高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一个基于Eta垂直坐标的新WRF动力框架及其数值试验

程锐 宇如聪 徐幼平 刘娟 黄静

程锐, 宇如聪, 徐幼平, 等. 2022. 一个基于Eta垂直坐标的新WRF动力框架及其数值试验[J]. 大气科学, 46(1): 1−14 doi: 10.3878/j.issn.1006-9895.2102.20173
引用本文: 程锐, 宇如聪, 徐幼平, 等. 2022. 一个基于Eta垂直坐标的新WRF动力框架及其数值试验[J]. 大气科学, 46(1): 1−14 doi: 10.3878/j.issn.1006-9895.2102.20173
CHENG Rui, YU Rucong, XU Youping, et al. 2022. A New Eta-Coordinate-Based WRF Dynamic Core and Its Numerical Experiments [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(1): 1−14 doi: 10.3878/j.issn.1006-9895.2102.20173
Citation: CHENG Rui, YU Rucong, XU Youping, et al. 2022. A New Eta-Coordinate-Based WRF Dynamic Core and Its Numerical Experiments [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(1): 1−14 doi: 10.3878/j.issn.1006-9895.2102.20173

一个基于Eta垂直坐标的新WRF动力框架及其数值试验

doi: 10.3878/j.issn.1006-9895.2102.20173
基金项目: 国家重点研发计划项目2018YFC1507200、2017YFA0604000、2017YFB1002702,国家自然科学基金项目91637211、61572058
详细信息
    作者简介:

    程锐,男,1975年出生,高工,主要从事数值模式及数值预报应用研究。E-mail: c4rui@mail.iap.ac.cn

  • 中图分类号: P456

A New Eta-Coordinate-Based WRF Dynamic Core and Its Numerical Experiments

Funds: National Key Research and Development Program of China (Grants 2018YFC1507200, 2017YFA0604000, 2017YFB1002702), National Natural Science Foundation of China (Grants 91637211, 61572058)
  • 摘要: 针对我国陡峭地形数值预报难题,本文在国际先进WRF(Weather Research and Forecasting)模式动力框架中引入阶梯地形垂直坐标,以期为改进复杂地形区域数值天气预报提供模式发展可选方案。设计气柱质量变换方法,实现阶梯地形和追随地形两种垂直坐标下动力方程组的形式一致,从而简化方程组离散及程序实现的复杂过程。阶梯地形的构造借鉴了AREM(Advanced Regional Eta-coordinate Model)的设计思路,即首先构造参考大气,而后定义阶梯地形网格特征量,最后进行阶梯地形表达。在Eta坐标下的WRF动力框架搭建完成后,采用山脉波理想试验和实例试验对新动力框架的正确性和有效性进行了检验。结果表明:由于阶梯地形固有的孤立分布特征,可造成不同台阶处气流的分离,从而使得阶梯地形在较粗垂直分辨率情形下,不能很好模拟山脉波;但如果垂直分层足够精细,或模拟时间足够长,可通过减弱气流分离现象或调整气流分布状态,对地形波进行有效刻画。
  • 图  1  (a)Eta-WRF模式的阶梯地形高度(单位:m)及阶梯坐标模式2D表征量(b)ksh、(c)ksu、(d)ksv随水平网格的变化

    Figure  1.  (a) Eta-WRF Stepped mountain height (units: m) and variation of Eta model 2D-mesh indicators with horizontal grid: (b) ksh, (c) ksu, and (d) ksv

    图  2  阶梯坐标模式3D表征量(a)mph、(b)mphi、(c)mpu和(d)mpv随水平网格的变化。颜色填充区域表示格点位于地形以下,即mph、mphi、mpu、mpv为0

    Figure  2.  Variation of Eta model 3D-mesh indicators with horizontal grid: (a) mph, (b) mphi, (c) mpu, and (d) mpv. The shaded area shows that grid points are below the stepped mountain, with zero values for mph, mphi, mpu, and mpv

