高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北半球夏季大气低频振荡演变特征及其与华北夏季降水的关系

郝立生 马宁 何丽烨 梁苏洁 孙树鹏

郝立生, 马宁, 何丽烨, 等. 2021. 北半球夏季大气低频振荡演变特征及其与华北夏季降水的关系[J]. 大气科学, 45(6): 1259−1272 doi: 10.3878/j.issn.1006-9895.2101.20239
引用本文: 郝立生, 马宁, 何丽烨, 等. 2021. 北半球夏季大气低频振荡演变特征及其与华北夏季降水的关系[J]. 大气科学, 45(6): 1259−1272 doi: 10.3878/j.issn.1006-9895.2101.20239
HAO Lisheng, MA Ning, HE Liye, et al. 2021. Evolution Characteristics of BSISO and Its Relationship with Summer Precipitation in North China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(6): 1259−1272 doi: 10.3878/j.issn.1006-9895.2101.20239
Citation: HAO Lisheng, MA Ning, HE Liye, et al. 2021. Evolution Characteristics of BSISO and Its Relationship with Summer Precipitation in North China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(6): 1259−1272 doi: 10.3878/j.issn.1006-9895.2101.20239

北半球夏季大气低频振荡演变特征及其与华北夏季降水的关系

doi: 10.3878/j.issn.1006-9895.2101.20239
基金项目: 中国气象局创新发展专项CXFZ2021J30,国家自然科学基金项目41805061、41790471
详细信息
    作者简介:

    郝立生,男,1966年出生,博士/研究员,主要从事华北旱涝演变机理及预测技术研究。E-mail: hls54515@163.com

  • 中图分类号: P466

Evolution Characteristics of BSISO and Its Relationship with Summer Precipitation in North China

Funds: Special Project of Innovation and Development from China Meteorological Administration (Grant CXFZ2021J30), National Natural Science Foundation of China (Grants 41805061, 41790471)
  • 摘要: 本文采用1981~2010年夏季5~10月逐日的(10°S~50°N,40°E~160°E)范围内向外长波辐射OLR(Outgoing Longwave Radiation)资料和850 hPa层纬向风速资料(简称U850)作经验EOF(Empirical Orthogonal Function)分解,重新计算北半球夏季大气低频振荡BSISO(Boreal Summer Intraseasonal Oscillation)指数,并分析了其演变特征及其对华北夏季降水的影响规律。结果表明:(1)在北半球夏季印度洋—西北太平洋地区存在两种明显的低频信号,一种是BSISO1,空间分布呈西北—东南倾斜状,从热带印度洋向东北方向传播,振荡周期约为45 d;另一种是BSISO2,空间分布呈西南—东北倾斜状,从西北太平洋向西北方向传播,振荡周期约为20 d。(2)BSISO主要是通过影响大气环流和水汽输送来影响华北夏季降水过程。在500 hPa层,BSISO信号会造成华北地区东部副热带高压位置南北移动和强度发生变化来影响华北夏季降水;在850 hPa层,BSISO信号会通过伴随的气旋性或反气旋性异常环流影响向华北的水汽输送来影响华北夏季降水。(3)虽然热带大气季节内振荡MJO(Madden-Julian Oscillation)信号在全年都存在,但其变化在冬半年尤其冬季振幅最大,在夏季最小。BSISO信号变化在夏半年尤其夏季振幅最大。因此,利用热带大气低频信号开展延伸期降水过程预测,冬半年可以重点考虑MJO的影响,夏半年重点考虑BSISO的影响。
  • 图  1  华北地区148个气象站点分布。方框区域表示华北区域,下同

    Figure  1.  Spatial distribution of 148 meteorological stations in North China. The boxed area represents the North China area, the same below

    图  2  1981~2010年5~10月逐日OLR、U850经验EOF分解得到的特征向量场(a)EOF1、(b)EOF2、(c)EOF3、(d)EOF4的空间分布。OLR异常(阴影,单位:W m−2)、水平风速的异常(箭头,单位:m s−1)是对时间系数(PC1、PC2、PC3、PC4)回归重构得到的

    Figure  2.  Spatial structures of the (a) EOF1 (the first mode of empirical orthogonal function), (b) EOF2, (c) EOF3, and (d) EOF4 of the daily OLR (Outgoing Longwave Radiation) and U850 (850-hPa zonal wind). EOF modes were obtained within 5–10 months from 1981 to 2010. OLR anomalies (shadings, units: W m−2), horizontal wind speed anomalies (arrows, units: m s−1) were obtained by regressing them onto PCs (principal components)

