高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

珠三角关键大气挥发性有机物的模拟精度评估

张佩文 唐晓 陈科艺 陈多宏 朱莉莉 沈劲 叶斯琪 孔磊 韩丽娜 吴倩 王自发

张佩文, 唐晓, 陈科艺, 等. 2021. 珠三角关键大气挥发性有机物的模拟精度评估[J]. 大气科学, 45(5): 1−13 doi: 10.3878/j.issn.1006-9895.2101.20201
引用本文: 张佩文, 唐晓, 陈科艺, 等. 2021. 珠三角关键大气挥发性有机物的模拟精度评估[J]. 大气科学, 45(5): 1−13 doi: 10.3878/j.issn.1006-9895.2101.20201
ZHANG Peiwen, TANG Xiao, CHEN Keyi, et al. 2021. Simulation Accuracy Evaluation of Key Atmospheric Volatile Organic Compounds in the Pearl River Delta [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(5): 1−13 doi: 10.3878/j.issn.1006-9895.2101.20201
Citation: ZHANG Peiwen, TANG Xiao, CHEN Keyi, et al. 2021. Simulation Accuracy Evaluation of Key Atmospheric Volatile Organic Compounds in the Pearl River Delta [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(5): 1−13 doi: 10.3878/j.issn.1006-9895.2101.20201

珠三角关键大气挥发性有机物的模拟精度评估

doi: 10.3878/j.issn.1006-9895.2101.20201
基金项目: 国家重点研发计划项目2018YFC0213503,国家自然科学基金项目41875164,广东省科技计划项目2017B020216007,广东省重点领域研发计划“污染防治与修复”专项2019B110206001
详细信息
    作者简介:

    张佩文,女,1996年出生,硕士研究生,主要从事数值模拟与资料同化方面的研究。E-mail:zhangpeiwen@mail.iap.ac.cn

    通讯作者:

    唐晓,E-mail:tangxiao@mail.iap.ac.cn

  • 中图分类号: P402

Simulation Accuracy Evaluation of Key Atmospheric Volatile Organic Compounds in the Pearl River Delta

Funds: National Key R&D Program of China (Grant 2018YFC0213503), National Natural Science Foundation of China (Grant 41875164), Science and Technology Planning Project of Guangdong Province (Grant 2017B020216007), R&D Plan of Key Fields in Guangdong Province Pollution Prevention and Remediation Special (Grant 2019B110206001)
  • 摘要: 大气挥发性有机物(VOCs)是导致臭氧污染的关键前体物,是城市空气质量建模不可或缺的重要组成部分,但由于其非常复杂的构成和来源以及监测数据缺乏,目前对其模拟精度的了解仍非常有限。本文利用嵌套网格空气质量模式预报系统(NAQPMS)对珠江三角洲(简称珠三角)地区2017年9月21日至11月20日的VOCs开展了模拟试验,并利用光化学监测网8个地面站点的VOCs浓度监测数据,对模式模拟的关键VOCs组分进行了精度评估。结果发现,模式对强活性的甲苯、乙烯和二甲苯具有较高的模拟精度,模拟浓度偏差百分比为0.4%~26.6%,模拟能较好再现其日均浓度变化趋势和日变化的双峰特征。但是模式对化学反应活性强且与植物排放密切相关的异戊二烯具有很大的模拟偏差,偏差比近100%,无法再现其白天浓度高、夜间浓度低的观测日变化特征。通过分析发现,现有模拟系统主要考虑人为污染物排放而未考虑生物源排放,可能是导致这一模拟偏差的关键原因。同时,评估结果也表明模式在VOCs空间分布模拟上仍面临很大的不确定性。本文结果揭示了珠三角VOCs模拟面临的关键不确定性,表明融合VOCs观测数据来揭示并减小VOCs模拟的不确定性具有非常迫切的需求。
  • 图  1  WRF模式三层嵌套网格模拟区域设置。d02和d03为NAQPMS模式的两层嵌套网格区域,右侧图中粉色区域表示珠三角城市群

    Figure  1.  Three-layer nested grid simulation area settings in WRF (Weather Research and Forecasting) model. d02 and d03 are two-level nested grid regions of NAQPMS (nested grid air quality model prediction system), the pink area in the right Figure represents the Pearl River Delta urban agglomeration

