Dynamic Properties of Sea Level Pressure Field in East Asia–Northwest Pacific
-
摘要: 东亚—西北太平洋地区的海平面气压直接反映了低层大气的环流特征,其动力特征对大气环流形势,气压系统的演变和天气、气候系统的发展等都有显著的影响。因此,深入分析东亚—西北太平洋地区海平面气压场的时空演变特征,对于提高我国的天气和气候预报具有重要意义。为了从非线性动力学的角度进行深入研究,文中使用了一种新方法来定量估算海平面气压吸引子的两个瞬时指标:瞬时维度和瞬时稳定度。瞬时维度表征了吸引子轨道在局部空间上的离散程度,瞬时稳定度则表征了轨道在局部时间上的稳定程度,它们共同反应了海平面气压吸引子的瞬时(逐日)动力特性。本文利用不同大小的指标值与海平面气压场的对应关系,研究了该地区海平面气压场的不同时空特征。主要结论为:(1)海平面气压吸引子的两个指标都是低值时,对应逐日环流场的空间特征表现为:气压结构单一,通常有几个强大的高低气压中心东西对峙;时间特征表现为:环流模态可以稳定的持续10 d左右。(2)当两个指标都是高值时,逐日环流场的空间特征表现为:多个弱的气压中心同时存在且结构混乱;时间特征为:环流场极不稳定,持续性仅在1 d左右。(3)瞬时维度和瞬时稳定度具有一致的年代际变化趋势:20世纪70~90年代呈现明显的下降趋势,90年代末快速上升,2000年后波动变化。Abstract: The sea level pressure in the East Asia–Northwest Pacific region directly reflects the circulation characteristics of the lower atmosphere, and its dynamical characteristics have considerable effects on the atmospheric circulation situation, the evolution of the pressure system, and the development of weather and climate systems. Therefore, an in-depth analysis of the spatial and temporal evolution characteristics of the sea level pressure field in the East Asia–Northwest Pacific region is of great significance to improve the weather and climate forecasting in China. To investigate the dynamical characteristics of the daily sea level pressure field from the viewpoint of nonlinear dynamics, a new method is used to quantitatively estimate two instantaneous indicators of the sea level pressure attractor: (1) The instantaneous dimension and (2) the instantaneous stability. The instantaneous dimension characterizes the dispersion of the attractor orbit in local space, and the instantaneous stability characterizes the stability of the orbit in local time, which together characterize the instantaneous (daily) dynamical properties of the sea level baroclinic attractor. This paper studies the different spatial and temporal characteristics of the sea level pressure field in the East Asia–Northwest Pacific region by the correspondence between the indicator values of different sizes and the daily sea level pressure circulation field. The main conclusions are as follows: (1) When both indicators of the sea level pressure attractor are low, the spatial characteristics of the corresponding circulation field exhibit a single pressure structure, usually with several strong high- and low-pressure centers facing each other at the east–west direction, while the time characteristics show that the circulation mode can be stable for approximately 10 days. (2) Whereas, when both the indicators are high, the spatial characteristics of the circulation field show the simultaneous existence of multiple weak pressure centers with a chaotic spatial structure. As for the temporal characteristics, the circulation field is extremely unstable and the duration is approximately only one day. (3) In addition, the instantaneous dimension and instantaneous stability were found to have consistent interdecadal trends, both showing a clear downward trend from the 1970s to the 1990s, a rapidly rising trend in the late 1990s, and fluctuating changes after the year 2000.