    图  3  1981~2010年5~10月时间系数PC1、PC2、PC3、PC4的Morlet小波功率谱分布。阴影区通过了95%信度水平的显著性检验,颜色越深可信度越高

    Figure  3.  Morlet wavelet power spectrum distribution of the time series PC1 (the first principal component), PC2, PC3, and PC4 during 5–10 months from 1981 to 2010. The shaded area passed the test at 95% confidence level, and the darker the color, the higher the reliability

    图  4  1981~2010年5~10月(a)PC1对PC2、(b)PC3对PC4的超前滞后的相关系数。黑色线是滤波前PC1(PC3)本身超前和滞后的自相关系数,绿色线是滤波前PC2(PC4)本身超前和滞后的自相关系数,蓝色线是滤波前PC1对PC2、PC3对PC4的超前滞后相关系数,红色线是滤波后PC1对PC2(30~60 d)、PC3对PC4(10~30 d)的超前滞后相关系数

    Figure  4.  Lead–lag correlation coefficient of (a) PC1 relative to PC2, (b) PC3 relative to PC4 during 5–10 months from 1981 to 2010. The black line is the lead–lag autocorrelation coefficient of PC1 (PC3) before filtering, the green line is the lead–lag autocorrelation coefficient of PC2 (PC4) before filtering, the blue line is the lead–lag correlation coefficient of PC1 to PC2, PC3 to PC4 before filtering, and the red line is the lead–lag correlation coefficient of PC1 to PC2 (30–60 d filtered), PC3 to PC4 (10–30 d filtered) after filtering

    图  5  1981~2010年5~10月(a)BSISO1、(b)BSISO2位相变化。数字1、2、3、4、5、6、7、8代表8个位相

    Figure  5.  Phase change of the (a) BSISO1 (Mode 1 of Boreal Summer Intraseasonal Oscillation) and (b) BSISO2 (Mode 2 of Boreal Summer Intraseasonal Oscillation) during 5–10 months from 1981 to 2010. The numbers 1–8 represent the eight phases

    图  6  1981~2010年5~10月BSISO1的8个位相OLR异常(阴影区,单位:W m−2)、水平风速异常(箭头,单位:m s−1)的空间分布。OLR异常、水平风速异常值分别是对时间系数PC1、PC2回归得到的结果

    Figure  6.  Spatial distributions of the OLR anomalies (shadings, units: W m−2) and horizontal wind speed anomalies (vectors, units: m s−1) in the eight phases of BSISO1 during 5–10 months from 1981 to 2010. OLR anomalies, horizontal wind speed anomalies reconstructed based on PC1 and PC2, respectively

    图  7  1981~2010年5~10月BSISO2的8个位相OLR异常(阴影区,单位:W m−2)、水平风速异常(箭头,单位:m s−1)的空间分布。OLR异常、水平风速异常值分别是对时间系数PC3、PC4回归得到的结果

    Figure  7.  Spatial distributions of the OLR anomalies (shadings, units: W m−2) and horizontal wind speed anomalies (vectors, units: m s−1) in the eight phases of BSISO2 during 5–10 months from 1981 to 2010. OLR anomalies, horizontal wind speed anomalies reconstructed based on PC3 and PC4, respectively

    图  8  2018年夏季(a)逐日降水量(11 d滑动平均)和PCs系数(31 d滑动平均)变化,(b)PCs系数(未作滤波)超前降水量的相关系数变化,灰色虚线是95%信度水平线

    Figure  8.  Variations of (a) the daily precipitation (11-day running mean) and PCs time series (31-day running mean), (b) correlation coefficients of PCs (no filtered) leading precipitation in summer of 2018. In Fig. b, the gray dashed line represents the 95% confidence level

    图  9  2018年夏季对(a)BSISO1、(b)BSISO2振幅回归重构的500 hPa高度异常(阴影,单位:dagpm)。等值线是多年平均7~8月高度场(单位:dagpm),黑色点区通过了95%信度水平的显著性检验