    图  2  2017年9月21日至11月20日8站点(中间图上的绿色五角星)观测的乙烷、乙烯、异戊二烯、甲苯、间/对二甲苯和邻二甲苯体积浓度分布:(a)广州市监测站(GZ);(b)磨碟沙站(MDS);(c)从化天湖站(CHTH);(d)湾梁站(WL);(e)南城元岭站(NCYL);(f)鹤山站(HS);(g)万顷沙站(WQS);(h)杨梅坑站(YMK)。图中盒子的上下触须分别为Q3+1.5IQR和Q1-1.5IQR,灰色加号(+)为此区间之外的异常值,盒身为IQR,盒中横线表示中位数,其中Q1为第25百分位,Q3为第75百分位,IQR为Q3Q1的值。1 ppb=10−9

    Figure  2.  Volume concentration distributions of ethane, ethylene, isoprene, toluene, m/p-xylene, and o-xylene from eight stations (green five-pointed stars in the middle figure) from 21 September to 20 November 2017: (a) Guangzhou monitoring station (GZ); (b) Modaisha station (MDS); (c) Conghua Tianhu station (CHTH); (d) Wanliang station (WL); (e) Nancheng Yuanling station (NCYL); (f) Heshan station (HS); (g) Wanqingsha station (WQS); (h) Yangmeikeng station (YMK). The upper and lower tentacles of the boxes are Q3+1.5IQR and Q1-1.5IQR, respectively. The gray plus signs (+) define outliers outside this interval. The boxes represent IQR, and the horizontal lines represent the medians. Where Q1 is the 25th percentile, Q3 is the 75th percentile, and IQR is the value of Q3Q1. 1 ppb=10−9

    图  3  2017年9月21日至11月20日珠三角地区8站点平均的异戊二烯(ISOP)、乙烯(ETH)、乙烷(C2H6)、甲苯(TOL)和二甲苯(XYL)体积浓度的日变化

    Figure  3.  Daily variations of eight-station averaged volume concentrations for isoprene (ISOP), ethylene (ETH), ethane (C2H6), toluene (TOL), and xylene (XYL) in the Pearl River Delta from 21 September to 20 November 2017

    图  4  2017年9月21日至11月20日广州站温度(T)、湿度(RH)、风向(WD)、风速(WS)模拟值(红色)与观测值(黑色)时间序列。R、RMSE、Mobs、Msim、MB分别表示相关系数、均方根误差、观测平均值、模拟平均值、平均偏差

    Figure  4.  Simulations (red curves) and observations (black dots) time series of temperature (T), humidity (RH), wind direction (WD), and wind speed (WS) at Guangzhou station from 21 September to 20 November 2017. R, RMSE, Mobs, Msim, MB represent the correlation coefficient, the root mean square error, the observed average, the simulated average, the mean bias, respectively

    图  5  2017年9月21日至11月20日珠三角地区8个站点平均的异戊二烯、乙烯、乙烷、甲苯和二甲苯体积浓度模拟值(红色曲线)与观测值(蓝色曲线)的时间序列

    Figure  5.  Simulations (red curves) and observations (blue curves) time series of eight-station averaged volume concentrations for (a) isoprene, (b) ethylene, (c) ethane, (d) toluene, and (e) xylene in the Pearl River Delta region from 21 September to 20 November 2017

    图  6  2017年9月21日至11月20日珠三角地区8个站点平均的异戊二烯、乙烯、乙烷、甲苯和二甲苯体积浓度模拟值与观测值日变化

    Figure  6.  Simulations and observations diurnal variations of eight-station averaged volume concentrations for (a) isoprene, (b) ethylene, (c) ethane, (d) toluene, and (e) xylene in the Pearl River Delta from 21 September to 20 November 2017

    图  7  2017年9月21日至11月20日珠三角地区8站点平均的(a)异戊二烯、(b)乙烯、(c)乙烷、(d)甲苯和(e)二甲苯体积浓度模拟(红色柱状)与观测(蓝色柱状)日均值

    Figure  7.  Daily mean values of eight-station averaged volume concentrations for (a) isoprene, (b) ethylene, (c) ethane, (d) toluene, and (e) xylene simulated (red bars) and observed (blue bars) in the Pearl River Delta region from 21 September to 20 November 2017

    图  8  2017年9月21日至11月20日平均的珠三角地区(a)异戊二烯、(b)乙烯、(c)乙烷、(d)甲苯和(e)二甲苯体积浓度模拟值(彩色阴影)及8站点的观测值(圆点)的空间分布

    Figure  8.  Spatial distributions of simulated values (color shadings, units: ppb) and observed values (dots, units: ppb) of eight-station volume concentrations for (a) isoprene, (b) ethylene, (c) ethane, (d) toluene, and (e) xylene in the Pearl River Delta averaged from 21 September to 20 November 2017

