高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

青藏高原冬季1月绕流的变化特征及其对中国气候的影响

姜润 巩远发 袁源 康潆文 陈彦伟 侯劭禹

姜润, 巩远发, 袁源, 等. 2021. 青藏高原冬季1月绕流的变化特征及其对中国气候的影响[J]. 大气科学, 45(6): 1−14 doi: 10.3878/j.issn.1006-9895.2103.20244
引用本文: 姜润, 巩远发, 袁源, 等. 2021. 青藏高原冬季1月绕流的变化特征及其对中国气候的影响[J]. 大气科学, 45(6): 1−14 doi: 10.3878/j.issn.1006-9895.2103.20244
JIANG Run, GONG Yuanfa, YUAN Yuan, et al. 2021. Variation Characteristics of the Westerly Flow around the Tibetan Plateau in January and Its Impact on Climate in China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(6): 1−14 doi: 10.3878/j.issn.1006-9895.2103.20244
Citation: JIANG Run, GONG Yuanfa, YUAN Yuan, et al. 2021. Variation Characteristics of the Westerly Flow around the Tibetan Plateau in January and Its Impact on Climate in China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(6): 1−14 doi: 10.3878/j.issn.1006-9895.2103.20244

青藏高原冬季1月绕流的变化特征及其对中国气候的影响

doi: 10.3878/j.issn.1006-9895.2103.20244
基金项目: 国家自然科学基金项目41775079、U20A2097,42075008
详细信息
    作者简介:

    姜润,男,1994年出生,硕士研究生,主要从事短期气候异常变化的诊断研究。E-mail:jiangrun1994@qq.com

    通讯作者:

    巩远发,E-mail: gyfa@cuit.edu.cn

  • 中图分类号: P461

Variation Characteristics of the Westerly Flow around the Tibetan Plateau in January and Its Impact on Climate in China

Funds: Funded by National Natural Science Foundation of China (NSFC) (Grants 41775079, U20A2097,42075008)
  • 摘要: 利用1979~2019年NCEP/NCAR再分析资料和中国地面基本气象要素日值数据集(V3.0)的气温和降水资料,首先定义了客观表征冬季青藏高原南北两支绕流变化的指数,然后分析了其不同的变化特征,并采用相关分析、合成分析等方法初步研究了青藏高原南北两支绕流异常变化对中国气温和降水的影响机制。主要结果有:(1)青藏高原冬季北支绕流和南支绕流之间呈显著的负相关;北支(南支)绕流强、南支(北支)绕流弱时,对流层中低纬度地区从高原西部到我国东部沿岸为一个大范围的异常反气旋式(气旋式)环流系统,500 hPa高原的中部为一个异常反气旋(气旋)环流中心。(2)青藏高原冬季南北两支绕流的变化对中国冬季天气气候有显著影响。当青藏高原北支绕流强(弱)时,中国除东北是气温偏低(高)、降水偏多(少)外,河套、青藏高原及长江以南则是气温偏高(低)、降水偏少(多);当南支绕流强(弱)时,中国气温普遍偏低(高),东北及新疆北部是降水偏少(多),南方大部分地区是降水偏多(少)。(3)分析高原绕流异常变化对中国天气气候的影响机制表明:当青藏高原北支绕流强、南支绕流弱时,中国东部35°N以北的对流层中都是异常西北风,35°N以南都是异常东北风,受高原异常纬向绕流影响,对流层大气为明显的“正压结构”;相应的对流层底层从南到北为一致的异常西南风,850 hPa以上35°N的之间为反气旋式切变和下沉运动异常,300 hPa以下异常偏暖,这些条件加强了下沉增温,导致中国东部气温偏高、降水偏少。当青藏高原南支绕流强、北支绕流弱时,对流层中的纬向风异常则为明显的“斜压特征”,异常西风呈现为从对流层低层到高层、低纬度到高纬度的倾斜的带状特征,其下方自华南近地面到华北200 hPa的“三角形”状异常东风,配合相应的经向风异常和华南到华北的异常上升运动,低层为“三角形”状的异常冷气团向南切入到中国南海,中上层为异常偏暖的西南气流在冷气团上自南向北爬升到中高纬度地区,导致中国大范围的气温异常偏低、降水偏多。
  • 图  1  1979~2019年青藏高原冬季600 hPa气候平均的水平风场(单位:m s−1)。图中灰色阴影为高原3000 m以上地形,绿色方框为高原绕流主体区域,紫色实线为经向风零线,红色矢量为西南风,蓝色矢量为西北风