    Figure  9.  500-hPa geopotential height anomalies (shadings, units: dagpm) reconstructed by regression onto the amplitude of (a) BSISO1 and (b) BSISO2 in the summer of 2018. The contours are the multi-year mean of the 500-hPa geopotential height (units: dagpm) from July to August. Black dotted areas pass the test at 95% confidence level

    图  10  2018年夏季对(a)BSISO1、(b)BSISO2振幅回归重构的850 hPa水平风场异常(箭头,单位:m s−1)和比湿场异常(阴影,单位:g kg−1

    Figure  10.  The 850-hPa horizontal wind anomalies (arrows, units: m s−1) and specific humidity anomalies (shadings, units: g kg−1) reconstructed by regression onto the amplitude of (a) BSISO1 and (b) BSISO2 in the summer of 2018

  • [1] Alvarez M S, Vera C S, Kiladis G H, et al. 2016. Influence of the Madden Julian oscillation on precipitation and surface air temperature in South America [J]. Climate Dyn., 46(1−2): 245−262. doi: 10.1007/s00382-015-2581-6
    [2] Annamalai H, Slingo J M. 2001. Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon [J]. Climate Dyn., 18(1-2): 85−102. doi: 10.1007/s003820100161
    [3] Annamalai H, Sperber K R. 2005. Regional heat sources and the active and break phases of boreal summer intraseasonal (30–50 day) variability [J]. J. Atmos. Sci., 62(8): 2726−2748. doi: 10.1175/JAS3504.1
    [4] Arcodia M C, Kirtman B P, Siqueira L S P. 2020. How MJO teleconnections and ENSO interference impacts U. S. precipitation [J]. J. Climate, 33(11): 4621−4640. doi: 10.1175/JCLI-D-19-0448.1
    [5] Cadet D L. 1986. Fluctuations of precipitable water over the Indian Ocean during the 1979 summer monsoon [J]. Tellus A:Dyn. Meteor. Oceanogr., 38(2): 170−177. doi: 10.3402/tellusa.v38i2.11710
    [6] Chen T C, Chen J M. 1993. The 10–20-day mode of the 1979 Indian monsoon: Its relation with the time variation of monsoon rainfall [J]. Mon. Wea. Rev., 121(9): 2465−2482. doi:10.1175/1520-0493(1993)121<2465:TDMOTI>2.0.CO;2
    [7] Chen J P, Wen Z P, Wu R G, et al. 2015. Influences of northward propagating 25–90-day and quasi-biweekly oscillations on eastern China summer rainfall [J]. Climate Dyn., 45(1-2): 105−124. doi: 10.1007/s00382-014-2334-y
    [8] Chu J E, Hameed S N, Ha K J. 2012. Nonlinear, intraseasonal phases of the East Asian summer monsoon: Extraction and analysis using self-organizing maps [J]. J. Climate, 25(20): 6975−6988. doi: 10.1175/JCLI-D-11-00512.1
    [9] Chu J E, Wang B, Lee J Y, et al. 2017. Boreal summer intraseasonal phases identified by nonlinear multivariate empirical orthogonal function-based self-organizing map (ESOM) analysis [J]. J. Climate, 30(10): 3513−3528. doi: 10.1175/JCLI-D-16-0660.1
    [10] Ding Q H, Wang B. 2005. Circumglobal teleconnection in the Northern Hemisphere summer [J]. J. Climate, 18(17): 3483−3505. doi: 10.1175/JCLI3473.1
    [11] Ding Q H, Wang B. 2009. Predicting extreme phases of the Indian summer monsoon [J]. J. Climate, 22(2): 346−363. doi: 10.1175/2008JCLI2449.1
    [12] Donald A, Meinke H, Power B, et al. 2006. Near-global impact of the Madden–Julian oscillation on rainfall [J]. Geophys. Res. Lett., 33(9): L09704. doi: 10.1029/2005GL025155
    [13] Gadgil S, G Asha. 1992. Intraseasonal variation of the summer monsoon. I: Observational aspects [J]. J. Meteor. Soc. Japan, 70(1B): 517−527. doi: 10.2151/jmsj1965.70.1B_517
    [14] 郝立生, 侯威. 2018. 华北夏季降水变化及预测技术研究[M]. 北京: 气象出版社, 201pp