    图  9  2017年9月21日至11月20日珠三角地区人为污染物排放源清单(清华大学制作,0.1°×0.1°分辨率)中的异戊二烯、乙烯、乙烷、甲苯和二甲苯体积浓度的空间分布

    Figure  9.  Spatial distribution of the average volume concentrations of (a) isoprene, (b) ethylene, (c) ethane, (d) toluene, and (e) xylene in the anthropo-pollutant emission source list (with 0.1°×0.1° resolution produced by Tsinghua University) in the Pearl River Delta from 21 September to 20 November 2017

    表  1  2017年9月21日至11月20日珠三角地区8站点平均的VOCs体积浓度观测值和模拟值对比

    Table  1.   Comparisons of observed and simulated values for VOCs (volatile organic compounds) of eight-station averaged volume concentrations in the Pearl River Delta from 21 September to 20 November 2017

    观测值/ppb模拟值/ppb差值/ppb模拟/观测偏差百分比
    异戊二烯0.420.01−0.411.6%98.4%
    乙烯1.551.41−0.1490.9%9.1%
    乙烷2.371.31−1.0655.1%44.9%
    甲苯3.093.08−0.0199.6%0.4%
    二甲苯2.421.78−0.6473.4%26.6%
    下载: 导出CSV
  • [1] Cheng H R, Guo H, Saunders S M, et al. 2010a. Assessing photochemical ozone formation in the Pearl River Delta with a photochemical trajectory model [J]. Atmos. Environ., 44(34): 4199−4208. doi: 10.1016/j.atmosenv.2010.07.019
    [2] Cheng H R, Guo H, Wang X M, et al. 2010b. On the relationship between ozone and its precursors in the Pearl River Delta: Application of an Observation-Based Model (OBM) [J]. Environ. Sci. Pollut. Res., 17(8): 1491−1492. doi: 10.1007/s11356-010-0347-6
    [3] Chou M D, Suarez M J, Liang X Z, et al. 2001. A thermal infrared radiation parameterization for atmospheric studies [R]. NASA Tech. Memo., NASA/TM-2001-104606, 68pp.
    [4] Donahue N M, Robinson A L, Stanier C O, et al. 2006. Coupled partitioning, dilution, and chemical aging of semivolatile organics [J]. Environ. Sci. Technol., 40(8): 2635−2643. doi: 10.1021/es052297c
    [5] He Z R, Wang X M, Ling Z H, et al. 2019. Contributions of different anthropogenic volatile organic compound sources to ozone formation at a receptor site in the Pearl River Delta region and its policy implications [J]. Atmos. Chem. Phys., 19(13): 8801−8816. doi: 10.5194/acp-19-8801-2019
    [6] Hong S Y, Dudhia J, Chen S H. 2004. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation [J]. Mon. Wea. Rev., 132(1): 103−120. doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
    [7] Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes [J]. Mon. Wea. Rev., 134(9): 2318−2341. doi: 10.1175/MWR3199.1
    [8] Hong Z Y, Li M Z, Wang H, et al. 2019. Characteristics of atmospheric volatile organic compounds (VOCs) at a mountainous forest site and two urban sites in the southeast of China [J]. Sci. Total Environ., 657: 1491−1500. doi: 10.1016/j.scitotenv.2018.12.132
    [9] Hui L R, Liu X G, Tan Q W, et al. 2019. VOC characteristics, sources and contributions to SOA formation during haze events in Wuhan Central China [J]. Sci. Total Environ., 650: 2624−2639. doi: 10.1016/j.scitotenv.2018.10.029
    [10] Kain J S. 2004. The Kain–Fritsch convective parameterization: An update [J]. J. Appl. Meteor. Climatol., 43(1): 170−181. doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
    [11] Karlik J F, Pittenger D R. 2012. Urban trees and ozone formation: A consideration for large-scale plantings [J/OL]. Agric. Nat. Resour., [2020-09-15]. https://anrcatalog.ucanr.edu/pdf/8484.pdf
    [12] Li B W, Ho S S H, Gong S L, et al. 2019a. Characterization of VOCs and their related atmospheric processes in a central Chinese city during severe ozone pollution periods [J]. Atmos. Chem. Phys., 19(1): 617−638. doi: 10.5194/acp-19-617-2019
    [13] 李杰, 杨文夷, 陈焕盛, 等. 2014. 东亚大气可吸入颗粒物时空分布的数值模拟研究 [J]. 环境科学学报, 34(3): 548−557. doi: 10.13671/j.hjkxxb.2014.0102

