalies of 500 hPa geopotential height (contours, the shaded indicates negative, units: dagpm) and the anomalies of 850 wind (vectors, units: m s−1) in the corresponding period respectively

    图  4  (a)2016年和(b)1998年6月1日至8月20日西北太平洋副热带高压(副高)西段脊线(红色实线)及南亚高压东段脊线(黑色实线)所在纬度的时间序列(红色、黑色虚线分别为相应多年平均);(c)和(d)分别为此两年沿107.5°~120°E 平均850 hPa风矢量和假相当位温θse(等值线和阴影;单位:K)的时间—纬度剖面

    Figure  4.  Time series of the latitudes of the western Pacific subtropical high (WPSH) western ridge (red solid line) and the South Asia high (SAH) eastern ridge (black solid line) from June 1 to August 20 in (a) 2016 and (b) 1998 (Dotted lines represent climatological mean); (c) and (d) are respectively the latitude–time profile of winds and potential pseudo-equivalent temperature θse (contours and shading, units: K) along 107.5°–120°E

    图  5  300~500 hPa平均温度(黑色等值线,单位:°C)及其距平(阴影)、平均风(矢量,单位:m s−1)。(a)2016年梅雨集中期,1998年(b)第1段和(c)第2段梅雨期。红色线为多年平均温度−13°C等值线

    Figure  5.  300–500 hPa mean temperature (black contours, units: °C) and its anomalies (shaded), mean wind (vectors, units: m s−1): (a) Meiyu concentrated period in 2016, and (b) the first and (c) the second period of Meiyu in 1998. The red lines are climatological mean temperatures of −13°C

    图  6  平均OLR(等值线,单位:W m−2)及其距平(阴影,单位:W m−2):(a)2016年梅雨集中期, 1998年(b)第1段和(c)第2段梅雨期

    Figure  6.  Mean OLR (contours, units: W m−2) and its anomalies (shaded, units: W m−2): (a) Meiyu concentrated period in 2016, (b) the first and (c) the second period of Meiyu in 1998

    图  7  (a)2016年及(b)1998年6月1日至8月20日110°~140°E平均OLR(等值线,单位:W m−2)及其距平(阴影,单位:W m−2)的纬度—时间剖面

    Figure  7.  Latitude–time profile of OLR (contours, units: W m−2) and its anomalies (shaded, units: W m−2) along 110°–140°E from June 1 to August 20 in (a) 2016 and (b) 1998

    图  8  整层积分的视热源(等值线,单位:W m−2)及其距平(阴影):(a)2016年梅雨集中期,1998年(b)第1段和(c)第2段梅雨期;(d–f)为相应视水汽汇(等值线,单位:W m−2)及其距平(阴影)

    Figure  8.  Full-level integrated heat source (contours, units: W m−2) and its anomalies (shaded): (a) Meiyu concentrated period in 2016; (b) the first and (c) the second period of Meiyu in 1998; (d–f) the respective moisture sink (contours, units: W m−2) and its anomalies (shaded)

    图  9  (a)2016年梅雨集中期,1998年(b)第1段和(c)第2段梅雨期海温距平(单位:°C)

    Figure  9.  SST anomalies (units: °C): (a) Meiyu concentrated period in 2016; (b) the first period of Meiyu in 1998; (c) the second period of Meiyu in 1998

    图  10  (a)2016年及(b)1998年5月1日至8月10日110°~140°E平均海温距平的纬度—时间剖面

    Figure  10.  Latitude–time profile of SST anomalies along 110°–140°E from May 1 to August 10 in (a) 2016 and (b) 1998

  • [1] Bao Y Y, Jü J H, Jin R H, et al. 2010. Reasons for the late onset and anomalous southward persistence of the South China Sea summer monsoon in 2005 [J]. Journal of Tropical Meteorology, 16(1): 27−34. doi: 10.3969/j.issn.1006-8775.2010.01.004
    [2] 陈烈庭. 2001. 青藏高原异常雪盖和ENSO在1998年长江流域洪涝中的作用 [J]. 大气科学, 25(2): 184−192. doi: 10.3878/j.issn.1006-9895.2001.02.04

