高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ECMWF驱动场谱逼近对浙江超强台风“利奇马”(2019)精细化数值预报的影响

董美莹 陈锋 邱金晶 冀春晓

董美莹, 陈锋, 邱金晶, 等. 2021. ECMWF驱动场谱逼近对浙江超强台风“利奇马”(2019)精细化数值预报的影响[J]. 大气科学, 45(5): 1−16 doi: 10.3878/j.issn.1006-9895.2101.20193
引用本文: 董美莹, 陈锋, 邱金晶, 等. 2021. ECMWF驱动场谱逼近对浙江超强台风“利奇马”(2019)精细化数值预报的影响[J]. 大气科学, 45(5): 1−16 doi: 10.3878/j.issn.1006-9895.2101.20193
DONG Meiying, CHEN Feng, QIU Jinjing, et al. 2021. Impact of Spectral Nudging Technique Driven with ECMWF Data on the Fine Numerical Prediction of Super Typhoon Lekima (2019) in Zhejiang Province [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(5): 1−16 doi: 10.3878/j.issn.1006-9895.2101.20193
Citation: DONG Meiying, CHEN Feng, QIU Jinjing, et al. 2021. Impact of Spectral Nudging Technique Driven with ECMWF Data on the Fine Numerical Prediction of Super Typhoon Lekima (2019) in Zhejiang Province [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(5): 1−16 doi: 10.3878/j.issn.1006-9895.2101.20193

ECMWF驱动场谱逼近对浙江超强台风“利奇马”(2019)精细化数值预报的影响

doi: 10.3878/j.issn.1006-9895.2101.20193
基金项目: 华东区域气象科技协同创新基金合作项目QYHZ201805,浙江省基础公益研究计划LY21D050001,浙江省科技计划项目LGF20D050001,浙江省气象科技计划项目2017ZD04、2020ZD06
详细信息
    作者简介:

    董美莹,女,1973年出生,博士,主要从事台风、暴雨等灾害性天气研究。E-mail: dongmy_zj@163.com

    通讯作者:

    陈锋,E-mail: fchen_zj@163.com

  • 中图分类号: P456

Impact of Spectral Nudging Technique Driven with ECMWF Data on the Fine Numerical Prediction of Super Typhoon Lekima (2019) in Zhejiang Province

Funds: Meteorological Science and Technology Collaborative Innovation Fund Cooperation Project of East China Region (Grant QYHZ201805), Basic Public Welfare Research Program of Zhejiang Province (Grant LY21D050001), Science and Technology Projects of Zhejiang Province (Grant LGF20D050001), Key Project of Science and Technology Plan of Zhejiang Meteorological Provincial Bureau (Grants 2017ZD04, 2020ZD06)
  • 摘要: 为提升高分辨率区域数值天气预报模式性能,基于高质量的ECMWF全球预报模式产品和动力谱逼近方法优势,本文以2019年重创浙江的超强台风“利奇马”为例,探讨了ECMWF驱动场水平风场谱逼近技术对浙江台风精细化预报性能的影响。结果表明:(1)谱逼近对路径预报影响较明显,逐小时路径误差最大修正可达80 km。谱逼近的垂直层次选取对于谱逼近效果有一定影响,总体上800 hPa高度以上谱逼近对台风路径和强度预报改进最佳。(2)谱逼近对浙江台风大风和强降水精细化预报均有大幅改进,对于8级以上大风ETS评分平均改进率为8.0%,最大改进率达20.8%;对最强日降水的暴雨、大暴雨以上降水TS评分改进幅度达11.8%、26.2%。(3)谱逼近对台风路径西偏和浙西南风雨高估的改进主要与对流层形势场及台风引导气流修正、近地层风力减弱、局地山脉地形降水增幅作用减弱有关。
  • 图  1  (a)模式模拟区域设置和(b)内区域(d02)地形高度(阴影,单位:m)。图(a)中内(d02)、外(D01)区域水平格距分别为3 km和9 km,黑色粗线框示意内区域;图(b)中点圈标记表示“利奇马”影响期间浙江省7个主要降水中心观测站:括苍山(KC)、枧头村(JT)、石梁镇(SL)、江南天池(JN)、照君岩(ZJ)、下西坑村(XX)、石屏村(SP)和郑地村(ZD),蓝色粗线AB示意图10垂直剖面中过下西坑村(XX)和郑地村(ZD)降水中心的水平线位置