    Hao L S, Hou W. 2018. Study on Summer Precipitation Change and Prediction Technology in North China (in Chinese) [M]. Beijing: China Meteorological Press, 201pp.
    [15] 郝立生, 向亮, 周须文. 2015. 华北平原夏季降水准双周振荡与低频环流演变特征 [J]. 高原气象, 34(2): 486−493. doi: 10.7522/j.issn.1000-0534.2014.00004

    Hao L S, Xiang L, Zhou X W. 2015. The quasi-biweekly oscillation of daily precipitation and low-frequency circulation characteristics over North China plain in summer [J]. Plateau Meteor., 34(2): 486−493. doi: 10.7522/j.issn.1000-0534.2014.00004
    [16] 郝立生, Li T, 马宁, 等. 2020. MJO对2018年华北夏季降水的影响 [J]. 大气科学, 44(3): 639−656. doi: 10.3878/j.issn.1006-9895.1912.19217

    Hao L S, Li T, Ma N, et al. 2020. Influence of MJO on summer precipitation in North China in 2018 [J]. Chinese Journal of Atmospheric Sciences, 44(3): 639−656. doi: 10.3878/j.issn.1006-9895.1912.19217
    [17] Hao L S, He L Y, Ma N, et al. 2020. Relationship between summer precipitation in North China and Madden–Julian oscillation during the boreal summer of 2018 [J]. Front. Earth Sci., 8: 269. doi: 10.3389/feart.2020.00269
    [18] Hendon H H, Salby M L. 1994. The life cycle of the Madden–Julian oscillation [J]. J. Atmos. Sci., 51(15): 2225−2237. doi:10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2
    [19] Hoyos C D, Webster P J. 2007. The role of intraseasonal variability in the nature of Asian monsoon precipitation [J]. J. Climate, 20(17): 4402−4424. doi: 10.1175/JCLI4252.1
    [20] Hsu H H, Weng C H. 2001. Northwestward propagation of the intraseasonal oscillation in the western North Pacific during the boreal summer: Structure and mechanism [J]. J. Climate, 14(18): 3834−3850. doi:10.1175/1520-0442(2001)014<3834:NPOTIO>2.0.CO;2
    [21] Hsu P C, Lee J Y, Ha K J. 2016. Influence of boreal summer intraseasonal oscillation on rainfall extremes in southern China [J]. Int. J. Climatol., 36(3): 1403−1412. doi: 10.1002/joc.4433
    [22] Hsu P C, Lee J Y, Ha K J, et al. 2017. Influences of boreal summer intraseasonal oscillation on heat waves in monsoon Asia [J]. J. Climate, 30(18): 7191−7211. doi: 10.1175/JCLI-D-16-0505.1
    [23] Hu F, Li T, Gao J Y, et al. 2020. Reexamining the moisture mode theories of the Madden–Julian oscillation based on observational analyses [J]. J. Climate, 34(2): 839−853. doi: 10.1175/JCLI-D-20-0441.1
    [24] Jia X L, Chen L J, Ren F M, et al. 2011. Impacts of the MJO on winter rainfall and circulation in China [J]. Adv. Atmos. Sci., 28(3): 521−533. doi: 10.1007/s00376-010-9118-z
    [25] Jiang X A, Li T. 2005. Reinitiation of the boreal summer intraseasonal oscillation in the tropical Indian Ocean [J]. J. Climate, 18(18): 3777−3795. doi: 10.1175/JCLI3516.1
    [26] Jiang X A, Li T, Wang B. 2004. Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation [J]. J. Climate, 17(5): 1022−1039. doi:10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2
    [27] Jones C, Waliser D E, Lau K M, et al. 2004. Global occurrences of extreme precipitation and the Madden–Julian oscillation: Observations and predictability [J]. J. Climate, 17(23): 4575−4589. doi: 10.1175/3238.1
    [28] Jones C, Carvalho L M V, Gottschalck J, et al. 2011. The Madden–Julian oscillation and the relative value of deterministic forecasts of extreme precipitation in the contiguous United States [J]. J. Climate, 24(10): 2421−2428. doi: 10.1175/2011JCLI-D-10-05002.1
    [29] Julian P R, Madden R A. 1981. Comments on a paper by T. Yasunari, A quasi-stationary appearance of 30 to 40-day period in the cloudiness fluctuations during the summer monsoon over India [J]. J. Meteor. Soc. Japan, 59(3): 435−437. doi: 10.2151/jmsj1965.59.3_435
    [30] Kajikawa Y, Yasunari T. 2005. Interannual variability of the 10–25- and 30–60-day variation over the South China Sea during boreal summer [J]. Geophys. Res. Lett., 32(4): L04710. doi: 10.1029/2004GL021836