    Figure  1.  Average horizontal winter wind field of 600 hPa in the Tibetan Plateau from 1979 to 2019 (units: m s−1). Gray shaded areas indicate the ones with a topography of more than 3000 m, the green box represents the main area of the westerly flow around the Tibetan Plateau, the purple solid line is the zero line of meridional wind, the red vector indicates the southwest wind, and the blue vector corresponds to the northwest wind

    图  2  1979~2019年冬季600 hPa青藏高原绕流指数的标准化变量变化。红色表示北支绕流指数(WNFI),蓝色表示南支绕流指数(WSFI),虚线为正、负1个标准差

    Figure  2.  Change of standardized variables of the 600-hPa westerly flow indices around the Tibetan Plateau during winter from 1979 to 2019. The red bar represents the winter northern branch flow index (WNFI), the blue bar is the winter southern branch flow index (WSFI), and the dashed lines indicate the positive and negative one standard deviation

    图  3  (a)1979~2019年冬季700 hPa气候平均涡度场,(b)北支绕流强南支绕流弱年的涡度距平合成分布,(c)南支绕流强北支绕流弱年的涡度距平合成分布。灰色阴影区代表高原3000 m地形,绿色方框为蒋艳蓉等(2009)定义的绕流指数所选的区域,单位:10−5s−1

    Figure  3.  (a) Distribution of the winter climatic average vorticity at 700 hPa from 1979 to 2019, composite of vorticity anomaly (b) for the stronger northern branch flow and the weaker southern branch flow and (c) for the stronger southern branch flow and the weaker northern branch flow. The gray shaded areas indicate the ones with a topography of more than 3000 m and the green boxes are the regions selected by the circumfluence index defined by Jiang et al (2009), units: 10−5s−1

    图  4  1979~2019年冬季高原绕流指数与我国气温和降水的相关系数:(a)北支指数和(c)南支指数与气温的相关;(b)北支指数和(d)南支指数与降水的相关。打点区域表示通过95%显著检验的站点

    Figure  4.  Correlation coefficients between the westerly flow indices during winter around the Tibetan Plateau and the air temperature/precipitation from 1979 to 2019: (a) WNFI & (c) WSFI and the air temperature, (b) WNFI & (d) WSFI and precipitation. The dots indicate the correlation coefficients are significant at the 95% confidence level

    图  5  1979~2019年冬季北支绕流强南支绕流弱年的水平风场距平合成(单位:m s−1):(a)850 hPa;(b)700 hPa;(c)500 hPa。灰色阴影区代表高原3000 m地形,黄色填色表示通过95%显著性检验,A代表反气旋,C代表气旋,

    Figure  5.  Composites of the horizontal wind anomaly fields for winters with the stronger northern branch flow and the weaker southern branch flow (units: m s−1) from 1979 to 2019: (a) 850 hPa; (b) 700 hPa; (c) 500 hPa. The gray shaded areas indicate the topography of more than 3000 m, the yellow shaded areas indicate the anomalies of the winds significant at the 95% confidence level, A denotes anticyclone, and C denotes cyclone

    图  6  1979~2019年冬季南支绕流强北支绕流弱年的水平风场距平合成(单位:m s−1):(a)850 hPa;(b)700 hPa;(c)500 hPa。灰色阴影区代表高原3000 m地形,黄色填色表示通过95%显著性检验,A代表反气旋,C代表气旋