    Figure  1.  (a) Configuration of the model domain and (b) the inner domain topography (shaded, units: m). In Fig.(a), the outer domain d01 corresponds to the 9-km horizontal resolution, the inner domain d02 with thick black frame has a 3-km resolution. In Fig. (b), the dot-circles indicate the seven observational stations as KC, JT, SL, JN, ZJ, XX,SP and ZD of main precipitation centers in Zhejiang Province as induced by typhoon Likima (2019); the thick blue line AB denotes the horizontal line through the rainfall centers of XX and ZD as displayed in the vertical cross section in Fig.10

    图  2  2019年8月8日20时至11日20时“利奇马”(a)台风路径的实况与8月8日20时起报的预报,(b)台风路径误差的时序图(单位:km)和(c)台风中心附近最大风速的实况与预报(单位:m s−1)。图中黑色、蓝色、绿色、红色、橙色、浅蓝色、灰色实线分别示意实况与CTL、SNL12、SNL10、SNL08和SNL06试验

    Figure  2.  Observed and simulated Lekima’ s (a) tracks, (b) errors (units: km) and (c) maximum wind speeds near TC center (Vmax, units: m s−1) from 2000 BJT 8 August 2019 to 2000 BJT 11 August 2019. The black, blue, green, red, orange and light blue lines indicate the observation and simulations for experiments CTL, SNL12, SNL10, SNL08 and SNL06, respectively

    图  3  2019年8月9日08时至11日08时控制试验CTL(蓝色空心园线)和最佳谱逼近试验SNL10(红色实心圆线)的(a)纬向(UU)、(b)经向(VV)和(c)全风速(UV)引导气流大小变化(单位:m s−1)。引导气流由距台风中心500 km水平范围以内、850 hPa至300 hPa垂直层次之间的水平风场求平均估算(Holland, 1984);图中灰色垂直实线示意“利奇马”登陆时刻

    Figure  3.  The evolution of (a) zonal steering, (b) meridional steering and (c) total steering speed (units: m s−1) from 0800 BJT 9 August to 0800 BJT 11 August 2019, based on the CTL (blue line with open circle) control run and experiment SNL10 (red line with solid circle). The steering flow is defined as the mean horizontal wind averaged within a radius of 500 km from the typhoon centre between 300 and 850 hPa (Holland, 1984). The grey vvertical line denotes the time of Lekima landfall

    图  4  所有预报时效下最佳谱逼近试验SNL10相对控制试验CTL各要素模拟(a)均方根误差和(b)空间相关系数的平均增量百分比(最佳试验减去控制试的差值除以控制试验)D02区域平均垂直廓线。图中红线、绿线、蓝线、橙线和紫线分别示意纬向风、经向风、高度场、温度场和相对湿度

    Figure  4.  Vertical profiles of average increment percentagesof (a) root mean square error (RMSE) and (b) spatial correlation coefficient (SPCC) for meteorological elements between the SNL10 experiment and the control run (the former minus the latter and then divided by the latter) during all lead times over D02. The red, green, blue, orange and purple lines indicate the zonal wind, meridian wind, geopotential height, temperature, and relative humidity from both observation and simulation experiments (CTL, SNL12, SNL10, SNL08 and SNL06), respectively

    图  5  2019年8月9日20时至8月10日20时10 m高度极大风实况和各试验模拟逐1 h的最大10 m风速的对比(单位:m s−1):(a)实况;(b)控制试验CTL;(c)最佳谱逼近试验SNL10。图中黑色方框(30°N~31°N, 119.2°E~121°E)示意差异较明显的浙西南地区

    Figure  5.  The observed extreme wind speed and simulated maximum hourly wind speed at 10 m above surface (units: m s−1) from 0800 BJT 9 August to 0800 BJT 11 August 2019: (a) Observations; (b) CTL; (c) SNL10. The black rectangle (30°N–31°N, 119.2°E–121°E) in each panel denotes the south-west region of Zhejiang Province (SWR), wherein the major wind and precipitation differences occur between CTL experiment and SNL10 experiment