    图  3  EXP01试验山脉背风波动结构:(a)扰动位温(单位:K);(b)扰动气压(单位:Pa);(c)垂直速度(单位:m s−1

    Figure  3.  Structure of the mountain lee wave from experiment EXP01: (a) Potential temperature anomaly (units: K), (b) pressure anomaly (units: Pa), and (c) vertical velocity (units: m s−1)

    图  4  如图3,但为EXP02试验

    Figure  4.  Same as Fig. 3 but for EXP02

    图  5  如图3,但为EXP03试验

    Figure  5.  Same as Fig. 3 but from EXP03

    图  6  如图3,但为EXP04试验

    Figure  6.  Same as Fig. 3 but for EXP04

    图  7  如图3,但为EXP05结果

    Figure  7.  Same as Fig. 3 but for EXP05

    图  8  (a)原Sigma坐标下和(b)Eta坐标下WRF模式地形高度(单位:m)分布

    Figure  8.  Distributions of WRF model terrain height (units: m) under (a) original Sigma coordinate core and (b) Eta coordinate core

    图  9  (a)Eta坐标新框架和(b)Sigma坐标原框架模拟12 h过32°N的水平风速纬向—垂直剖面(单位:m s−1

    Figure  9.  The 12 h-simulated horizontal wind velocity across 32°N (units: m s−1): (a) Eta coordinate core; (b) original Sigma coordinate core

    图  10  (a)Eta坐标新框架和(b)Sigma坐标原框架模拟的北美大陆24 h 500 hPa水平风场(单位:m s−1

    Figure  10.  The 24-h simulated horizontal wind at 500 hPa (units: m s−1) in the North American continent: (a) Eta coordinate core; (b) original Sigma coordinate core

    图  11  (a)Eta坐标新框架模拟的中国大陆6 h 700 hPa风场分布和(b)FNL分析场风场分布对比,单位:m s−1

    Figure  11.  Distributions of 6-h simulated wind at 700 hPa in the Chinese continent (units: m s−1) from (a) Eta coordinate core simulation and (b) FNL analysis

    表  1  原WRF模式(Sigma坐标)山脉波试验方案(对照试验)

    Table  1.   Original WRF (Sigma coordinates) configuration for mountain wave simulation (control experiment)

    模式选项模拟方案
    模式地形$ {h}_{\mathrm{t}}=\displaystyle\frac{{h}_{\mathrm{m}}}{{1+\left[\frac{i-{i}_{\mathrm{c}\mathrm{m}}}{a}\right]}^{2}} $,
    其中$ ,{h}_{\mathrm{m}} $=100 m,为山脉最高地形高度,$ {h}_{\mathrm{t}} $为钟形山脉高度;$ i $为格点下标,$ {i}_{\mathrm{c}\mathrm{m}} $表示区域中心点X方向下标,$ a $=10表示山脉半宽
    初始条件高度范围:0~30 km,干大气,$ \stackrel{-}{u} $=10 m s−1,$ \stackrel{-}{v} $=0
    水平分辨率2 km
    水平网格Arakawa-C跳点,202个网格点
    垂直分层Sigma分层,指数拉伸分80层
    时间步长20 s
    模拟时长36000 s
    侧边界X方向辐射开边界,Y方向周期边界,Z方向刚体
    水平平流5阶
    垂直平流3阶
    物理过程
    下载: 导出CSV

    表  2  Eta坐标对比试验方案

    Table  2.   Configuration for comparative experiments with Eta coordinates

    方案编号方案描述
    EXP01对照试验(具体方案见表1
    EXP01_Eta坐标、参考高度100 m,其它方案同对照试验
    EXP02Eta坐标,参考高度为50 m,其它同EXP01_
    EXP03Eta坐标,参考高度为0,其它同EXP01_
    EXP04Eta坐标,参考高度为0,垂直分层提高到400层,其它同EXP01_
    EXP05Eta坐标,参考高度为0,模拟时长加大10倍,其它同EXP01_
    注:表中参考高度为Eta–Sigma混合坐标中Sigma坐标层顶高度。
    下载: 导出CSV

