高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于FY-4A卫星资料的四川盆地MCC初生和成熟阶段特征

张琪 任景轩 肖红茹 王佳津 肖递祥

张琪, 任景轩, 肖红茹, 等. 2021. 基于FY-4A卫星资料的四川盆地MCC初生和成熟阶段特征[J]. 大气科学, 45(4): 863−873 doi: 10.3878/j.issn.1006-9895.2104.20143
引用本文: 张琪, 任景轩, 肖红茹, 等. 2021. 基于FY-4A卫星资料的四川盆地MCC初生和成熟阶段特征[J]. 大气科学, 45(4): 863−873 doi: 10.3878/j.issn.1006-9895.2104.20143
ZHANG Qi, Ren Jingxuan, XIAO Hongru, et al. 2021. Characteristics of MCC from Convective Initiation to Mature Stage Over the Sichuan Basin Based on FY-4A Satellite Data [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(4): 863−873 doi: 10.3878/j.issn.1006-9895.2104.20143
Citation: ZHANG Qi, Ren Jingxuan, XIAO Hongru, et al. 2021. Characteristics of MCC from Convective Initiation to Mature Stage Over the Sichuan Basin Based on FY-4A Satellite Data [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(4): 863−873 doi: 10.3878/j.issn.1006-9895.2104.20143

基于FY-4A卫星资料的四川盆地MCC初生和成熟阶段特征

doi: 10.3878/j.issn.1006-9895.2104.20143
基金项目: 国家自然科学基金重大研究计划集成项目91937301,中国科学院战略性先导科技专项(A类)XDA23090103,中国气象局预报员专项CMAYBY2019-098
详细信息
    作者简介:

    张琪,女,1985年出生,高级工程师,主要从事短时临近天气预报。E-mail: zhangqikm@126.com

    通讯作者:

    任景轩,E-mail: renjx1986@163.com

  • 中图分类号: P458

Characteristics of MCC from Convective Initiation to Mature Stage Over the Sichuan Basin Based on FY-4A Satellite Data

Funds: Integration Project of Major Research Projects of National Natural Science Foundation (Grant 91937301), Strategic Priority Research Program of Chinese Academy of Sciences (Grant XDA23090103), China Meteorological Administration Forecaster Special Project (Grant CMAYBY2019-098)
  • 摘要: 利用高频次FY-4A数据资料,研究了四川盆地2018年中尺度对流复合体MCC(mesoscale convective complex)初生和成熟阶段的卫星云图特征。结果表明,MCC对流云团面积在初生阶段和成熟阶段分别以0~50 pixels (15 min)−1和150~200 pixels (15 min)−1的速率增长,最强可达7000~10000 pixels左右。亮温梯度大值区位于初生阶段的低空入流区一侧,集中在云顶纹理最为丰富的240 K等值线附近,最大值为30°C~40°C,基本消失于成熟阶段。云顶红外IR1(infrared radiation 1 channel)和水汽通道IR3(water vapor channel)最低亮温值在初生和成熟阶段变化趋势一致,均为初生阶段迅速下降至190 K左右的最低谷,而成熟阶段维持最低值基本无变化。初生和成熟阶段的IR1和IR3降温率R(cloud top cooling rate)分布形态相似,初始阶段低空入流区一侧的240 K等值线附近的降温率达−40 K (15 min)−1,为显著降温区,成熟阶段的降温幅度普遍升至−25~−10 K (15 min)−1。MCC主体云区初生和成熟阶段的亮温差正负值区分界线基本与221 K等值线重合,最大值分别为6~10 K和0–6 K,且初始阶段低层入流区的降温最为剧烈,达15~20 K (15 min)−1之多,而成熟阶段基本无变化。
  • 图  1  2018年4次MCC个例的(a)MCC面积、(b)MCC面积变率以及(c)个例1的强降水站数随时间的变化。图a、b中竖直线为初生阶段和成熟阶段分界线;图c中箭头为两阶段分界线

    Figure  1.  Temporal variations of (a) MCC area, (b) MCC area variability of four cases, (c) the numbers of heavy precipitation stations of case 1. In Figs. a and b, the vertical lines indicate the dividing time between convection initiation and mature stages; in Fig. c, the arrow indicates the dividing time between convection initiation and mature stages

    图  2  MCC云团面积随时间变化的拟合曲线。竖直线为初生阶段和成熟阶段分界线

    Figure  2.  Fitting curve for the cloud area of the MCC over time. The vertical lines indicate the dividing time between convection initiation and mature stages