    [31] Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project [J]. Bull. Amer. Meteor. Soc., 77(3): 437−472. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [32] Kang I S, Ho C H, Lim Y K, et al. 1999. Principal modes of climatological seasonal and intraseasonal variations of the Asian summer monsoon [J]. Mon. Wea. Rev., 127(3): 322−340. doi:10.1175/1520-0493(1999)127<0322:PMOCSA>2.0.CO;2
    [33] Kemball-Cook S, Wang B. 2001. Equatorial waves and air–sea interaction in the boreal summer intraseasonal oscillation [J]. J. Climate, 14(13): 2923−2942. doi:10.1175/1520-0442(2001)014<2923:EWAASI>2.0.CO;2
    [34] Kikuchi K, Wang B. 2010. Formation of tropical cyclones in the northern Indian Ocean associated with two types of tropical intraseasonal oscillation modes [J]. J. Meteor. Soc. Japan, 88(3): 475−496. doi: 10.2151/jmsj.2010-313
    [35] Kikuchi K, Wang B, Kajikawa Y. 2012. Bimodal representation of the tropical intraseasonal oscillation [J]. Climate Dyn., 38(9-10): 1989−2000. doi: 10.1007/s00382-011-11591
    [36] Krishnamurti T N, Subrahmanyam D. 1982. The 30–50 day mode at 850 mb during MONEX [J]. J. Atmos. Sci., 39(9): 2088−2095. doi:10.1175/1520-0469(1982)039<2088:TDMAMD>2.0.CO;2
    [37] Lau K M, Chan P H. 1986. Aspects of the 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation [J]. Mon. Wea. Rev., 114(7): 1354−1367. doi:10.1175/1520-0493(1986)114<1354:AOTDOD>2.0.CO;2
    [38] Lau W K M, Waliser D E. 2005. Intraseasonal Variability in the Atmosphere–Ocean Climate System [M]. Heidelberg: Springer, 436pp.
    [39] Lawrence D M, Webster P J. 2001. Interannual variations of the intraseasonal oscillation in the south Asian summer monsoon region [J]. J. Climate, 14(13): 2910−2922. doi:10.1175/1520-0442(2001)014<2910:IVOTIO>2.0.CO;2
    [40] Lawrence D M, Webster P J. 2002. The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection [J]. J. Atmos. Sci., 59(9): 1593−1606. doi:10.1175/1520-0469(2002)059<1593:TBSIOR>2.0.CO;2
    [41] Lee J Y, Wang B, Ding Q, et al. 2011. How predictable is the Northern Hemisphere summer upper-tropospheric circulation? [J]. Climate Dyn., 37(5-6): 1189−1203. doi: 10.1007/s00382-010-0909-9
    [42] Lee J Y, Wang B, Wheeler M C, et al. 2013. Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region [J]. Climate Dyn., 40(1-2): 493−509. doi: 10.1007/s00382-012-1544-4
    [43] Lee J Y, Kwon M H, Yun K S, et al. 2017a. The long-term variability of Changma in the East Asian summer monsoon system: A review and revisit [J]. Asia-Pac. J. Atmos. Sci., 53(2): 257−272. doi: 10.1007/s13143-017-0032-5
    [44] Lee S S, Moon J Y, Wang B, et al. 2017b. Subseasonal prediction of extreme precipitation over Asia: Boreal summer intraseasonal oscillation perspective [J]. J. Climate, 30(8): 2849−2865. doi: 10.1175/JCLI-D-16-0206.1
    [45] Li T M, Wang B. 1994. The influence of sea surface temperature on the tropical intraseasonal oscillation: A numerical study [J]. Mon. Wea. Rev., 122(10): 2349−2362. doi:10.1175/1520-0493(1994)122<2349:TIOSST>2.0.CO;2
    [46] Lin H, Brunet G. 2009. The influence of the Madden–Julian oscillation on Canadian wintertime surface air temperature [J]. Mon. Wea. Rev., 137(7): 2250−2262. doi: 10.1175/2009MWR2831.1
    [47] Madden R A. 1986. Seasonal variations of the 40–50 day oscillation in the tropics [J]. J. Atmos. Sci., 43(24): 3138−3158. doi:10.1175/1520-0469(1986)043<3138:SVOTDO>2.0.CO;2
    [48] Madden R A, Julian P R. 1971. Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific [J]. J. Atmos. Sci., 28(5): 702−708. doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
    [49] Madden R A, Julian P R. 1972. Description of global-scale circulation cells in the tropics with a 40–50 day period [J]. J. Atmos. Sci., 29(6): 1109−1123. doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
    [50] Madden R A, Julian P R. 1994. Observations of the 40–50-day tropical oscillation—A review [J]. Mon. Wea. Rev., 122(5): 814−837. doi:10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2