    表  3  北美大陆西风槽演变模拟试验方案

    Table  3.   Numerical experiment scheme for simulation on the evolution of the westerly trough in the North American continent

    模式选项模拟方案
    模式地形利用WRF_INPUT地形,构造阶梯地形
    初始条件原WRF_INPUT初值
    水平分辨率30 km
    模式范围74×61×28;
    25.5°N~43.2°N,86.4°W~108°W;0~19 km
    时间步长180 s
    模拟时长2000年1月24日12:00(协调世界时)起报,运行24 h
    侧边界时变侧边界,垂直方向刚体
    物理过程
    下载: 导出CSV

    表  4  中国大陆槽脊系统模拟试验方案

    Table  4.   Numerical experiment scheme for simulation on continental weather systems in China

    模式选项模拟方案
    模式地形NCAR 5’原始地形构造阶梯地形
    初始条件FNL分析资料(0~30 km)
    水平分辨率20 km
    模式范围(15°N~44.7°N,109°E~144.7°E);垂直方向:0~30 km
    时间步长120 s
    模拟时长2012年7月21日00:00起报,运行12 h
    侧边界固定侧边界,垂直方向刚壁
    物理过程
    下载: 导出CSV
  • [1] Alaka M A. 1960. The airflow over mountains [R]. WMO Tech. Note 34, 135pp.
    [2] 程锐, 宇如聪, 徐幼平, 等. 2018. 非静力AREM模式设计及其数值模拟I: 非静力框架设计 [J]. 大气科学, 42(6): 1286−1296. doi: 10.3878
    [3] Cheng Rui, Yu Rucong, Xu Youping, et al. 2018. Design of non-hydrostatic AREM model and its numerical simulation. Part I: Design of non-hydrostatic dynamic core [J]. Chinese Journal of Atmospheric Sciences, 42(6): 1286−1296. doi: 10.3878/j.issn.1006-9895.1712.17200
    [4] 程锐, 宇如聪, 徐幼平, 等. 2019. 非静力AREM模式设计及其数值模拟II: 数值模拟试验 [J]. 大气科学, 43(1): 1−12.
    [5] Cheng Rui, YU Rucong, XU Youping, et al. 2019. Design of non-hydrostatic AREM model and its numerical simulation. Part II: Numerical simulation experiments [J]. Chinese Journal of Atmospheric Sciences, 43(1): 1−12. doi: 10.3878/j.issn.1006-9895.1712.17201
    [6] Corby G A, Gilchrist A, Newson R L. 1972. A general circulation model of the atmosphere suitable for long period integrations [J]. Quart. J. Roy. Meteor. Soc., 98(418): 809−832. doi: 10.1002/qj.49709841808
    [7] Egger J. 1972. Incorporation of steep mountains into numerical forecasting models [J]. Tellus, 24(4): 324−335. doi: 10.3402/tellusa.v24i4.10647
    [8] Eliassen A. 1949. The quasi-static equations of motion with pressure as independent variable [J]. Geof. Publ., 17(3): 1−44.
    [9] Erdun H. 1997. Two-dimensional atmospheric flow modeling by using Schwarz-Christoffel transformation over complex topography [D]. Ph. D. dissertation, ITU.
    [10] Gal-Chen T, Somerville R C J. 1975. On the use of a coordinate transformation for the solution of the Navier-Stokes equations [J]. J. Comput. Phys., 17(2): 209−228. doi: 10.1016/0021-9991(75)90037-6
    [11] Gallus W A Jr, Klemp J B. 2000. Behavior of flow over step orography [J]. Mon. Wea. Rev., 128(4): 1153−1164. doi:10.1175/1520-0493(2000)128<1153:BOFOSO>2.0.CO;2
    [12] 何光碧, 彭俊, 屠妮妮. 2015. 基于高分辨率地形数据的模式地形构造与数值试验 [J]. 高原气象, 34(4): 910−922. doi: 10.7522/j.issn.1000-0534.2014.00022