-
图 1 (a、b)1948~2019年、(c、d)2016~2019年东亚—西北太平洋海平面气压(a、c)瞬时维度和(b、d)瞬时稳定度的逐日序列(灰线)、3个月低通滤波序列(蓝线)、1年低通滤波序列(黑线)、线性拟合(红线)
Figure 1. Daily series (gray lines), 3-month low-pass filtered series (blue lines), one-year low-pass filtered series (black lines), and linear fits (red lines) of the (a, c) instantaneous dimension and (b, d) the instantaneous stability of the sea level pressure in the East Asia–Northwest Pacific during (a, b) 1948–2019, (c, d) 2016–2019
图 2 1948~2019年东亚—西北太平洋海平面气压(a)瞬时维度和(b)瞬时稳定度的超前滞后自相关,(c)瞬时维度和(d)瞬时稳定度的多年月平均异常序列
Figure 2. Lead–lag autocorrelation of the (a) instantaneous dimension and (b) instantaneous stability, and the multiyear monthly average anomalies of the (c) instantaneous dimension and (d) instantaneous stability of the sea level pressure in the East Asia–Northwest Pacific during 1948–2019
图 3 1948~2019年东亚—西北太平洋海平面气压的瞬时维度和瞬时稳定度的散点分布。黑色竖虚线从左至右分别为瞬时维度的0.02和0.98分位数阈值,横虚线从下至上分别为瞬时稳定度的0.02和0.98分位数阈值。点的颜色代表月份
Figure 3. Scatter distribution of the instantaneous dimension and instantaneous stability of the sea level pressure in the East Asia–Northwest Pacific during 1948–2019. Black vertical dashed lines from left to right are the 0.02 and 0.98 quantile thresholds for the instantaneous dimension, and horizontal dashed lines from bottom to top are the 0.02 and 0.98 quantile thresholds for the instantaneous stability. The color of the dots represents the month
图 4 1948~2019年东亚—西北太平洋海平面气压的(a)瞬时维度低值、(b)瞬时维度高值、(c)瞬时稳定度低值、(d)瞬时稳定度高值季节分布。图中圆的12个方向按顺时针顺序分别代表1~12月,同心圆的大小代表该月所占的比例
Figure 4. Seasonal distributions for (a) low values of instantaneous dimension, (b) high values of instantaneous dimension, (c) low values of instantaneous stability, and (d) high values of instantaneous stability of the sea level pressure in the East Asia–Northwest Pacific during 1948–2019. The 12 directions of the circles in the diagram represent the months from January to December in clockwise order, and the size of the concentric circles represents the proportion of the month
图 5 1948~2019年东亚—西北太平洋海平面气压(a)瞬时维度为低值时、(b)瞬时稳定度为低值时、(c)瞬时维度为高值时、(d)瞬时稳定度为高值时对应的海平面气压环流异常场(单位:hPa)的平均特征。红色实线、蓝色虚线、黑色粗实线分别表示正值、负值、零线,等值线间隔是5 hPa。灰色区域由浅到深分别代表有60%、70%和80%的指标成员在该区域有一致的信号分布
Figure 5. Characteristics of the mean sea level pressure anomalies (colored solid lines, units: hPa) corresponding to the East Asia–Northwest Pacific when the instantaneous dimension is (a) low and (c) high and when the instantaneous stability is (b) low and (d) high during 1948–2019. The red solid lines, blue dashed lines, and black bold lines represent positive values, negative values, and zero, respectively. The gray areas from light to deep representing 60%, 70%, and 80% of the indicator members having a consistent signal distribution in that area, respectively
图 6 1948~2019年东亚—西北太平洋海平面气压的(a–e)瞬时维度最低值和(f–j)瞬时稳定度最高值对应的(a、f)当天、(b、g)第2天、(c、h)第4天、(d、i)第6天和(e、j)第8天的日平均海平面气压异常场(单位:hPa)分布。图中打点区域代表超过70%的成员在该区域具有一致的信号分布
Figure 6. The evolution of daily mean sea level pressure anomaly fields (units: hPa) corresponding to (a–e) The minimum value of instantaneous dimensions and (f–j) maximum value of instantaneous stability of the sea level pressure in the East Asia–Northwest Pacific during 1948–2019 on the following days of (a, f) the day, (b, g) second, (c, h) fourth, (d, i) sixth and (e, j) eighth day after that day. The dotted area represents a region where more than 70% of the members have a consistent signal distribution