    图  6  2019年8月9日20时至8月10日20时逐3 h控制试验(蓝柱)和最佳谱逼近试验(红柱)模拟10 m风的(a)均方根误差和(b)空间相关系数以及8级以上大风(≥17.2 m s−1)的(c)TS和(d)ETS评分

    Figure  6.  The comparison of the (a) RMSE, (b) SPCC, (c) threat score (TS), and (d) equitable threat score (ETS) of wind speed at 10 m above surface (units: m s−1) from 0800 BJT 9 August to 0800 BJT 10 August 2019 between CTL (blue bar) and SNL10 (red bar) experiment. Strong wind is verified with the threshold of 17.2 m s-1 in (c and d)

    图  7  2019年8月8日20时至8月11日20时72 h累计降水的实况和模拟(单位:mm):(a)实况;(b)控制试验;(c)最佳谱逼近试验。黑色方框示意同图5;点圈标记及字符标识同图1b

    Figure  7.  The comparison of 72 h accumulated precipitation (units: mm) from 2000 BJT 8 August 2019 to 2000 BJT 11 August 2019: (a) Observation; (b) CTL; (c) SNL10. The black rectangle is the same as in Fig.5, while the marks and texts of stations are the same as in Fig.1b

    图  8  控制试验(蓝柱)和最佳谱逼近试验(红柱)对2019年8月9日20时至8月10日20时阈值为0.1 mm,10 mm,25 mm,50 mm和100 mm的各量级24 h累计降水预报评分对比:(a)TS;(b)ETS评分

    Figure  8.  The comparison of the (a) TS, (b) ETS of 24 h accumulated rainfall with the thresholds of 0.1 mm, 10 mm, 25 mm, 50 mm and 100 mm from 2000 BJT 9 August to 2000 BJT 10 August 2019 between the CTL (blue bar) and SNL10 (red bar) experiments

    图  9  2019年8月9日20时至8月10日20时各试验副降水中心逐1 h累计降水模拟(蓝色空心园线示意CTL,红色实心圆线示意最佳试验SNL10)和实况(黑色实线):(a)下西坑村(XX);(b)石屏村(SP);(c)郑地村(ZD)。图注中各模拟试验名称后的数值依次表示该站点1 h降水预报的均方根误差(单位:mm)和相关系数

    Figure  9.  Hourly evolution of the observed (black line) and simulated 1 h accumulated precipitation (blue line: experiment CTL; red line: SNL10; units: mm) at rainfall centers from 0800 BJT 9 August to 0800 BJT 11 August 2019: (a) XX; (b) SP; (c) ZD. The values behind the name of the test in the legend denote the RMSE and CC of each experiment in order

    图  10  各试验模拟2019年8月9日20时至8月10日20时逐小时雷达基本反射率因子(单位:dBZ)和风场 [矢量,沿剖面方向的水平风(单位:m s−1)和垂直风(单位: 0.2 m s−1)] 的24 h时间平均沿浙西南副降水中心附近(图1b中蓝线AB)垂直剖面:(a)控制试验CTL;(b)最佳谱逼近试验SNL10。横坐标上黑色三角形标示下西坑村(XX)、石屏村东北侧(SP_NE)和郑地村(ZD)附近的位置

    Figure  10.  Vertical cross sections of the simulated 24 h mean basic reflectivity factor (shaded, units: dBZ), horizontal wind along AB blue line in Fig.1b (vector, units: m s−1) and vertical velocity (vector, units: 0.2 m s−1) from the simulated experiments (a) CTL and (b) SNL10. Black triangle represents the vicinity of XX station, the north-east of SP station and ZD station

    图  11  控制试验CTL(蓝色虚线)和最佳谱逼近试验SNL10(红色实线)2019年8月9日20时至8月10日20时石屏村(SP)副降水中心附近模拟变量的24 h平均垂直廓线:(a)水平全风速(单位: m s−1);(b)水平辐合(单位: 10−4 s−1);(c)垂直运动(单位:m s−1);(d)雷达三维反射率因子(阴影,单位:dBZ

    Figure  11.  Vertical profiles of the 24h-mean simulated variables at the SP station from 2000 BJT 8 August 2019 to 2000 BJT 11 August 2019: (a) Horizontal velocity (units: m s−1); (b) horizontal convergence (units: 10−4 s−1); (c) vertical velocity (units: m s−1); (d) three-dimensional radar reflectivity (shaded, units: dBZ) for the experiment CTL (blue dashed line) and SNL10 (red solid line).