    He Guangbi, Peng Jun, Tu Nini, et al. 2015. Terrain construction and experiment for Numerical Model Based on High Resolution Terrain Data [J]. Plateau Meteorology, 34(4): 910−922. doi: 10.7522/j.issn.1000-0534.2014.00022
    [13] 胡江林, 王盘兴. 2007. 地形跟随坐标下的中尺度模式气压梯度力计算误差分析及其改进方案 [J]. 大气科学, 31(1): 109−118. doi: 10.3878/j.issn.1006-9895.2007.01.11

    Hu Jianglin, Wang Panxing. 2007. The errors of pressure gradient force in high-resolution meso-scale model with terrain-following coordinate and its revised scheme [J]. Chinese Journal of Atmospheric Sciences, 31(1): 109−118. doi: 10.3878/j.issn.1006-9895.2007.01.11
    [14] 纪立人, 陈嘉滨, 张道民, 等. 2005. 数值预报模式动力框架发展的若干问题综述 [J]. 大气科学, 29(1): 120−130. doi: 10.3878/j.issn.1006-9895.2005.01.14

    Ji Liren, Chen Jiabin, Zhang Daomin et al. 2005. Review of Some Numerical Aspects of the Dynamic Framework of NWP Model [J]. Chinese Journal of Atmospheric Sciences, 29(1): 120−130. doi: 10.3878/j.issn.1006-9895.2005.01.14
    [15] Kasahara, A., and Washington, W. M 1967. NCAR global general circulation model of the atmosphere [J]. Mon. Wea. Rev., 95(7): 389−402. doi:10.1175/1520-0493(1967)095<0389:NGGCMO>2.3.CO;2
    [16] Klemp J B. 2011. A terrain-following coordinate with smoothed coordinate surfaces [J]. Mon. Wea. Rev., 139(7): 2163−2169. doi: 10.1175/MWR-D-10-05046.1
    [17] Laprise R. 1992. The euler equations of motion with hydrostatic pressure as an independent variable [J]. Mon. Wea. Rev., 120(1): 197−207. doi:10.1175/1520-0493(1992)120<0197:TEEOMW>2.0.CO;2
    [18] 李超, 陈德辉, 李兴良, 等. 2019. 一种改进的平缓-混合地形追随坐标在GRAPES中尺度模式中的应用研究 [J]. 气象学报, 77(6): 1041−1052. doi: 10.11676/qxxb2019.068

    Li Chao, Chen Dehui, Li Xingliang, et al. 2019. A study on application of an improved terrain-following vertical coordinate in the GRAPES model [J]. Acta Meteorologica Sinica, 77(6): 1041−1052. doi: 10.11676/qxxb2019.068
    [19] 李兴良, 陈德辉. 2005. 非静力中尺度高分辨率模式模拟中的垂直坐标影响研究 [J]. 气象学报, 63(2): 161−172. doi: 10.3321/j.issn:0577-6619.2005.02.003

    Li Xingliang and Chen Dehui. 2005. Impact Study of the Vertical Coordinate on a Non-hydrostatic Meso-scale High-Resolution Model [J]. Acta Meteorologica Sinica, 63(2): 161−172. doi: 10.3321/j.issn:0577-6619.2005.02.003
    [20] 李兴良, 陈德辉, 沈学顺. 2005. 不同垂直坐标系对垂直速度计算的影响 [J]. 热带气象学报, 21(3): 265−276. doi: 10.3969/j.issn.1004-4965.2005.03.005