图 7 1948~2019年东亚—西北太平洋(20°~60°N,90°E~150°W)、北大西洋(22°~70°N,80°W~50°E)和北半球区域(0°~90°N)海平面气压的瞬时维度的年代际趋势
Figure 7. Interdecadal trends in the instantaneous dimension of the sea level pressure in the East Asia–Northwest Pacific (20°–60°N, 90°E–150°W), North Atlantic (22°–70°N, 80°W–50°E), and Northern Hemisphere regions (0°–90°N) for the period of 1948–2019
图 8 瞬时维度对东亚—西北太平洋海平面气压区域范围选择的敏感性:(a)五个不同大小区域[基于东亚—西北太平洋地区(20°~60°N,90°E~150°W)的范围,逐次递减5个经度和纬度,产生了5个面积由大到小的区域]海平面气压的逐年瞬时维度值和拟合结果;(b)五个区域瞬时维度的箱线图分布。虚线顶部、底部的短横线、矩形框顶部、底部和中部的横线分别表示瞬时维度的上限、下限、上四分位数、下四分位数和中位数,各区域的方差(Var)和均值(Mean)在图的底部给出
Figure 8. Sensitivity of instantaneous dimensions of the sea level pressure in the East Asia–Northwest Pacific: (a) Annual instantaneous dimension values and fitting results of the sea level pressure in five different size regions [based on the range of East Asia–Northwest Pacific (20°–60°N, 90°E–150°W), gradually decreasing five longitudes and latitudes, resulting in five areas from large to small]; (b) box plot distributions of the instantaneous dimensions for the five regions. The short horizontal lines at the top and bottom of the dashed lines, the horizontal lines at the top, bottom, and middle of the rectangular boxes represent the upper limit, lower limit, upper quartile, lower quartile, and median of the instantaneous dimension, respectively. The variance and mean of each region are given at the bottom of the picture
-
[1] 丁一汇, 柳俊杰, 孙颖, 等. 2007. 东亚梅雨系统的天气—气候学研究 [J]. 大气科学, 31(6): 1082−1101. doi: 10.3878/j.issn.1006-9895.2007.06.05Ding Yihui, Liu Junjie, Sun Ying, et al. 2007. A study of the synoptic–climatology of the Meiyu system in East Asia [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31(6): 1082−1101. doi: 10.3878/j.issn.1006-9895.2007.06.05 [2] Faranda D, Messori G, Yiou P. 2017a. Dynamical proxies of North Atlantic predictability and extremes [J]. Sci. Rep., 7: 41278. doi: 10.1038/srep41278 [3] Faranda D, Messori G, Alvarez-Castro M C, et al. 2017b. Dynamical properties and extremes of Northern Hemisphere climate fields over the past 60 years [J]. Nonlin. Processes Geophys., 24(4): 713−725. doi: 10.5194/npg-24-713-2017 [4] Faranda D, Alvarez-Castro M C, Messori G, et al. 2019. The hammam effect or how a warm ocean enhances large scale atmospheric predictability [J]. Nat. Commun., 10(1): 1316. doi: 10.1038/s41467-019-09305-8 [5] 封国林, 杨涵洧, 张世轩, 等. 2012. 2011年春末夏初长江中下游地区旱涝急转成因初探 [J]. 大气科学, 36(5): 1009−1026. doi: 10.3878/j.issn.1006-9895.2012.11220Feng Guolin, Yang Hanwei, Zhang Shixuan, et al. 2012. A preliminary research on the reason of a sharp turn from drought to flood in the middle and lower reaches of the Yangtze River in late spring and early summer of 2011 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36(5): 1009−1026. doi: 10.3878/j.issn.1006-9895.2012.11220 [6] 封国林, 赵俊虎, 杨杰, 等. 2015. 中国汛期降水动力—统计预测研究[M]. 北京: 科学出版社, 1–330Feng Guolin, Zhao Junhu, Yang Jie, et al. 2015. The Study on Dynamical and Statistical Prediction on Summer Precipitation over China (in Chinese) [M]. Beijing: Science Press, 1–330. [7] Ferranti L, Corti S, Janousek M. 2015. Flow-dependent verification of the ECMWF ensemble over the Euro-Atlantic sector [J]. Quart. J. Roy. Meteor. Soc., 141(688): 916−924. doi: 10.1002/qj.2411 [8] Freitas A C M, Freitas J M, Todd M. 2010. Hitting time statistics and extreme value theory [J]. Probab. Theory Relat. Fields, 147(3–4): 675–710. doi: 10.1007/s00440-009-0221-y [9] 龚道溢, 王绍武. 2000. 