    [51] Mao J Y, Wu G X. 2006. Intraseasonal variations of the Yangtze rainfall and its related atmospheric circulation features during the 1991 summer [J]. Climate Dyn., 27(7-8): 815−830. doi: 10.1007/s00382-006-0164-2
    [52] Matsueda S, Takaya Y. 2015. The global influence of the Madden–Julian oscillation on extreme temperature events [J]. J. Climate, 28(10): 4141−4151. doi: 10.1175/JCLI-D-14-00625.1
    [53] Moon J Y, Wang B, Ha K J, et al. 2013. Teleconnections associated with Northern Hemisphere summer monsoon intraseasonal oscillation [J]. Climate Dyn., 40(11-12): 2761−2774. doi: 10.1007/s00382-012-1394-0
    [54] Murakami M. 1984. Analysis of the deep convective activity over the western Pacific and Southeast Asia. Part II: Seasonal and intraseasonal variations during northern summer [J]. J. Meteor. Soc. Japan, 62(1): 88−108. doi: 10.2151/jmsj1965.62.1_88
    [55] Pai D S, Bhate J, Sreejith O P, et al. 2011. Impact of MJO on the intraseasonal variation of summer monsoon rainfall over India [J]. Climate Dyn., 36(1-2): 41−55. doi: 10.1007/s00382-009-0634-4
    [56] Ren P F, Ren H L, Fu J X, et al. 2018. Impact of boreal summer intraseasonal oscillation on rainfall extremes in southeastern China and its predictability in CFSv2 [J]. J. Geophys. Res., 123(9): 4423−4442. doi: 10.1029/2017JD028043
    [57] Salby M L, Hendon H H. 1994. Intraseasonal behavior of clouds, temperature, and motion in the tropics [J]. J. Atmos. Sci., 51(15): 2207−2224. doi:10.1175/1520-0469(1994)051<2207:IBOCTA>2.0.CO;2
    [58] Torrence C, Compo G P. 1998. A practical guide to wavelet analysis [J]. Bull. Amer. Meteor. Soc., 79(1): 61−78. doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
    [59] Waliser D E, Murtugudde R, Lucas L E. 2004. Indo-Pacific Ocean response to atmospheric intraseasonal variability. Part 2: Boreal summer and the intraseasonal oscillation [J]. J. Geophys. Res., 109(C3): C03030. doi: 10.1029/2003JC002002
    [60] Wang B, Rui H. 1990. Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985 [J]. Meteor. Atmos. Phys., 44(1-4): 43−61. doi: 10.1007/BF01026810
    [61] Wang B, Xie X S. 1996. Low-frequency equatorial waves in vertically sheared zonal flow. Part I: Stable waves [J]. J. Atmos. Sci., 53(3): 449−467. doi:10.1175/1520-0469(1996)053<0449:LFEWIV>2.0.CO;2
    [62] Wang B, Xie X S. 1997. A model for the boreal summer intraseasonal oscillation [J]. J. Atmos. Sci., 54(1): 72−86. doi:10.1175/1520-0469(1997)054<0072:AMFTBS>2.0.CO;2
    [63] Wang B, Ding Q H. 2008. Global monsoon: Dominant mode of annual variation in the tropics [J]. Dyn. Atmos. Oceans, 44(3-4): 165−183. doi: 10.1016/j.dynatmoce.2007.05.002
    [64] Wang B, Webster P J, Teng H Y. 2005. Antecedents and self-induction of active-break south Asian monsoon unraveled by satellites [J]. Geophys. Res. Lett., 32(4): L04704. doi: 10.1029/2004GL020996
    [65] Wang B, Yang J, Zhou T J, et al. 2008. Interdecadal changes in the major modes of Asian–Australian monsoon variability: Strengthening relationship with ENSO since the late 1970s [J]. J. Climate, 21(8): 1771−1789. doi: 10.1175/2007JCLI1981.1
    [66] Wang H, Wang B, Huang F, et al. 2012. Interdecadal change of the boreal summer circumglobal teleconnection (1958–2010) [J]. Geophys. Res. Lett., 39(12): L12704. doi: 10.1029/2012GL052371
    [67] Webster P J, Magaña V O, Palmer T N, et al. 1998. Monsoons: Processes, predictability, and the prospects for prediction [J]. J. Geophys. Res., 103(C7): 14451−14510. doi: 10.1029/97JC02719
    [68] Wheeler M C, Hendon H H. 2004. An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction [J]. Mon. Wea. Rev., 132(8): 1917−1932. doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
    [69] Yang J, Wang B, Wang B, et al. 2010. Biweekly and 21–30-day variations of the subtropical summer monsoon rainfall over the lower reach of the Yangtze River basin [J]. J. Climate, 23(5): 1146−1159. doi: 10.1175/2009JCLI3005.1
    [70] 杨秋明. 2021. 冬季长江下游地区气温低频振荡和低温天气的延伸期预报研究 [J]. 大气科学, 45(1): 21−36. doi: 10.3878/j.issn.1006-9895.2007.19208