    Li Xingliang, Chen Dehui and Shen Xueshun. 2005. Impact Study on the Calculation of Vertical Velocity in Different Vertical Coordinates [J]. Journal of Tropical Meteorology, 21(3): 265−276. doi: 10.3969/j.issn.1004-4965.2005.03.005
    [21] Li Y, Wang B, Wang D, et al. 2014. An orthogonal terrain-following coordinate and its preliminary tests using 2-D idealized advection experiments [J]. Geoscientific Model Development, 7(4): 1767−1778. doi: 10.5194/gmd-7-1767-2014
    [22] Mesinger F. 1984. A blocking technique for representation of mountains in atmospheric models [J]. Riv. Meteor. Aeronaut, 44: 195−202.
    [23] Mesinger F. 2004. The steepness limit to validity of approximations to pressure gradient force: any signs of an impact? [C]//Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction. Seattle: American Meteorological Society, 1.19.
    [24] Mesinger F, Veljovic K. 2017. Eta vs. sigma: review of past results, Gallus–Klemp test, and large-scale wind skill in ensemble experiments [J]. Meteor. Atmos. Phys., 129(6): 573−593. doi: 10.1007/s00703-016-0496-3
    [25] Mesinger F, Chou S C, Gomes J L, et al. 2012. An upgraded version of the Eta model [J]. Meteor. Atmos. Phys., 116(3): 63−79. doi: 10.1007/s00703-012-0182-z
    [26] Michalakes J, Chen S, Dudhia J, et al. 2001. Development of a next generation regional weather research and forecast model [C]//Proceedings of the 9th ECMWF Workshop on the Use of High Performance Computing in Meteorology. Reading: World Scientific Publishing, 269–276.
    [27] Phillips N A. 1957. A coordinate system having some special advantages for numerical forecasting [J]. J. Atmos. Sci., 14(2): 184−185. doi:10.1175/1520-0469(1957)014<0184:ACSHSS>2.0.CO;2
    [28] 普业, 王斌, 徐幼平, 等. 2008. 基于MPI技术的AREM模式并行开发及试验 [J]. 气候与环境研究, 13(5): 675−680. doi: 10.3878/j.issn.1006-9585.2008.05.10

    Pu Ye, Wang Bin, Xu Youping et al. 2008. Application of MPI Parallel Technique in AREM [J]. Climatic and Environmental Research, 13(5): 675−680. doi: 10.3878/j.issn.1006-9585.2008.05.10
    [29] 钱永甫. 1985. 一个考虑地形的五层原始方程模式 [J]. 高原气象, 4(s1): 1−28.

    Qian Yongfu. 1985. A Five-Layer Primitive Equation Model with Topography [J]. Plateau Meteorology, 4(s1): 1−28.
    [30] 钱永甫, 周天军. 1995. 有地形模式中气压梯度力误差扣除法 [J]. 高原气象, 14(1): 1−9.

    Qian Yongfu and Zhou Tianjun. 1995. Modelling Tests of the Error Subtraction Scheme for the Pressure Gradient Force in Models with Topograph [J]. Plateau Meteorology, 14(1): 1−9.
    [31] 钱永甫, 颜宏, 骆启仁, 等. 1978. 一个有大地形影响的初始方程数值予报模式 [J]. 大气科学, 2(2): 91−102. doi: 10.3878/j.issn.1006-9895.1978.02.01

    Qian Yongfu, Yan Hong, Luo Qiren, et al. 1978. Numerical Weather Prediction Model with Large-scale Orography [J]. Chinse Journal of Atmospheric Sciences, 2(2): 91−102. doi: 10.3878/j.issn.1006-9895.1978.02.01
    [32] Sangster W E. 1960. A method of representing the horizontal pressure force without reduction of station pressures to sea level [J]. J. Atmos. Sci., 17(2): 166−176. doi:10.1175/1520-0469(1960)017<0166:AMORTH>2.0.CO;2
    [33] Schär C, Leuenberger D, Fuhrer O, et al. 2002. A new terrain-following vertical coordinate formulation for atmospheric prediction models [J]. Mon. Wea. Rev., 130(10): 2459−2480. doi:10.1175/1520-0493(2002)130<2459:ANTFVC>2.0.CO;2
    [34] Smagorinsky J, Strickler R F, Sangster W E, et al. 1967. Prediction experiments with a general circulation model [C]//Proceedings of Intern. Symp. on Dynamics of Large Scale Atmospheric Processes. Moscow: USSR, 70–134.
    [35] Steppeler J, Bitzer H W, Minotte M, et al. 2002. Nonhydrostatic atmospheric modeling using a z-Coordinate representation [J]. Mon. Wea. Rev., 130(8): 2143−2149. doi:10.1175/1520-0493(2002)130<2143:NAMUAZ>2.0.CO;2
    [36] 屠妮妮, 陈静, 何光碧. 2012. 切比雪夫多项式在模式地形平滑中的应用研究 [J]. 高原气象, 31(1): 47−56.