大气涛动对全球低层大气环流的贡献 [J]. 高原气象, 19(4): 427−434. doi: 10.3321/j.issn:1000-0534.2000.04.003Gong Daoyi, Wang Shaowu. 2000. Contribution of the atmospheric oscillations to the global surface pressure system [J]. Plateau Meteorology (in Chinese), 19(4): 427−434. doi: 10.3321/j.issn:1000-0534.2000.04.003 [10] Grassberger P, Procaccia I. 1984. Dimensions and entropies of strange attractors from a fluctuating dynamics approach [J]. Physica D: Nonlinear Phenomena, 13(1–2): 34–54. doi: 10.1016/0167-2789(84)90269-0 [11] 贺圣平, 王会军. 2012. 东亚冬季风综合指数及其表达的东亚冬季风年际变化特征 [J]. 大气科学, 36(3): 523−538. doi: 10.3878/j.issn.1006-9895.2011.11083HE Shengping, WANG Huijun. 2012. An integrated East Asian winter monsoon index and its interannual variability [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36(3): 523−538. doi: 10.3878/j.issn.1006-9895.2011.11083 [12] 黄荣辉, 陈际龙, 周连童, 等. 2003. 关于中国重大气候灾害与东亚气候系统之间关系的研究 [J]. 大气科学, 27(4): 770−787. doi: 10.3878/j.issn.1006-9895.2003.04.22Huang Ronghui, Chen Jilong, Zhou Liantong, et al. 2003. Studies on the relationship between the severe climatic disasters in China and the East Asia climate system [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 27(4): 770−787. doi: 10.3878/j.issn.1006-9895.2003.04.22 [13] 黄荣辉, 蔡榕硕, 陈际龙, 等. 2006. 我国旱涝气候灾害的年代际变化及其与东亚气候系统变化的关系 [J]. 大气科学, 30(5): 730−743. doi: 10.3878/j.issn.1006-9895.2006.05.02Huang Ronghui, Cai Rongshuo, Chen Jilong, et al. 2006. Interdecaldal variations of drought and flooding disasters in China and their association with the East Asian climate system [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30(5): 730−743. doi: 10.3878/j.issn.1006-9895.2006.05.02 [14] Hurrell J W. 1995. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation [J]. Science, 269(5224): 676−679. doi: 10.1126/science.269.5224.676 [15] Li J P, Ding R Q. 2011. Temporal–spatial distribution of atmospheric predictability limit by local dynamical analogs [J]. Mon. Wea. Rev., 139(10): 3265−3283. doi: 10.1175/MWR-D-10-05020.1 [16] 刘长征, 王会军, 姜大膀. 2004. 东亚季风区夏季风强度和降水的配置关系 [J]. 大气科学, 28(5): 700−712. doi: 10.3878/j.issn.1006-9895.2004.05.05Liu Changzheng, Wang Huijun, Jiang Dabang. 2004. The configurable relationships between summer monsoon and precipitation over East Asia [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 28(5): 700−712. doi: 10.3878/j.issn.1006-9895.2004.05.05 [17] Lorenz D J, DeWeaver E T. 2007. Tropopause height and zonal wind response to global warming in the IPCC scenario integrations [J]. J. Geophys. Res., 112(D10): D10119. doi: 10.1029/2006JD008087 [18] Lucarini V, Faranda D, de Freitas A C G M M, et al. 2016. Extremes and Recurrence in Dynamical Systems [M]. New York: John Wiley & Sons, Inc. , 1–295. doi: 10.1002/9781118632321 [19] Messori G, Caballero R, Faranda D. 2017. A dynamical systems approach to studying midlatitude weather extremes [J]. Geophys. Res. Lett., 44(7): 3346−3354. doi: 10.1002/2017GL072879 [20] Rodrigues D, Carmen Alvarez-Castro M, Messori G, et al. 2018. Dynamical properties of the North Atlantic atmospheric circulation in the past 150 years in CMIP5 models and the 20CRv2c reanalysis [J]. J. Climate, 31(15): 6097−6111. doi: 10.1175/JCLI-D-17-0176.1 [21] Schwerdtfeger W, Prohash F. 1956. The semi-annual pressure oscillation, its cause and effects [J]. J. Atmos. Sci., 13(2): 217−218. doi:10.1175/1520-0469(1956)013<0217:TSAPOI>2.0.CO;2 [22] 施能, 朱乾根, 吴彬贵. 1996. 