    Figure  6.  Composites of the horizontal wind anomaly fields for winters with the stronger southern branch flow and the weaker northern branch flow (units: m s−1) from 1979 to 2019: (a) 850 hPa; (b) 700 hPa; (c) 500 hPa. The gray shaded areas indicate the topography of more than 3000 m, the yellow shaded areas indicate the anomalies of the winds that are significant at the 95% confidence level, A denotes anticyclone, and C denotes cyclone

    图  7  1979~2019年冬季500 hPa位势高度距平合成(单位:gpm):(a)北支绕流强南支绕流弱年;(b)南支绕流强北支绕流弱年。红色实线代表高原3000 m地形,打点表示通过95%的显著性检验

    Figure  7.  Composites of the 500 hPa geopotential height anomalies (units: gpm)for winters with (a) the stronger northern branch flow and the weaker southern branch flow and (b) the stronger southern branch flow and the weaker northern branch flow from 1979 to 2019. The solid red line indicates the topography of more than 3000 m, the black dots indicate the correlation coefficients significant at the 95% confidence level

    图  8  同图7,但为200 hPa纬向风距平合成(单位:m s−1

    Figure  8.  Same as Fig.7, but for composites of the 200 hPa zonal wind anomalies

    图  9  1979~2019年冬季北支绕流强—南支绕流弱年合成的105°~120°E平均的(a)异常纬向风(填色,单位:m s−1)和经向风(等值线,单位:m s−1)、(b)垂直速度(等值线,单位:10−2 Pa s−1)和气温(填色,单位:°C)的纬度—高度剖面

    Figure  9.  Composite of the latitude–altitude cross section averaged between 105°–120°E for winters with the stronger northern branch flow and the weaker southern branch flow from 1979 to 2019 in winter: (a) Zonal wind (shaded, units: m s−1) and meridional wind (contour, units: m s−1); (b) air temperature (shaded, units: °C) andvertical velocity (contour, units: 10−2 Pa s−1)

    图  10  同图9,但为1979~2019年冬季北支绕流弱—南支绕流强年

    Figure  10.  Same as Fig.9, but for winters with the stronger southern branch flow and the weaker northern branch flow from 1979 to 2019

  • [1] 艾雅雯, 孙建奇, 韩双泽, 等. 2020. 1961~2016年中国春季极端低温事件的时空特征分析 [J]. 大气科学, 44(6): 1305−1319. doi: 10.3878/j.issn.1006-9895.1912.19223

    Ai Yawen, Sun Jianqi, Han Shuangze, et al. 2020. Spatial and temporal features of spring extreme low temperature events in China during 1961–2016 [J]. Chinese Journal of Atmospheric Sciences, 44(6): 1305−1319. doi: 10.3878/j.issn.1006-9895.1912.19223
    [2] Bolin B. 1950. On the influence of the earth’s orography on the general character of the westerlies [J]. Tellus, 2(3): 184−195. doi: 10.3402/tellusa.v2i3.8547
    [3] 布和朝鲁, 彭京备, 谢作威, 等. 2018. 冬季大范围持续性极端低温事件与欧亚大陆大型斜脊斜槽系统研究进展 [J]. 大气科学, 42(3): 656−676. doi: 10.3878/j.issn.1006-9895.1712.17249