    Chen Lieting. 2001. The role of the anomalous snow cover over the Qinghai–Xizang Plateau and ENSO in the great floods of 1998 in the Changjiang River valley [J]. Chinese Journal of Atmospheric Sciences, 25(2): 184−192. doi: 10.3878/j.issn.1006-9895.2001.02.04
    [3] 丁一汇, 司东, 柳艳菊, 等. 2018. 论东亚夏季风的特征、驱动力与年代际变化 [J]. 大气科学, 42(3): 533−558. doi: 10.3878/j.issn.1006-9895.1712.17261

    Ding Yihui, Si Dong, Liu Yanju, et al. 2018. On the characteristics, driving forces and inter-decadal variability of the East Asian summer monsoon [J]. Chinese Journal of Atmospheric Sciences, 42(3): 533−558. doi: 10.3878/j.issn.1006-9895.1712.17261
    [4] Duan A M, Wang M R, Lei Y H, et al. 2013. Trends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980–2008 [J]. J. Climate, 26(1): 261−275. doi: 10.1175/jcli-d-11-00669.1
    [5] 段安民, 肖志祥, 王子谦. 2018. 青藏高原冬春积雪和地表热源影响亚洲夏季风的研究进展 [J]. 大气科学, 42(4): 755−766. doi: 10.3878/j.issn.1006-9895.1801.17247

    Duan Anmin, Xiao Zhixiang, Wang Ziqian. 2018. Impacts of the Tibetan Plateau winter/spring snow depth and surface heat source on Asian summer monsoon: A review [J]. Chinese Journal of Atmospheric Sciences, 42(4): 755−766. doi: 10.3878/j.issn.1006-9895.1801.17247
    [6] 郭栋, 王琳玮, 李震坤, 等. 2016. 2015/2016和1997/1998超强El Niño衰减年我国夏季降水异常的比较 [J]. 大气科学学报, 39(6): 835−844. doi: 10.13878/j.cnki.dqkxxb.20160828010

    Guo Dong, Wang Linwei, Li Zhenkun, et al. 2016. Comparison between anomalies of summer rainfall in China in decaying years during super El Niño events of 2015/2016 and 1997/1998 [J]. Transactions of Atmospheric Sciences, 39(6): 835−844. doi: 10.13878/j.cnki.dqkxxb.20160828010
    [7] 黄荣辉, 孙凤英. 1994. 热带西太平洋暖池的热状态及其上空的对流活动对东亚夏季气候异常的影响 [J]. 大气科学, 18(2): 141−151. doi: 10.3878/j.issn.1006-9895.1994.02.02

    Huang Ronghui, Sun Fengying. 1994. Impacts of the thermal state and the convective activities in the tropical western warm pool on the summer climate anomalies in East Asia [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica), 18(2): 141−151. doi: 10.3878/j.issn.1006-9895.1994.02.02
    [8] Huang R H, Chen J L, Wang L, et al. 2012. Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system [J]. Adv. Atmos. Sci., 29(5): 910−942. doi: 10.1007/s00376-012-2015-x
    [9] Kitoh A. 2017. The Asian monsoon and its future change in climate models: A review [J]. J. Meteor. Soc. Japan, 95(1): 7−33. doi: 10.2151/jmsj.2017-002
    [10] Ju J, Slingo J. 1995. The Asian summer monsoon and ENSO [J]. Quart J Roy Meteor Soc, 121: 1133−1168. doi: 10.1002/qj.49712152509
    [11] 李维京. 1999. 1998年大气环流异常及其对中国气候异常的影响 [J]. 气象, 25(4): 20−25. doi: 10.3969/j.issn.1000-0526.1999.04.004