    图  12  动力谱逼近对台风精细化预报的改进过程

    Figure  12.  The improvement process of typhoon fine prediction through dynamical spectral nudging technique

    表  1  试验设计

    Table  1.   Design of Experiments

    序号 试验类别 试验名称 说明
    1 控制试验 CTL 未作任何要素的谱逼近
    2 不同垂直层次谱逼近敏感性试验 SNL12 对模式第12层(σ=0.703685)及以上层次作谱逼近
    3 SNL10 对模式第10层(σ=0.790056)及以上层次作谱逼近
    4 SNL08 对模式第8层(σ=0.862011)及以上层次作谱逼近
    5 SNL06 对模式第6层(σ=0.921500)及以上层次作谱逼近
    下载: 导出CSV
  • [1] Cha D H, Lee D K. 2009. Reduction of systematic errors in regional climate simulations of the summer monsoon over East Asia and the western North Pacific by applying the spectral nudging technique [J]. J. Geophys. Res. Atmos., 114(D14): D14108. doi: 10.1029/2008jd011176
    [2] Cha D H, Wang Y Q. 2013. A dynamical initialization scheme for real-time forecasts of tropical cyclones using the WRF model [J]. Mon. Wea. Rev., 141(3): 964−986. doi: 10.1175/mwr-d-12-00077.1
    [3] 陈联寿, 丁一汇. 1979. 西太平洋台风概论[M]. 北京: 科学出版社, 31–63.

    Chen Lianshou, Ding Yihui. 1979. The Introduction to Typhoons over Northwest Pacific (in Chinese)[M]. Beijing: Science Press, 31–63.
    [4] Chen F, Dudhia J. 2001. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity [J]. Mon. Wea. Rev., 129(4): 569−585. doi:10.1175/1520-0493(2001)129<0569:caalsh>2.0.co;2
    [5] 陈锋, 董美莹, 冀春晓, 等. 2012. WRF模式对浙江2011年夏季降水和温度预报评估及其湿过程敏感性分析 [J]. 浙江气象, 33(3): 3−12. doi: 10.3969/j.issn.1004-5953.2012.03.002

    Chen Feng, Dong Meiying, Ji Chunxiao, et al. 2012. Evaluation of precipitation and temperature forecast in summer 2011 in Zhejiang Province by WRF model and its sensitivity analysis of wet physical process [J]. Zhejiang Provincial Meteorology (in Chinese), 33(3): 3−12. doi: 10.3969/j.issn.1004-5953.2012.03.002
    [6] 陈联寿, 端义宏, 宋丽莉, 等. 2012. 气象灾害丛书: 台风预报及其灾害[M]. 北京: 气象出版社, 21–43.

    Chen Lianshou, Duan Yihong, Song Lili, et al. 2012. Meteorological Disasters Series: Typhoon Forecast and Its Disasters (in Chinese)[M]. Beijing: China Meteorological Press, 21–43.
    [7] 陈国民, 张喜平, 白莉娜, 等. 2019. 2017年西北太平洋和南海热带气旋预报精度评定 [J]. 气象, 45(4): 577−586. doi: 10.7519/j.issn.1000-0526.2019.04.012

    Chen Guomin, Zhang Xiping, Bai Lina, et al. 2019. Verification on forecasts of tropical cyclones over western North Pacific and South China Sea in 2017 [J]. Meteor. Mon. (in Chinese), 45(4): 577−586. doi: 10.7519/j.issn.1000-0526.2019.04.012
    [8] Choi S J, Lee D K. 2016. Impact of spectral nudging on the downscaling of tropical cyclones in regional climate simulations [J]. Advances in Atmospheric Sciences, 33(6): 730−742. doi: 10.1007/s00376-016-5061-y
    [9] 邓国, 周玉淑, 李建通. 2005. 台风数值模拟中边界层方案的敏感性试验I.对台风结构的影响 [J]. 大气科学, 29(3): 417−428. doi: 10.3878/j.issn.1006-9895.2005.03.09