近40年东亚夏季风及我国夏季大尺度天气气候异常 [J]. 大气科学, 20(5): 575−583. doi: 10.3878/j.issn.1006-9895.1996.05.08Shi Neng, Zhu Qian’ gen, Wu Bingui. 1996. The East Asian summer monsoon in relation to summer large scale weather–climate anomaly in China for last 40 years [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 20(5): 575−583. doi: 10.3878/j.issn.1006-9895.1996.05.08 [23] 苏同华, 薛峰. 2010. 东亚夏季风环流和雨带的季节内变化 [J]. 大气科学, 34(3): 611−628. doi: 10.3878/j.issn.1006-9895.2010.03.13SU Tonghua, XUE Feng. 2010. The intraseasonal variation of summer monsoon circulation and rainfall in East Asia [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34(3): 611−628. doi: 10.3878/j.issn.1006-9895.2010.03.13 [24] 孙秀荣, 端义宏. 2003. 对东亚夏季风与西北太平洋热带气旋频数关系的初步分析 [J]. 大气科学, 27(1): 67−74. doi: 10.3878/j.issn.1006-9895.2003.01.06Sun Xiurong, Duan Yihong. 2003. A study of the relationships between the East Asian summer monsoon and the tropical cyclone frequency in the northwestern Pacific [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 27(1): 67−74. doi: 10.3878/j.issn.1006-9895.2003.01.06 [25] 孙树鹏, 封国林, 郑志海, 等. 2021. 2016年梅雨持续性强降水期间大气环流稳定分量研究 [J]. 大气科学, 45(2): 245−256. Sun Shupeng, Feng Guolin, Zheng Zhihai, et al. 2021. Study on the stable components of atmospheric circulation during the continuous heavy rainfall of Meiyu in 2016 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(2): 245−256. doi: 10.3878/j.issn.1006-9895.2006.19167 [26] Süveges M. 2007. Likelihood estimation of the extremal index [J]. Extremes, 10(1–2): 41–55. doi: 10.1007/s10687-007-0034-2 [27] 王劲松, 陈发虎, 靳立亚, 等. 2008. 近100年来中东亚干旱区气候异常与海平面气压异常的关系 [J]. 高原气象, 27(1): 84−95.Wang Jinsong, Chen Fahu, Jin Liya, et al. 2008. Relationships between climatic anomaly in arid region of Centre–East Asia and sea level pressure anomaly in the last 100 years [J]. Plateau Meteorology (in Chinese), 27(1): 84−95. [28] 王会军, 孙建奇, 郎咸梅, 等. 2008. 几年来我国气候年际变异和短期气候预测研究的一些新成果 [J]. 大气科学, 32(4): 806−814. doi: 10.3878/j.issn.1006-9895.2008.04.09WANG Huijun, SUN Jianqi, LANG Xianmei, et al. 2008. Some new results in the research of the interannual climate variability and short-term climate prediction [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(4): 806−814. doi: 10.3878/j.issn.1006-9895.2008.04.09 [29] 王一格, 姜大膀, 华维. 2020. 西北太平洋地区台风环境场的预估研究 [J]. 大气科学, 44(3): 552−564. doi: 10.3878/j.issn.1006-9895.1912.19168WANG Yige, JIANG Dabang, HUA Wei. 2020. Projection of typhoon-related environmental fields in the western North Pacific [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(3): 552−564. doi: 10.3878/j.issn.1006-9895.1912.19168 [30] 魏凤英, 黄嘉佑. 2010. 大气环流降尺度因子在中国东部夏季降水预测中的作用 [J]. 大气科学, 34(1): 202−212. doi: 10.3878/j.issn.1006-9895.2010.01.19Wei Fengying, Huang Jiayou. 2010. A study of downscaling factors of atmospheric circulations in the prediction model of summer precipitation in eastern China [J]. Chinese Journal of Atmospheric (in Chinese), 34(1): 202−212. doi: 10.3878/j.issn.1006-9895.2010.01.19 [31] 吴达铭. 1997. 