    Li Weijing. 1999. General atmospheric circulation anomaly in 1998 and their impact on climate anomaly in China [J]. Meteorological Monthly, 25(4): 20−25. doi: 10.3969/j.issn.1000-0526.1999.04.004
    [12] Li Y, Ding Y H, Li W J. 2017. Interdecadal variability of the Afro–Asian summer monsoon system [J]. Adv. Atmos. Sci., 34(7): 833−846. doi: 10.1007/s00376-017-6247-7
    [13] 刘屹岷, 吴国雄, 刘辉, 等. 1999. 空间非均匀加热对副热带高压形成和变异的影响——III: 凝结潜热加热与南亚高压及西太平洋副高 [J]. 气象学报, 57(5): 525−538. doi: 10.11676/qxxb1999.051

    Liu Yimin, Wu Guoxiong, Liu Hui, et al. 1999. The effect of spatially nonuniform heating on the formation and variation of subtropical high. Part Ⅲ: Condensation heating and South Asia high and western Pacific subtropical high [J]. Acta Meteorologica Sinica, 57(5): 525−538. doi: 10.11676/qxxb1999.051
    [14] Liu Y M, Wu G X, Ren R C. 2004. Relationship between the subtropical anticyclone and diabatic heating [J]. J. Climate, 17(4): 682−698. doi:10.1175/1520-0442(2004)017<0682: rbtsaa>2.0.co;2
    [15] 刘还珠, 赵声蓉, 赵翠光, 等. 2006. 2003年夏季异常天气与西太副高和南亚高压演变特征的分析 [J]. 高原气象, 25(2): 169−178. doi: 10.3321/j.issn:1000-0534.2006.02.001

    Liu Huanzhu, Zhao Shengrong, Zhao Cuiguang, et al. 2006. Weather abnormal and evolutions of western Pacific subtropical high and South Asian high in summer of 2003 [J]. Plateau Meteorology, 25(2): 169−178. doi:10.3321/j.issn: 1000-0534.2006.02.001
    [16] 彭丽霞, 孙照渤, 陈海山, 等. 2016. 夏季南亚高压多中心特征及其热力影响因子分析 [J]. 大气科学, 40(5): 1089−1106. doi: 10.3878/j.issn.1006-9895.1601.14310

    Peng Lixia, Sun Zhaobo, Chen Haishan, et al. 2016. Analysis on the multi-center structure of summer South Asia high and its thermal influence factors [J]. Chinese Journal of Atmospheric Sciences, 40(5): 1089−1106. doi: 10.3878/j.issn.1006-9895.1601.14310
    [17] Qian Y F, Zhang Q, Yao Y H, et al. 2002. Seasonal variation and heat preference of the South Asia high [J]. Adv. Atmos. Sci., 19(5): 821−836. doi: 10.1007/s00376-002-0047-3
    [18] Shan L J, Zhang L P, Song J Y, et al. 2018. Characteristics of dry–wet abrupt alternation events in the middle and lower reaches of the Yangtze River basin and the relationship with ENSO [J]. J. Geogr. Sci., 28(8): 1039−1058. doi: 10.1007/s11442-018-1540-7
    [19] 唐颢苏, 胡开明, 黄刚. 2019. El Niño衰退年夏季西北太平洋异常反气旋季节内演变特征及其机制 [J]. 气候与环境研究, 24(4): 525−536. doi: 10.3878/j.issn.1006-9585.2019.18156

    Tang Haosu, Hu Kaiming, Huang Gang. 2019. Characteristics and mechanisms of sub-seasonal evolution of Northwest Pacific anomalous anticyclone during the El Niño decaying summer [J]. Climatic and Environmental Research, 24(4): 525−536. doi: 10.3878/j.issn.1006-9585.2019.18156
    [20] 王钦, 李双林, 付建建, 等. 2012. 1998和2010年夏季降水异常成因的对比分析: 兼论两类不同厄尔尼诺事件的影响 [J]. 气象学报, 70(6): 1207−1222. doi: 10.11676/qxxb2012.102