    Li J, Yang W Y, Chen H S, et al. 2014. Modeling study of atmospheric respirable particulate matter over East Asia [J]. Acta Scientiae Circumstantiae (in Chinese), 34(3): 548−557. doi: 10.13671/j.hjkxxb.2014.0102
    [14] Li K, Jacob D J, Liao H, et al. 2019b. A two-pollutant strategy for improving ozone and particulate air quality in China [J]. Nat. Geosci., 12(11): 906−910. doi: 10.1038/s41561-019-0464-x
    [15] Li M, Zhang Q, Streets D G, et al. 2014. Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms [J]. Atmos. Chem. Phys., 14(11): 5617−5638. doi: 10.5194/acp-14-5617-2014
    [16] Li M, Zhang Q, Kurokawa J, et al. 2017. MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS–Asia and HTAP [J]. Atmos. Chem. Phys., 17(2): 935−963. doi: 10.5194/acp-17-935-2017
    [17] 李欣怡, 向伟玲, 陈学舜, 等. 2019. 曹妃甸工业区空气污染来源及其对周边地区污染贡献的数值模拟研究 [J]. 气候与环境研究, 24(4): 469−481. doi: 10.3878/j.issn.1006-9585.2018.18022

    Li X Y, Xiang W L, Chen X S, et al. 2019. Modeling study of PM2.5 source apportionment over the Caofeidian industrial zone and surrounding areas [J]. Climatic and Environmental Research (in Chinese), 24(4): 469−481. doi: 10.3878/j.issn.1006-9585.2018.18022
    [18] Ling Z H, Guo H, Zheng J Y, et al. 2013. Establishing a conceptual model for photochemical ozone pollution in subtropical Hong Kong [J]. Atmos. Environ., 76: 208−220. doi: 10.1016/j.atmosenv.2012.09.051
    [19] 刘子楠, 郭斌, 任爱玲. 2019. 不同源挥发性有机物生成二次有机气溶胶的研究进展 [J]. 现代化工, 39(8): 54−58. doi: 10.16606/j.cnki.issn0253-4320.2019.08.011

    Liu Z N, Guo B, Ren A L. 2019. Progress in formation of secondary organic aerosol by VOCs from different sources [J]. Modern Chemical Industry (in Chinese), 39(8): 54−58. doi: 10.16606/j.cnki.issn0253-4320.2019.08.011
    [20] 陆思华, 白郁华, 张广山, 等. 2006. 大气中挥发性有机化合物(VOCs)的人为来源研究 [J]. 环境科学学报, 26(5): 757−763. doi: 10.3321/j.issn:0253-2468.2006.05.010

    Lu S H, Bai Y H, Zhang G S, et al. 2006. Source apportionment of anthropogenic emissions of volatile organic compounds [J]. Acta Scientiae Circumstantiae (in Chinese), 26(5): 757−763. doi: 10.3321/j.issn:0253-2468.2006.05.010
    [21] Mlawer E J, Taubman S J, Brown P D, et al. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated–k model for the longwave [J]. J. Geophys. Res. Atmos., 102(D14): 16663−16682. doi: 10.1029/97JD00237
    [22] Ou J M, Zheng J Y, Li R R, et al. 2015. Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China [J]. Sci. Total Environ., 530–531: 393−402. doi: 10.1016/j.scitotenv.2015.05.062
    [23] 宋鹏程, 张馨文, 黄强, 等. 2019. 我国城市环境空气质量预报主要模型及应用 [J]. 四川环境, 38(3): 70−76. doi: 10.14034/j.cnki.schj.2019.03.013

    Song P C, Zhang X W, Huang Q, et al. 2019. Main forecasting models and applications of urban ambient air quality in China [J]. Sichuan Environment (in Chinese), 38(3): 70−76. doi: 10.14034/j.cnki.schj.2019.03.013
    [24] 唐孝炎, 张远航, 邵敏. 2006. 大气环境化学 [M]. 2版. 北京: 高等教育出版社, 739pp.