    图  3  MCC个例(a1–d1)初生阶段和(a2–d2)成熟阶段的红外云顶亮温(阴影,单位:K)、亮温梯度(等值线,蓝线30°C,红线40°C)、850 hPa风场(风羽):(a1、a2)个例1;(b1、b2)个例2;(c1、c2)个例3;(d1、d2)个例4

    Figure  3.  Cloud top brightness temperature (shadings, units: K), temperature gradient (contours, blue lines indicate 30°C, red lines indicate 40°C), and 850-hPa wind in the (a1–d1) convective initiation and (a2–d2) mature stages in MCC cases: (a1, a2) Case 1; (b1, b2) case 2; (c1, c2) case 3; (d1, d2) case 4

    图  4  MCC个例IR1云顶最低亮温和IR3云顶最低亮温随时间的变化:(a1、a2)个例1;(b1、b2)个例2;(c1、c2)个例3;(d1、d2)个例4。竖直线为初生阶段和成熟阶段分界线

    Figure  4.  Variations of minimum brightness temperature (units: K) for IR1 (infrared radiation 1 channel) and minima IR3 (water vapor channel) in cloud top over time in MCC cases: (a) Case 1; (b) case 2; (c) case 3; (d) case 4. The vertical lines indicate the dividing time between convection initiation and mature stages

    图  5  MCC个例(a1–d1)初生阶段和(a2–d2)成熟阶段IR1云顶亮温(等值线,单位:K)及其降温率[阴影,单位:K (15 min)−1]分布:(a1、a2)个例1;(b1、b2)个例2;(c1、c2)个例3;(d1、d2)个例4

    Figure  5.  Cloud top brightness temperature (contours, units: K) for IR1 and cooling rate [shadings, units: K (15 min)−1] in the (a1–d1) convective initiation and (a2–d2) mature stages in MCC cases: (a1, a2) Case 1; (b1, b2) case 2; (c1, c2) case 3; (d1, d2) case 4

    图  6  图5,但为IR3的亮温(等值线,单位:K)及其降温率[阴影,单位:K (15 min)−1]分布

    Figure  6.  As in Fig. 5, but for cloud top brightness temperature (contours, units: K) for IR3 (water vapor channel) and cooling rate [shadings, units: K (15 min)−1]

    图  7  MCC个例(a1–d1)初生阶段和(a2–d2)成熟阶段IR1云顶亮温(等值线,单位:K)和水汽通道与红外通道亮温差(阴影,单位:K)分布:(a1、a2)个例1;(b1、b2)个例2;(c1、c2)个例3;(d1、d2)个例4

    Figure  7.  Cloud top brightness temperature (contours, units: K) and brightness temperature differences (shadings, units: K) between IR3 and IR1 in the (a1–d1) convective initiation and (a2–d2) mature stages in MCC cases: (a1, a2) Case 1; (b1, b2) case 2; (c1, c2) case 3; (d1, d2) case 4

    图  8  MCC个例的亮温差(单位:K)随时间的变化:(a1、a2)个例1;(b1、b2)个例2;(c1、c2)个例3;(d1、d2)个例4

    Figure  8.  Temporal variations for brightness temperature differences (units: K) in MCC cases: (a) Case 1; (b) case 2; (c) case 3; (d) case 4

    图  9  MCC个例(a1–d1)初生阶段和(a2–d2)成熟阶段的亮温差(等值线,单位:K)及其降温率[阴影,单位:K (15 min)−1]分布:(a1、a2)个例1;(b1、b2)个例2;(c1、c2)个例3;(d1、d2)个例4

    Figure  9.  Brightness temperature differences (contours, units: K) and cooling rate [shadings, units: K (15 min)−1] in the (a1–d1) convective initiation and (a2–d2) mature stages in MCC cases: (a1, a2) Case 1; (b1, b2) case 2; (c1, c2) case 3; (d1, d2) case 4

    表  1  2018年4次MCC个例的初生和成熟阶段

    Table  1.   Convective initiation and mature stages of the MCC (mesoscale convective complex) cases in 2018