    Deng Guo, Zhou Yushu, Li Jiantong. 2005. The experiments of the boundary layer schemes on simulated typhoon. Part I. The effect on the structure of typhoon [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 29(3): 417−428. doi: 10.3878/j.issn.1006-9895.2005.03.09
    [10] 丁金才. 1995. 天气预报评分方法评述 [J]. 南京气象学院学报, 18(1): 143−150. doi: 10.1175/2010jas3268.1

    Ding Jincai. 1995. An overview on verification methods of weather prediction [J]. Journal of Nanjing Institute of Meteorology (in Chinese), 18(1): 143−150. doi: 10.1175/2010jas3268.1
    [11] Dong M Y, Chen L S, Li Y, et al. 2010. Rainfall reinforcement associated with landfalling tropical cyclones [J]. J. Atmos. Sci., 67(11): 3541−3558. doi: 10.1175/2010JAS3268.1
    [12] 董美莹, 陈联寿, 程正泉, 等. 2011. 地形影响热带气旋“泰利”降水增幅的数值研究 [J]. 高原气象, 30(3): 700−710.

    Dong Meiying, Chen Lianshou, Cheng Zhengquan, et al. 2011. Numerical study of topography effect on rainfall reinforcement associated with tropical cyclone ‘Talim’ [J]. Plateau Meteorology (in Chinese), 30(3): 700−710.
    [13] 董美莹, 陈锋, 冀春晓. 2019. 不同要素谱逼近对高分辨区域数值模式梅雨模拟的改进 [J]. 气象, 45(5): 593−605. doi: 10.7519/j.issn.1000-0526.2019.05.001

    Dong Meiying, Chen Feng, Ji Chunxiao. 2019. Improving the Meiyu simulation using spectral nudging of single-element and multi-element in high-resolution regional numerical model [J]. Meteor. Mon. (in Chinese), 45(5): 593−605. doi: 10.7519/j.issn.1000-0526.2019.05.001
    [14] Dong M Y, Ji C X, Chen F, et al. 2019. Numerical study of boundary layer structure and rainfall after landfall of typhoon Fitow (2013): Sensitivity to planetary boundary layer parameterization [J]. Adv. Atmos. Sci., 36(4): 431−450. doi: 10.1007/s00376-018-7281-9
    [15] 段晶晶, 钱燕珍, 周福, 等. 2017. 台风灿鸿造成浙江东北部大暴雨地形作用的数值模拟研究 [J]. 气象, 43(6): 686−695. doi: 10.7519/j.issn.1000-0526.2017.06.005

    Duan Jingjing, Qian Yanzhen, Zhou Fu, et al. 2017. Numerical simulation of topographic effect on heavy rainfall in northeastern Zhejiang caused by typhoon Chan–Hom [J]. Meteor. Mon. (in Chinese), 43(6): 686−695. doi: 10.7519/j.issn.1000-0526.2017.06.005
    [16] Gotway J H, Holland L, Brown B, et al. 2009. Model evaluation tools version 2. 0 user’s guide [EB/OL]. Developmental Testbed Center, Boulder, Colorado, USA. http://www.dtcenter.org/met/users/docs/overview.php.
    [17] Holland G J. 1984. Tropical cyclone motion: A comparison of theory and observation [J]. J. Atmos. Sci., 41: 68−75. doi:10.1175/1520-0469(1984)041<0068:TCMACO>2.0.CO;2
    [18] Hong S Y, Dudhia J, Chen S H. 2004. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation [J]. Mon. Wea. Rev., 132(1): 103−120. doi:10.1175/1520-0493(2004)132<0103:aratim>2.0.co;2
    [19] Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes [J]. Mon. Wea. Rev., 134(9): 2318−2341. doi: 10.1175/mwr3199.1
    [20] Iacono M J, Delamere J S, Mlawer E J, et al. 2008. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models [J]. J. Geophys. Res., 113(D13): D13103. doi: 10.1029/2008jd009944
    [21] 冀春晓, 薛根元, 赵放, 等. 2007. 台风Rananim登陆期间地形对其降水和结构影响的数值模拟试验 [J]. 大气科学, 31(2): 233−244. doi: 10.3878/j.issn.1006-9895.2007.02.05