    Bueh Cholaw, Peng Jingbei, Xie Zuowei, et al. 2018. Recent progresses on the studies of wintertime extensive and persistent extreme cold events in China and large-scale tilted ridges and troughs over the Eurasian continent [J]. Chinese Journal of Atmospheric Sciences, 42(3): 656−676. doi: 10.3878/j.issn.1006-9895.1712.17249
    [4] Charney J G, Eliassen A. 1949. A numerical method for predicting the perturbations of the middle latitude westerlies [J]. Tellus, 1(2): 38−54. doi: 10.1111/j.2153-3490.1949.tb01258.x
    [5] Duan A M, Wu G X. 2005. Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia [J]. Climate Dyn., 24(7): 793−807. doi: 10.1007/s00382-004-0488-8
    [6] Duan A M, Wu G X, Liu Y M, et al. 2012. Weather and climate effects of the Tibetan Plateau [J]. Adv. Atmos. Sci., 29(5): 978−992. doi: 10.1007/s00376-012-1220-y
    [7] Fan G Z, Zhang Y L, Wang B Y, et al. 2015. Interannual variability of the wintertime northern branch high ridge in the subtropical westerlies and its relationship with winter climate in China [J]. J. Meteor. Res., 29(5): 703−719. doi: 10.1007/s13351-015-4178-8
    [8] 龚道溢, 王绍武. 1999. 近百年ENSO对全球陆地及中国降水的影响 [J]. 科学通报, 44(3): 852−857. doi: 10.3321/j.issn:0023-074X.1999.03.020
    [9] 顾震潮. 1951. 西藏高原对东亚环流的动力影响和它的重要性 [J]. 中国科学, 2(3): 283−303.

    Gu Zhenchao. 1951. Dynamical influence of Xizang Plateau on East Asian general circulation and its importance [J]. Sci. Sin., 2(3): 283−303.
    [10] 黄刚, 周连童. 2004. 青藏高原西侧绕流风系的变化及其与东亚夏季风和我国华北地区夏季降水的关系 [J]. 气候与环境研究, 9(2): 316−330. doi: 10.3969/j.issn.1006-9585.2004.02.008

    Huang Gang, Zhou Liantong. 2004. The variability of the wind system circulating round the west side of the Tibetan Plateau and its relation to the East Asian summer monsoon and summer rainfall in North China [J]. Climatic and Environmental Research, 9(2): 316−330. doi: 10.3969/j.issn.1006-9585.2004.02.008
    [11] 蒋艳蓉, 何金海, 温敏, 等. 2009. 冬、春季青藏高原东侧涡旋对特征及其对我国天气气候的影响 [J]. 高原气象, 28(5): 945−954.

    Jiang Yanrong, He Jinhai, Wen Min, et al. 2009. Characteristic of a couple of vortexes on the east side of Tibetan Plateau from winter to spring and their impact on the weather and climate in China [J]. Plateau Meteorology, 28(5): 945−954.
    [12] Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project [J]. Bull. Amer. Meteor. Soc., 77(3): 437−472. doi:10.1175/1520-0477(1996)077<0437:Tnyrp>2.0.co;2
    [13] 李强. 2011. 冬季青藏高原南支绕流对中国降水的影响及其变化机制 [D]. 中国气象科学研究院博士学位论文. Li Qiang. 2011. The influence of winter southern branch of westerly on precipitation in China and its variability mechanism [D]. Ph. D. dissertation (in Chinese), Chinese Academy of Meteorological Sciences.
    [14] 李维京, 罗四维. 1986. 青藏高原对其邻近地区一次天气系统影响的数值试验 [J]. 高原气象, 5(3): 245−255.

    Li Weijing, Luo Siwei. 1986. An numerical experiment of the effect of Tibetan Plateau on a synoptic system in its neighbourhood [J]. Plateau Meteorology, 5(3): 245−255.
    [15] 李斐, 李建平, 李艳杰, 等. 2012. 青藏高原绕流和爬流的气候学特征 [J]. 大气科学, 36(6): 1236−1252. doi: 10.3878/j.issn.1006-9895.2012.11214

    Li Fei, Li Lianping, Li Yanjie, et al. 2012. Climatological characteristics of flow around and flow over the Tibetan Plateau [J]. Chinese Journal of Atmospheric Sciences, 36(6): 1236−1252. doi: 10.3878/j.issn.1006-9895.2012.11214
    [16] 梁潇云, 刘屹岷, 吴国雄. 2005. 青藏高原隆升对春、夏季亚洲大气环流的影响 [J]. 高原气象, 24(6): 837−845. doi: 10.3321/j.issn:1000-0534.2005.06.001