    编号对流初生的中心位置中心移向日期初生阶段成熟阶段
    个例1052127.8°N,104.5°E5月21日21日18:00~21:3021日21:30至22日03:45
    个例2072628.3°N,103.5°E西北7月26日26日22:00至27日03:0027日03:00~06:00
    个例3080129.3°N,107.1°E西南8月1日1日16:00~22:001日22:00至2日03:15
    个例4080228.8°N,105.7°E稳定8月2日2日15:00~20:452日20:45至3日01:45
    下载: 导出CSV
  • [1] Durkee J D, Mote T L, Shepherd J M. 2009. The contribution of mesoscale convective complexes to rainfall across subtropical South America [J]. J. Climate, 22(17): 4590−4605. doi: 10.1175/2009JCLI2858.1
    [2] Fang Zongyi. 1985. The preliminary syudy of medium-scale cloud clusters over the Changjiang basin in summer [J]. Advances in Atmospheric Sciences, 2(3): 334−340. doi: 10.1007/BF02677249
    [3] Gourley J J, Hong Y, Flamig Z L, et al. 2010. Intercomparison of rainfall estimates from radar, satellite, gauge, and combinations for a season of record rainfall [J]. J. Appl. Meteor. Climatol., 49(3): 437−452. doi: 10.1175/2009JAMC2302.1
    [4] 蒋建莹, 汪悦国. 2014. 卫星水汽图像上两次暴雨过程的干、湿特征对比分析 [J]. 气象, 40(6): 706−714. doi: 10.7519/j.issn.1000-0526.2014.06.007

    Jiang Jianying, Wang Yueguo. 2014. Comparative analysis of two severe rainfall events with different dry moist characteristics on satellite water vapor imagery [J]. Meteor. Mon. (in Chinese), 40(6): 706−714. doi: 10.7519/j.issn.1000-0526.2014.06.007
    [5] 江吉喜, 项续康, 范梅珠. 1996. 青藏高原夏季中尺度强对流系统的时空分布 [J]. 应用气象学报, 7(4): 473−478.

    Jiang Jixi, Xiang Xukang, Fan Meizhu. 1996. The spatial and temporal distributions of severe mesoscale convective systems over Tibetan Plateau in summer [J]. Journal of Applied Meteorological Science (in Chinese), 7(4): 473−478.
    [6] 康岚, 龙柯吉, 黄楚惠, 等. 2016. 四川中尺度对流复合体特征分析 [J]. 西南大学学报(自然科学版), 38(11): 149−154. doi: 10.13718/j.cnki.xdzk.2016.11.023

    Kang Lan, Long Keji, Huang Chuhui, et al. 2016. The characteristic analysis of mesoscale convective complex over Sichuan regional [J]. Journal of Southwest University (Natural Science Edition) (in Chinese), 38(11): 149−154. doi: 10.13718/j.cnki.xdzk.2016.11.023
    [7] Laing A G, Fritsch J M. 2000. The large-scale environments of the global populations of mesoscale convective complexes [J]. Mon. Wea. Rev., 128(8): 2756−2776. doi:10.1175/1520-0493(2000)128<2756:TLSEOT>2.0.CO;2
    [8] 吕艳彬, 郑永光, 李亚萍, 等. 2002. 华北平原中尺度对流复合体发生的环境和条件 [J]. 应用气象学报, 13(4): 406−412. doi: 10.3969/j.issn.1001-7313.2002.04.003

    Lv Yanbin, Zheng Yongguang, Li Yaping, et al. 2002. Environment and conditions of mesoscale convetive complex development in North China plain [J]. Journal of Applied Meteorological Science (in Chinese), 13(4): 406−412. doi: 10.3969/j.issn.1001-7313.2002.04.003
    [9] 马芳, 张强, 郭铌, 等. 2007. 多通道卫星云图云检测方法的研究 [J]. 大气科学, 31(1): 119−128. doi: 10.3878/j.issn.1006-9895.2007.01.12

    Ma Fang, Zhang Qiang, Guo Ni, et al. 2007. The Study of cloud detection with Multi-Channel data of satellite [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31(1): 119−128. doi: 10.3878/j.issn.1006-9895.2007.01.12
    [10] Maddox R A. 1980. Mesoscale convective complexes [J]. Bull. Amer. Meteor. Soc., 61(11): 1374−1387. doi:10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2
    [11] Maddox R A, Howard K W, Bartels D L, et al. 1986. Mesoscale convective complexes in the middle latitudes [M]//Ray P S. Mesoscale Meteorology and Forecasting. Boston: American Meteorological Society, 390–413. doi: 10.1007/978-1-935704-20-1_17
    [12] Miller D, Fritsch J M. 1991. Mesoscale convective complexes in the Western Pacific region [J]. Mon. Wea. Rev., 119(12): 2978−2992. doi:10.1175/1520-0493(1991)119<2978:MCCITW>2.0.CO;2
    [13] 覃丹宇, 方宗义. 2014. 利用静止气象卫星监测初生对流的研究进展 [J]. 气象, 40(1): 7−17. doi: 10.7519/j.issn.1000-0526.2014.01.002

    Qin Danyu, Fang Zongyi. 2014. Research progress of geostationary satellite-based convective initiation [J]. Meteor. Mon. (in Chinese), 40(1): 7−17. doi: 10.7519/j.issn.1000-0526.2014.01.002
    [14] 四川省气象局. 2014. 四川省天气预报手册 [M]. 西南交通大学出版社, 66–74.