    Tu Nini, Chen Jing and He Guangbi. 2012. Research on Application of Chebyshev Polynomial Filtering Method in Smooth Topography of GRAPES Model [J]. Plateau Meteorology, 31(1): 47−56.
    [37] 宇如聪. 1989. 陡峭地形有限区域数值预报模式设计 [J]. 大气科学, 13(2): 139−149. doi: 10.3878/j.issn.1006-9895.1989.02.02

    Yu Rucong. 1989. Design of the limited area numerical weather prediction model with steep mountain [J]. Scientia Atmospherica Sinica, 13(2): 139−149. doi: 10.3878/j.issn.1006-9895.1989.02.02
    [38] 宇如聪, 徐幼平. 2004. AREM及其对2003年汛期降水的模拟 [J]. 气象学报, 62(6): 715−724. doi: 10.3321/j.issn:0577-6619.2004.06.001

    Yu Rucong, Xu Youping. 2004. AREM and its simulations on the daily rainfall in summer in 2003 [J]. Acta Meteor. Sinica, 62(6): 715−724. doi: 10.3321/j.issn:0577-6619.2004.06.001
    [39] Zängl G. 2003. A generalized sigma-coordinate system for the MM5 [J]. Mon. Wea. Rev., 131(11): 2875−2884. doi:10.1175/1520-0493(2003)131<2875:AGSSFT>2.0.CO;2
    [40] 曾庆存. 1963. 大气运动的特征参数和动力学方程 [J]. 气象学报, 33(4): 472−483. doi: 10.11676/qxxb1963.050

    Zeng Qingcun. 1963. Characteristic Parameters and Dynamic Equations in Atmospheric Motion [J]. Acta Meteorologica Sinica, 33(4): 472−483. doi: 10.11676/qxxb1963.050
    [41] 曾庆存. 1979. 数值天气预报的数学物理基础 [M]. 北京: 科学出版社. Zeng Qingcun. 1979. Mathematics and Physics Foundation in Numerical Weather Prediction [M]. Beijing: Science Press.
    [42] 张旭, 黄伟, 陈葆德. 2015. 一种新型高度地形追随坐标在GRAPES区域模式中的实现: 理想试验与比较研究 [J]. 气象学报, 73(2): 331−340. doi: 10.11676/qxxb2015.014

    Zhang Xu, Huang Wei and Chen Baode. 2015. Implementation of the Klemp Height-Based Terrain-Following Coordinate in the GRAPES Regional Model: Idealized tests and Intercomparison [J]. Acta Meteorologica Sinica, 73(2): 331−340. doi: 10.11676/qxxb2015.014
    [43] 赵鸣, 方娟. 1996. p-σ混合坐标原始方程模式的改进和试验 [J]. 高原气象, 15(2): 195−203.

    Zhao Ming, Fang Juan. 1996. The Improvement and Experiments of Primitive Equation Model with Mixed p-σ Coordinates [J]. Plateau Meteorology, 15(2): 195−203.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  314
  • HTML全文浏览量:  46
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-23
  • 录用日期:  2021-03-02
  • 网络出版日期:  2021-03-04

目录

    /

    返回文章
    返回