    Liang Xiaoyun, Liu Yimin, Wu Guoxiong. 2005. The impact of Qinghai–Xizang Plateau uplift on Asian general circulation in spring and summer [J]. Plateau Meteorology, 24(6): 837−845. doi: 10.3321/j.issn:1000-0534.2005.06.001
    [17] Liu Y M, Bao Q, Duan A M, et al. 2007. Recent progress in the impact of the Tibetan Plateau on climate in China [J]. Advances in Atmospheric Sciences, 24(6): 1060−1076. doi: 10.1007/s00376-007-1060-3
    [18] 毛睿, 龚道溢, 房巧敏. 2007. 冬季东亚中纬度西风急流对我国气候的影响 [J]. 应用气象学报, 18(2): 137−146. doi: 10.3969/j.issn.1001-7313.2007.02.002

    Mao Rui, Gong Daoyi, Fang Qiaomin. 2007. Influences of the East Asian jet stream on winter climate in China [J]. Journal of Applied Meteorological Science, 18(2): 137−146. doi: 10.3969/j.issn.1001-7313.2007.02.002
    [19] Pfahl S, Wernli H. 2012. Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-) daily time scales [J]. Geophys. Res. Lett., 39(12): 1−6. doi: 10.1029/2012GL052261
    [20] 乔钰, 周顺武, 马悦, 等. 2014. 青藏高原的动力作用及其对中国天气气候的影响 [J]. 气象科技, 42(6): 1039−1046. doi: 10.3969/j.issn.1671-6345.2014.06.017

    Qiao Yu, Zhou Shunwu, Ma Yue, et al. 2014. Dynamic effect of Tibetan Plateau and its impact on weather and climate in China [J]. Meteorological Science and Technology, 42(6): 1039−1046. doi: 10.3969/j.issn.1671-6345.2014.06.017
    [21] 瞿章, 王谦谦, 钱永甫. 1981. 青藏高原对冬季东亚大气环流动力效应的数值实验[C]//青藏高原气象会议文集. 北京: 科学出版社, 19–32

    Qu Zhang, Wang Qianqian, Qian Yongfu. 1981. Numerical experiment on the dynamic effect of East Asian atmospheric circulation over the Qinghai–Xizang Tibet Plateau in winter [C]//Proceedings of the Qinghai-Tibet Plateau Meteorological Conference (in Chinese). Beijing: Science Press, 19–32.
    [22] Queney P. 1948. The problem of air flow over mountains: A summary of theoretical studies [J]. Bull. Amer. Meteor. Soc., 29(1): 16−26. doi: 10.1175/1520-0477-29.1.16
    [23] Ramaswamy C, 1956. On the sub-tropical jet stream and its role in the development of large-scale convection [J]. Tellus, 8(1): 26–60. doi: 10.1111/j.2153-3490.1956.tb01194.x
    [24] 王安宇, 王谦谦. 1985. 青藏高原大地形对冬季东亚大气环流的影响 [J]. 高原气象, 4(2): 109−120.
    [25] 王同美, 吴国雄, 万日金. 2008. 青藏高原的热力和动力作用对亚洲季风区环流的影响 [J]. 高原气象, 27(1): 1−9.

    Wang Tongmei, Wu Guoxiong, Wan Rijin. 2008. Influence of the mechanical and thermal forcing of Tibetan Plateau on the circulation of the Asian summer monsoon area [J]. Plateau Meteorology, 27(1): 1−9.
    [26] 王谦谦, 王安宇, 李学锋, 等. 1984. 青藏高原大地形对夏季东亚大气环流的影响 [J]. 高原气象, 3(1): 13−26.