    Wang Qin, Li Shuanglin, Fu Jianjian, et al. 2012. On the formation of anomalous summer precipitation in the years of 2010 and 1998: A comparison of the El Niño’s impact between Modoki and typical El Niño cases [J]. Acta Meteorologica Sinica, 70(6): 1207−1222. doi: 10.11676/qxxb2012.102
    [21] Weng H Y, Wu G X, Liu Y M, et al. 2011. Anomalous summer climate in China influenced by the tropical Indo-Pacific oceans [J]. Climate Dyn., 36(3-4): 769−782. doi: 10.1007/s00382-009-0658-9
    [22] Wu G X, Duan A M, Liu Y M, et al. 2015. Tibetan Plateau climate dynamics: Recent research progress and outlook [J]. National Science Review, 2(1): 100−116. doi: 10.1093/nsr/nwu045
    [23] 吴国雄, 刘屹岷, 何编, 等. 2018. 青藏高原感热气泵影响亚洲夏季风的机制 [J]. 大气科学, 42(3): 488−504. doi: 10.3878/j.issn.1006-9895.1801.17279

    Wu Guoxiong, Liu Yimin, He Bian, et al. 2018. Review of the impact of the Tibetan Plateau sensible heat driven air-pump on the Asian summer monsoon [J]. Chinese Journal of Atmospheric Sciences, 42(3): 488−504. doi: 10.3878/j.issn.1006-9895.1801.17279
    [24] 薛峰, 段欣妤, 苏同华. 2018. El Niño发展年和La Niña年东亚夏季风季节内变化的比较 [J]. 气候与环境研究, 23(3): 321−331. doi: 10.3878/j.issn.1006-9585.2017.17044

    Xue Feng, Duan Xinyu, Su Tonghua. 2018. Comparison of intraseasonal variation of the East Asian summer monsoon between El Niño developing years and La Niña years [J]. Climatic and Environmental Research, 23(3): 321−331. doi: 10.3878/j.issn.1006-9585.2017.17044
    [25] Yanai M, Esbensen S, Chu J H. 1973. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets [J]. Journal of Atmospheric Science, 30(4): 611−627. doi:10.1175/1520-0469(1973)030<0611: dobpot>2.0.co;2
    [26] 姚秀萍, 张硕, 闫丽朱. 2019. 青藏高原大气热源及其影响的研究进展 [J]. 大气科学学报, 42(5): 641−651. doi: 10.13878/j.cnki.dqkxxb.20181227001

    Yao Xiuping, Zhang Shuo, Yan Lizhu. 2019. Research progress on the atmospheric heat source over the Tibetan Plateau and its influence [J]. Transactions of Atmospheric Sciences, 42(5): 641−651. doi: 10.13878/j.cnki.dqkxxb.20181227001
    [27] 余丹丹, 张韧, 赵越超, 等. 2014. 西太平洋副高的东西进退与东亚夏季风系统的相互影响与关联 [J]. 大气科学学报, 37(3): 304−312. doi: 10.3969/j.issn.1674-7097.2014.03.007

    Yu Dandan, Zhang Ren, Zhao Yuechao, et al. 2014. Correlation between the subtropical high abnormal longitudinal position and the East Asian summer monsoon system [J]. Transactions of Atmospheric Sciences, 37(3): 304−312. doi: 10.3969/j.issn.1674-7097.2014.03.007
    [28] 袁媛, 高辉, 贾小龙, 等. 2016. 2014~2016年超强厄尔尼诺事件的气候影响 [J]. 气象, 42(5): 532−539. doi: 10.7519/j.issn.1000-0526.2016.05.002