    Ji Chunxiao, Xue Genyuan, Zhao Fang, et al. 2007. The numerical simulation of orographic effect on the rain and structure of typhoon Rananim during landfall [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31(2): 233−244. doi: 10.3878/j.issn.1006-9895.2007.02.05
    [22] Jiménez P A, Dudhia J, González-Rouco J F, et al. 2012. A revised scheme for the WRF surface layer formulation [J]. Mon. Wea. Rev., 140(3): 898−918. doi: 10.1175/mwr-d-11-00056.1
    [23] 雷小途, 余晖. 2015. WMO登陆台风预报示范项目研究进展 [J]. 气象科技进展, 5(2): 18−23. doi: 10.3969/j.issn.2095-1973.2015.02.003

    Lei Xiaotu, Yu Hui. 2015. The progress of WMO typhoon landfall forecast demonstration project [J]. Advances in Meteorological Science and Technology (in Chinese), 5(2): 18−23. doi: 10.3969/j.issn.2095-1973.2015.02.003
    [24] Miguez-Macho G, Stenchikov G L, Robock A. 2004. Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations [J]. J. Geophys. Res. Atmos., 109(D13): D13104. doi: 10.1029/2003jd004495
    [25] Miguez-Macho G, Stenchikov G L, Robock A. 2005. Regional climate simulations over north America: Interaction of local processes with improved large–scale flow [J]. J. Climate, 18(8): 1227−1246. doi: 10.1175/jcli3369.1
    [26] 钮学新, 杜惠良, 刘建勇. 2005. 0216号台风降水及其影响降水机制的数值模拟试验 [J]. 气象学报, 63(1): 57−68. doi: 10.3321/j.issn:0577-6619.2005.01.007

    Niu Xuexin, Du Huiliang, Liu Jianyong. 2005. The numerical simulation of rainfall and precipitation mechanism associated with typhoons Sinlaku (0216) [J]. Acta Meteor. Sinica (in Chinese), 63(1): 57−68. doi: 10.3321/j.issn:0577-6619.2005.01.007
    [27] 邱金晶, 陈锋, 董美莹, 等. 2015. 浙江省快速更新同化系统的建立与检验评估 [J]. 气象科技进展, 5(6): 6−12. doi: 10.3969/j.issn.2095-1973.2015.06.001

    Qiu Jinjing, Chen Feng, Dong Meiying, et al. 2015. Establishment and evaluation of Zhejiang WRF–ADAS rapid refresh system [J]. Advances in Meteorological Science and Technology (in Chinese), 5(6): 6−12. doi: 10.3969/j.issn.2095-1973.2015.06.001
    [28] Shan H X, Guan Y P, Huang J P. 2012. Effects of spectral nudging on the 2010 East Asia summer monsoon using WRF model [J]. Chinese Journal of Oceanology and Limnology, 30(6): 1105−1115. doi: 10.1007/s00343-012-1272-y
    [29] Skamarock W C, Klemp J B, Dudhia J, et al. 2008. A description of the advanced research WRF version 3 [R]. No. NCAR/TN-475+STR. doi: 10.5065/D68S4MVH
    [30] Smith R B, Schafer P, Kirshbaum D J, et al. 2009. Orographic enhancement of precipitation inside Hurricane Dean [J]. J. Hydrometeorol., 10(3): 820−831. doi: 10.1175/2008jhm1057.1
    [31] 宋寔, 汤剑平. 2011. 谱逼近方法在东亚夏季降水区域模式模拟中的适用性研究: 区域大小和位置的影响 [J]. 气象学报, 69(2): 297−309. doi: 10.11676/qxxb2011.025