西北太平洋热带气旋强度突变的分布特征 [J]. 大气科学, 21(2): 191−198. doi: 10.3878/j.issn.1006-9895.1997.02.07Wu Daming. 1997. The climatological characteristics of rapid change of the intensity of the tropical cyclone of the western North Pacific Ocean [J]. Chinese Journal of Atmospheric (in Chinese), 21(2): 191−198. doi: 10.3878/j.issn.1006-9895.1997.02.07 [32] Wu B Y, Wang J. 2002. Winter Arctic oscillation, Siberian high and East Asian winter monsoon [J]. Geophys. Res. Lett., 29(19): 1897. doi: 10.1029/2002GL015373 [33] 肖子牛, 孙绩华, 李崇银. 2000. El Niño期间印度洋海温异常对亚洲气候的影响 [J]. 大气科学, 24(4): 461−469. doi: 10.3878/j.issn.1006-9895.2000.04.03Xiao Ziniu, Sun Jihua, Li Chongyin. 2000. Influence of the Indian Ocean SSTA on Asian climate during an ENSO period [J]. Chinese Journal of Atmospheric (in Chinese), 24(4): 461−469. doi: 10.3878/j.issn.1006-9895.2000.04.03 [34] 杨秋明, 谢志清, 黄世成. 2009. 夏季欧亚海平面气压场主要非线性模态的时空变化 [J]. 科技导报, 27(2): 83−87. doi: 10.3321/j.issn:1000-7857.2009.02.018Yang Qiuming, Xie Zhiqing, Huang Shicheng. 2009. Temporal and spatial variations of the nonlinear principal mode of summer sea level pressure anomalies over Eurasia [J]. Science & Technology Review (in Chinese), 27(2): 83−87. doi: 10.3321/j.issn:1000-7857.2009.02.018 [35] Yiou P, Nogaj M. 2004. Extreme climatic events and weather regimes over the North Atlantic: When and where [J]. Geophys. Res. Lett., 31(7): L07202. doi: 10.1029/2003GL019119 [36] Young L S. 1982. Dimension, entropy and Lyapunov exponents [J]. Ergod. Theory Dyn. Syst., 2(1): 109−124. doi: 10.1017/S0143385700009615 [37] 曾庆存, 王会军, 林朝晖, 等. 2003. 气候动力学与气候预测理论的研究 [J]. 大气科学, 27(4): 468−483. doi: 10.3878/j.issn.1006-9895.2003.04.04Zeng Qingcun, Wang Huijun, Lin Zhaohui, et al. 2003. A study of the climate dynamics and climate prediction theory [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 27(4): 468−483. doi: 10.3878/j.issn.1006-9895.2003.04.04 [38] 张庆云, 陶诗言. 2003. 夏季西太平洋副热带高压异常时的东亚大气环流特征 [J]. 大气科学, 27(3): 369−380. doi: 10.3878/j.issn.1006-9895.2003.03.07Zhang Qingyun, Tao Shiyan. 2003. The anomalous subtropical anticyclone in western Pacific and their association with circulation over East Asia during summer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 27(3): 369−380. doi: 10.3878/j.issn.1006-9895.2003.03.07 [39] 赵俊虎, 封国林, 王启光, 等. 2011. 2010年我国夏季降水异常气候成因分析及预测 [J]. 大气科学, 35(6): 1069−1078. doi: 10.3878/j.issn.1006-9895.2011.06.07Zhao Junhu, Feng Guolin, Wang Qiguang, et al. 2011. Cause and prediction of summer rainfall anomaly distribution in China in 2010 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35(6): 1069−1078. doi: 10.3878/j.issn.1006-9895.2011.06.07 [40] 赵俊虎, 封国林, 杨杰, 等. 2012. 夏季西太平洋副热带高压的不同类型与中国汛期大尺度旱涝的分布 [J]. 气象学报, 70(5): 1021−1031. doi: 10.11676/qxxb2012.085Zhao Junhu, Feng Guolin, Yang Jie, et al. 2012. Analysis of the distribution of the large-scale drought/flood of summer in China under different types of the western Pacific subtropical high [J]. Acta Meteor. Sinica (in Chinese), 70(5): 1021−1031. doi: 10.11676/qxxb2012.085 [41] 赵俊虎, 陈丽娟, 王东阡. 2018. 2016年我国梅雨异常特征及成因分析[J]. 大气科学. 42(5): 1055–1066.Zhao Junhu, Chen Lijuan, Wang Dongqian. 2018. Characteristics and causes analysis of abnormal Meiyu in China in 2016 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(5): 1055–1066. doi: 10.3878/j.issn.1006-9895.1708.17170 -