    Wang Qianqian, Wang Anyu, Li Xuefeng, et al. 1984. The effects of the Qinghai-Xizang Plateau on the mean general circulation in East Asia in summer [J]. Plateau Meteorology, 3(1): 13−26.
    [27] 魏凤英. 1999. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 30–33

    Wei Fengying. 1999. Modern Climatic statistical Diagnosis and Forecasting Technology (in Chinese) [M]. Beijing: China Meteorological Press, 30–33.
    [28] 吴国雄. 2014-04-10(001). 青藏高原对我国天气气候影响有多大? [N]. 中国气象报. Wu Guoxiong. 2014-04-10(001). How much influence does the Qinghai-Tibet Plateau have on my country’s weather and climate? [N]. China Meteorological News (in Chinese). doi: 10.28122/n.cnki.ncqxb.2014.000950
    [29] 吴树炎. 2018. 南支槽的年际变化及其与我国南方冬季气候之间的关系. 成都信息工程大学硕士学位论文. Wu Shuyan. 2018. The interannual variation of the southern branch trough and its relationship with the winter climate in southern China. M. S. thesis, Chengdu University of Information Technology. Wu G X, Duan A M, Liu Y M, et al. 2015. Tibetan Plateau climate dynamics: Recent research progress and outlook [J]. National Science Review, 2(1): 100−116. doi: 10.1093/nsr/nwu045
    [30] 徐玮平, 张杰, 刘晨, 等. 2020. 20世纪90年代以后华北初春低温增强和北大西洋海温关系 [J]. 大气科学, 44(6): 1167−1187. doi: 10.3878/j.issn.1006-9895.1912.19127

    Xu Weiping, Zhang Jie, Liu Chen, et al. 2020. Relationship between the early-spring low-temperature enhancement in North China and sea surface temperature in the North Atlantic since the 1990s [J]. Chinese Journal of Atmospheric Sciences, 44(6): 1167−1187. doi: 10.3878/j.issn.1006-9895.1912.19127
    [31] Yanai M, Li C F, Song Z S, 1992. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon [J]. J. Meteor. Soc. Japan, 70(1): 319–351. doi: 10.2151/jmsj1965.70.1B_319
    [32] 姚慧茹, 李栋梁. 2013. 东亚副热带急流的空间结构及其与中国冬季气温的关系 [J]. 大气科学, 37(4): 881−890. doi: 10.3878/j.issn.1006-9895.2012.12072

    Yao Huiru, Li Dongliang. 2013. Spatial structure of East Asia subtropical jet stream and its relation with winter air temperature in China [J]. Chinese Journal of Atmospheric Sciences, 37(4): 881−890. doi: 10.3878/j.issn.1006-9895.2012.12072
    [33] 叶笃正, 高由禧. 1979. 青藏高原气象学 [M]. 北京: 科学出版社. Ye Duzheng, Gao Youxi. 1979. Meteorology of Qinghai-Xizang Plateau (in Chinese) [M]. Beijing: Science Press.
    [34] 张耀存, 钱永甫. 1999. 青藏高原隆升作用于大气临界高度的数值研究 [J]. 气象学报, 57(2): 157−167. doi: 10.11676/qxxb1999.014
    [35] 张永莉, 范广洲, 汪家楠, 等. 2018. 春季北支脊变化特征及其对中国气候的影响 [J]. 自然资源学报, 33(1): 114−126. doi: 10.11849/zrzyxb.20161067

    Zhang Yongli, Fan Guangzhou, Wang Jianan, et al. 2018. Variation of springtime northern branch ridge and its impact on climate in China [J]. Journal of Natural Resources, 33(1): 114−126. doi: 10.11849/zrzyxb.20161067
    [36] 朱乾根, 杨松. 1990. 青藏高原大地形对冷涌作用的数值模拟研究 [J]. 气象学报, 48(2): 162−171. doi: 10.11676/qxxb1990.020

    Zhu Qiangen, Yang Song. 1990. A study of the Tibetan Plateau effects on cold surge by using numerical model [J]. Acta Meteor. Sinica, 48(2): 162−171. doi: 10.11676/qxxb1990.020
  • 加载中
图(10)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  13
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-14
  • 录用日期:  2021-05-07
  • 网络出版日期:  2021-05-13

目录

    /

    返回文章
    返回