    Song Shi, Tang Jianping. 2011. An application of the spectral nudging technique to the simulation of summer precipitation over East Asia using a regional climate model: The impact of domain size and position [J]. Acta Meteor. Sinica (in Chinese), 69(2): 297−309. doi: 10.11676/qxxb2011.025
    [32] Spero T L, Otte M J, Bowden J H, et al. 2014. Improving the representation of clouds, radiation, and precipitation using spectral nudging in the Weather Research and Forecasting model [J]. J. Geophys. Res. Atmos., 119(20): 11682−11694. doi: 10.1002/2014jd022173
    [33] Tang J P, Song S, Wu J. 2010. Impacts of the spectral nudging technique on simulation of the East Asian summer monsoon [J]. Theor. Appl. Climatol., 101(1-2): 41−51. doi: 10.1007/s00704-009-0202-1
    [34] von Storch H, Langenberg H, Feser F. 2000. A spectral nudging technique for dynamical downscaling purposes [J]. Mon. Wea. Rev., 128(10): 3664−3673. doi:10.1175/1520-0493(2000)128<3664:asntfd>2.0.co;2
    [35] Waldron K M, Paegle J, Horel J D. 1996. Sensitivity of a spectrally filtered and nudged limited-area model to outer model options [J]. Mon. Wea. Rev., 124(3): 529−547. doi:10.1175/1520-0493(1996)124<0529:soasfa>2.0.co;2
    [36] 王叶红, 赵玉春. 2020. 边界层参数化方案对"莫兰蒂"台风(1614)登陆阶段影响的数值模拟研究 [J]. 大气科学, 44(5): 935−959. doi: 10.3878/j.issn.1006-9895.2004.19135

    Wang Yehong, Zhao Yuchun. 2020. Numerical investigation of the effects of boundary layer parameterization schemes on typhoon Meranti (1614) landing process [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(5): 935−959. doi: 10.3878/j.issn.1006-9895.2004.19135
    [37] 王淑莉, 徐祥德, 康红文, 等. 2016. 应用谱逼近方法模拟2008年初南方持续性降水过程及其水汽通道周期特征分析 [J]. 大气科学, 40(3): 476−488. doi: 10.3878/j.issn.1006-9895.1507.14332

    Wang Shuli, Xu Xiangde, Kang Hongwen, et al. 2016. Simulation of continuous rainfall over South China in early 2008 with the spectral nudging method and the periodicity characteristics of the water vapor channel [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(3): 476−488. doi: 10.3878/j.issn.1006-9895.1507.14332
    [38] Wu C C, Yen T H, Kuo Y H, et al. 2002. Rainfall simulation associated with typhoon Herb (1996) near Taiwan. Part I: The topographic effect [J]. Wea. Forecasting, 17(5): 1001−1015. doi:10.1175/1520-0434(2003)017<1001:rsawth>2.0.co;2
    [39] 许娈, 董美莹, 陈锋. 2017. 基于逐时降水站点资料空间插值方法对比研究 [J]. 气象与环境学报, 33(1): 34−43. doi: 10.3969/j.issn.1673-503x.2017.01.005

    Xu Luan, Dong Meiying, Chen Feng. 2017. Comparison study of spatial interpolation methods based on hourly precipitation data from automatic weather stations [J]. Journal of Meteorology and Environment (in Chinese), 33(1): 34−43. doi: 10.3969/j.issn.1673-503x.2017.01.005
    [40] 曾先锋, 周天军. 2012. 谱逼近方法对区域气候模式性能的改进: 不同权重函数的影响 [J]. 气象学报, 70(5): 1084−1097. doi: 10.11676/qxxb2012.091

    Zeng Xianfeng, Zhou Tianjun. 2012. Impact of the spectral nudging on the simulation of a regional climate model: Different weight function [J]. Acta Meteor. Sinica (in Chinese), 70(5): 1084−1097. doi: 10.11676/qxxb2012.091
    [41] Zhang F M, Pu Z X. 2017. Effects of vertical eddy diffusivity parameterization on the evolution of landfalling hurricanes [J]. J. Atmos. Sci., 74(6): 1879−1905. doi: 10.1175/jas-d-16-0214.1
    [42] Zhang F M, Pu Z X, Wang C H. 2017. Effects of boundary layer vertical mixing on the evolution of hurricanes over land [J]. Mon. Wea. Rev., 145(6): 2343−2361. doi: 10.1175/mwr-d-16-0421.1
    [43] 浙江省气象科学研究所. 2020. 数值模式统一检验评估年报(2019)[R]. 11.

    Zhejiang Institute of Meteorological Science. 2020. Annual verification report of numerical weather predictions over Zhejiang province in 2019[R]. 11.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  16
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-19
  • 录用日期:  2021-02-23
  • 网络出版日期:  2021-02-26

目录

    /

    返回文章
    返回