    Tang X Y, Zhang Y H, Shao M. 2006. Atmospheric Environmental Chemistry (in Chinese) [M]. 2nd ed. Beijing: Higher Education Press, 739pp.
    [25] Tewari M, Chen F, Wang W, et al. 2004. Implementation and verification of the unified Noah land−surface model in the WRF model Paper [C]//Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction. Seattle: American Meteorological Society, 2165–2170.
    [26] Wang Y L, Chen H S, Wu Q Z, et al. 2018. Three year, 5 km resolution China PM2.5 simulation: Model performance evaluation [J]. Atmos. Res., 207: 1−13. doi: 10.1016/j.atmosres.2018.02.016
    [27] 王自发, 谢付莹, 王喜全, 等. 2006. 嵌套网格空气质量预报模式系统的发展与应用 [J]. 大气科学, 30(5): 778−790. doi: 10.3878/j.issn.1006-9895.2006.05.07

    Wang Z F, Xie F Y, Wang X Q, et al. 2006. Development and application of nested air quality prediction modeling system [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30(5): 778−790. doi: 10.3878/j.issn.1006-9895.2006.05.07
    [28] Williams J. 2004. Organic trace gases in the atmosphere: An overview [J]. Environ. Chem., 1(3): 125−136. doi: 10.1071/EN04057
    [29] Wu K, Yang X Y, Chen D, et al. 2020. Estimation of biogenic VOC emissions and their corresponding impact on ozone and secondary organic aerosol formation in China [J]. Atmos. Res., 231: 104656. doi: 10.1016/j.atmosres.2019.104656
    [30] Wu L Q, Wang X M, Lu S H, et al. 2019. Emission inventory of semi-volatile and intermediate-volatility organic compounds and their effects on secondary organic aerosol over the Pearl River Delta region [J]. Atmos. Chem. Phys., 19(12): 8141−8161. doi: 10.5194/acp-19-8141-2019
    [31] Yang T, Gbaguidi A, Yan P Z, et al. 2017. Model elucidating the sources and formation mechanisms of severe haze pollution over Northeast mega-city cluster in China [J]. Environ. Pollut., 230: 692−700. doi: 10.1016/j.envpol.2017.06.007
    [32] Yu D, Tan Z F, Lu K D, et al. 2020. An explicit study of local ozone budget and NOx-VOCs sensitivity in Shenzhen China [J]. Atmos. Environ., 224: 117304. doi: 10.1016/j.atmosenv.2020.117304
    [33] Zaveri R A, Peters L K. 1999. A new lumped structure photochemical mechanism for large-scale applications [J]. J. Geophys. Res. Atmos., 104(D23): 30387−30415. doi: 10.1029/1999JD900876
    [34] 张靖, 绍敏, 苏芳. 2004. 北京市大气中挥发性有机物的组成特征 [J]. 环境科学研究, 17(5): 1−5. doi: 10.3321/j.issn:1001-6929.2004.05.001

    Zhang J, Shao M, Su F. 2004. Study on composition of ambient volatile organic compounds (VOCs) in Beijing City [J]. Research of Environmental Sciences (in Chinese), 17(5): 1−5. doi: 10.3321/j.issn:1001-6929.2004.05.001
    [35] 张俊刚, 王跃思, 王珊, 等. 2008. 京津地区大气中非甲烷烃(NMHCs)质量浓度水平和反应活性研究 [J]. 环境科学研究, 21(5): 158−162.

    Zhang J G, Wang Y S, Wang S, et al. 2008. Ambient mass concentration and reactivity of non-methane hydrocarbons (NMHCs) in Beijing and Tianjin cities [J]. Research of Environmental Sciences (in Chinese), 21(5): 158−162.
    [36] 张玲. 2018. 环境空气挥发性有机物的研究意义 [J]. 江西化工(4): 183−184. doi: 10.3969/j.issn.1008-3103.2018.04.061

    Zhang L. 2018. The research significance of volatile organic compounds in environmental air [J]. Jiangxi Chemical Industry (in Chinese)(4): 183−184. doi: 10.3969/j.issn.1008-3103.2018.04.061
    [37] 张学珍, 于志博, 郑景云, 等. 2015. 植物挥发性有机物的气候与环境效应研究进展 [J]. 地球科学进展, 30(11): 1198−1209. doi: 10.11867/j.issn.1001-8166.2015.11.1198

    Zhang X Z, Yu Z B, Zheng J Y, et al. 2015. Research progress on the climatic and environmental effects of Biogenic Volatile Organic Compounds (BVOCs) [J]. Advances in Earth Science (in Chinese), 30(11): 1198−1209. doi: 10.11867/j.issn.1001-8166.2015.11.1198
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  240
  • HTML全文浏览量:  7
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-18
  • 录用日期:  2021-03-02
  • 网络出版日期:  2021-02-26

目录

    /

    返回文章
    返回