    Sichuan Meteorological Bureau. 2014. Sichuan Weather Forecast Manual [M]. Southwest Jiaotong University Press, 66–74.
    [15] 陶祖钰, 王洪庆, 王旭, 等. 1998. 1995年中国的中-α尺度对流系统 [J]. 气象学报, 56(2): 166−177. doi: 10.11676/qxxb1998.016

    Tao Zuyu, Wang Hongqing, Wang Xu, et al. 1998. A survey of meso-α-scale convective systems over China during 1995 [J]. Acta Meteorologica Sinica (in Chinese), 56(2): 166−177. doi: 10.11676/qxxb1998.016
    [16] Vadas S L, Fritts D C. 2004. Thermospheric responses to gravity waves arising from mesoscale convective complexes [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 66(6–9): 781−804. doi: 10.1016/j.jastp.2004.01.025
    [17] 汪柏阳, 覃丹宇, 刘传才. 2015. 利用FY-2F数据检测快速发展对流 [J]. 遥感学报, 19(5): 836−843. doi: 10.11834/jrs.20154218

    Wang Boyang, Qin Danyu, Liu Chuancai. 2015. Detection of rapidly developing convection using FY-2F satellite data [J]. Journal of Remote Sensing (in Chinese), 19(5): 836−843. doi: 10.11834/jrs.20154218
    [18] 许健民, 方宗义, 卢乃锰, 等. 1998. 卫星与雷达图像在天气预报中的应用 [M]. 北京: 科学出版社, 307–343.

    Xu Jianmin, Fang Zongyi, Lu Naimeng, et al. 1998. Images in Weather Forecasting-a Practical Guide for Interpreting Satellite and Radar Imagery (in Chinese) [M]. Beijing: Science Press, 307–343.
    [19] 杨本湘, 陶祖钰. 2005. 青藏高原东南部MCC的地域特点分析 [J]. 气象学报, 63(2): 236−241. doi: 10.3321/j.issn:0577-6619.2005.02.010

    Yang Benxiang, Tao Zuyu. 2005. The analysis of local features of MCC on southeast Tibetan Plateau [J]. Acta Meteorologica Sinica (in Chinese), 63(2): 236−241. doi: 10.3321/j.issn:0577-6619.2005.02.010
    [20] 张琪, 任景轩, 肖递祥, 等. 2018. 青藏高原东部初生雷暴云图特征及成因 [J]. 气象科技, 46(5): 943−950. doi: 10.19517/j.1671-6345.20170652

    Zhang Qi, Ren Jingxuan, Xiao Dixiang, et al. 2018. Satellite image characteristics and formation mechanisms of newborn thunderstorms in eastern Qinghai-Xizang Plateau [J]. Meteorological Science and Technology (in Chinese), 46(5): 943−950. doi: 10.19517/j.1671-6345.20170652
    [21] 赵文化, 单海滨. 2018. 基于红外窗区与水汽通道对流云团识别方法研究 [J]. 气象, 44(6): 814−824. doi: 10.7519/j.issn.1000-0526.2018.06.009

    Zhao Wenhua, Shan Haibin. 2018. Study of convective cloud identification based on H2O/IRW observation [J]. Meteor. Mon. (in Chinese), 44(6): 814−824. doi: 10.7519/j.issn.1000-0526.2018.06.009
    [22] 周鑫, 周顺武, 覃丹宇, 等. 2019. 利用FY-2F快速扫描资料分析对流初生阶段的云顶物理量特征 [J]. 气象, 45(2): 216−227. doi: 10.7519/j.issn.1000-0526.2019.02.007

    Zhou Xin, Zhou Shunwu, Qin Danyu, et al. 2019. Analysis of cloud top features during convective initiation using FY-2F satellite scan data [J]. Meteor. Mon. (in Chinese), 45(2): 216−227. doi: 10.7519/j.issn.1000-0526.2019.02.007
    [23] 卓鸿, 赵平, 李春虎, 等. 2012. 夏季黄河下游地区中尺度对流系统的气候特征分布 [J]. 大气科学, 36(6): 1112−1122. doi: 10.3878/j.issn.1006-9895.2011.11174

    Zhuo Hong, Zhao Ping, Li Chunhu, et al. 2012. Analysis of climatic characteristics of mesoscale convective system over the lower reaches of the Yellow River during summer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36(6): 1112−1122. doi: 10.3878/j.issn.1006-9895.2011.11174
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  31
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-14
  • 录用日期:  2021-04-13
  • 网络出版日期:  2021-04-02
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回