    Yuan Yuan, Gao Hui, Jia Xiaolong, et al. 2016. Influences of the 2014–2016 super El Niño event on climate [J]. Meteorological Monthly, 42(5): 532−539. doi: 10.7519/j.issn.1000-0526.2016.05.002
    [29] 袁媛, 高辉, 李维京, 等. 2017. 2016年和1998年汛期降水特征及物理机制对比分析 [J]. 气象学报, 75(1): 19−38. doi: 10.11676/qxxb2017.019

    Yuan Yuan, Gao Hui, Li Weijing, et al. 2017. Analysis and comparison of summer precipitation features and physical mechanisms between 2016 and 1998 [J]. Acta Meteor. Sinica, 75(1): 19−38. doi: 10.11676/qxxb2017.019
    [30] 翟盘茂, 余荣, 郭艳君, 等. 2016. 2015/2016年强厄尔尼诺过程及其对全球和中国气候的主要影响 [J]. 气象学报, 74(3): 309−321. doi: 10.11676/qxxb2016.049

    Zhai Panmao, Yu Rong, Guo Yanjun, et al. 2016. The strong El Niño in 2015/2016 and its dominant impacts on global and China’s climate [J]. Acta Meteor. Sinica, 74(3): 309−321. doi: 10.11676/qxxb2016.049
    [31] 张宏杰, 武亮, 黄荣辉. 2018. 两类El Niño型对西北太平洋季风槽及热带气旋生成的可能影响 [J]. 气候与环境研究, 23(2): 150−160. doi: 10.3878/j.issn.1006-9585.2017.17055

    Zhang Hongjie, Wu Liang, Huang Ronghui. 2018. Possible impacts of two types of El Niño events on the western North Pacific monsoon trough and tropical cyclogenesis [J]. Climatic and Environmental Research, 23(2): 150−160. doi: 10.3878/j.issn.1006-9585.2017.17055
    [32] Zhang Z Q, Sun X G, Yang X Q. 2018. Understanding the interdecadal variability of East Asian summer monsoon precipitation: Joint influence of three oceanic signals [J]. J. Climate, 31(14): 5485−5506. doi: 10.1175/jcli-d-17-0657.1
    [33] 张镇宏, 蔡景就, 乔云亭, 等. 2019. 青藏高原夏季大气视热源与中国东部降水的关系的年代际变化 [J]. 大气科学, 43(5): 990−1004. doi: 10.3878/j.issn.1006-9895.1901.18141

    Zhang Zhenhong, Cai Jingjiu, Qiao Yunting, et al. 2019. Interdecadal change in the relation between atmospheric apparent heat sources over Tibetan Plateau and precipitation in eastern China in summer [J]. Chinese Journal of Atmospheric Sciences, 43(5): 990−1004. doi: 10.3878/j.issn.1006-9895.1901.18141
    [34] 朱玉祥, 丁一汇, 刘海文. 2009. 青藏高原冬季积雪影响我国夏季降水的模拟研究 [J]. 大气科学, 33(5): 903−915. doi: 10.3878/j.issn.1006-9895.2009.05.02

    Zhu Yuxiang, Ding Yihui, Liu Haiwen. 2009. Simulation of the influence of winter snow depth over the Tibetan Plateau on summer rainfall in China [J]. Chinese Journal of Atmospheric Sciences, 33(5): 903−915. doi: 10.3878/j.issn.1006-9895.2009.05.02
    [35] 宗海锋. 2017. 两个典型ENSO季节演变模态及其与我国东部降水的联系 [J]. 大气科学, 41(6): 1264−1283. doi: 10.3878/j.issn.1006-9895.1704.16279

    Zong Haifeng. 2017. Two typical ENSO seasonal evolution modes and their relations with rainfall over eastern China [J]. Chinese Journal of Atmospheric Sciences, 41(6): 1264−1283. doi: 10.3878/j.issn.1006-9895.1704.16279
  • 加载中
图(10)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  12
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-23
  • 录用日期:  2021-02-04
  • 网络出版日期:  2021-02-26

目录

    /

    返回文章
    返回