    Yang Q M. 2021. Extended-range forecast for the low-frequency oscillation of temperature and low-temperature weather over the lower reaches of the Yangtze River in winter [J]. Chinese Journal of Atmospheric Sciences, 45(1): 21−36. doi: 10.3878/j.issn.1006-9895.2007.19208
    [71] Yasunari T. 1979. Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon [J]. J. Meteor. Soc. Japan, 57(3): 227−242. doi: 10.2151/jmsj1965.57.3_227
    [72] Yasunari T. 1980. A quasi-stationary appearance of 30 to 40 day period in the cloudiness fluctuations during the summer monsoon over India [J]. J. Meteor. Soc. Japan, 58(3): 225−229. doi: 10.2151/jmsj1965.58.3_225
    [73] 余汶樯, 高庆九. 2020. 1996年冬季一次南方低温事件的低频特征分析及诊断 [J]. 大气科学, 44(2): 257−268. doi: 10.3878/j.issn.1006-9895.1909.18190

    Yu W Q, Gao Q J. 2020. Analysis and diagnosis of low-frequency characteristics in a low temperature event in southern China in the winter of 1996 [J]. Chinese Journal of Atmospheric Sciences, 44(2): 257−268. doi: 10.3878/j.issn.1006-9895.1909.18190
    [74] Yun K S, Seo K H, Ha K J. 2008. Relationship between ENSO and northward propagating intraseasonal oscillation in the East Asian summer monsoon system [J]. J. Geophys. Res., 113(D14): D14120. doi: 10.1029/2008JD009901
    [75] Yun K S, Seo K H, Ha K J. 2010. Interdecadal change in the relationship between ENSO and the intraseasonal oscillation in East Asia [J]. J. Climate, 23(13): 3599−3612. doi: 10.1175/2010JCLI3431.1
    [76] Yun K S, Ren B H, Ha K J, et al. 2009. The 30–60-day oscillation in the East Asian summer monsoon and its time-dependent association with the ENSO [J]. Tellus A, 61(5): 565−578. doi: 10.1111/j.1600-0870.2009.00410.x
    [77] Zhang C D. 2005. Madden–Julian oscillation [J]. Rev. Geophys., 43(2): RG2003. doi: 10.1029/2004RG000158
    [78] Zhang C D, Dong M. 2004. Seasonality in the Madden–Julian oscillation [J]. J. Climate, 17(16): 3169−3180. doi:10.1175/1520-0442(2004)017<3169:SITMO>2.0.CO;2
    [79] Zhang L N, Wang B Z, Zeng Q C. 2009. Impact of the Madden–Julian oscillation on summer rainfall in Southeast China [J]. J. Climate, 22(2): 201−216. doi: 10.1175/2008JCLI1959.1
  • 加载中
图(10)
计量
  • 文章访问数:  263
  • HTML全文浏览量:  62
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-02
  • 录用日期:  2021-02-23
  • 网络出版日期:  2021-02-24
  • 刊出日期:  2021-11-25

目录

    /

    返回文章
    返回