Simulation and Diagnosis of the Physical Process of the “7·20” Heavy Rainfall in Beijing in 2016
-
摘要: 利用WRF模式,结合三维降水诊断方程,对2016年北京“7·20”特大暴雨过程主降水时段的强降水物理过程开展了高分辨率模拟诊断分析。结果显示:降水峰值时刻前,强盛水汽辐合支撑强降水,同时加湿大气,后期,水汽辐合显著减弱,降水造成局地大气中水汽含量明显减少;降水峰值时刻前,水汽辐合、凝结和液相水凝物辐合共同助力强降水云系快速发展,后期,动力辐合作用减弱以及水凝物持续消耗和辐散,导致水凝物含量显著减少,降水系统逐步瓦解;主降水时段,垂直上升运动强度和垂直扩展范围逐步增大,并在降水峰值时刻达最大,之后减弱收缩;上升运动峰值高度从初期位于零度层上逐步降到零度层附近,进而回落到零度层之下,伴随“弱—强—弱”的降水强度变化;上升运动控制下,水凝物含量变化明显,但不同水凝物变化幅度不一,霰粒子和雨滴增幅最显著,并于降水峰值时刻含量达最大,随后减小,其他水凝物由于微物理转化和动力辐散等过程,导致其含量的变化幅度弱于上述两者。本文研究同时指出,不同微物理参数化方案对“7·20”特大暴雨强降水物理过程的可能影响以及不同强度降水物理过程的差异,值得深入研究。
-
关键词:
- “7·20”特大暴雨 /
- 降水物理过程 /
- 三维降水诊断方程
Abstract: Using a WRF model and a three-dimensional precipitation diagnostic equation, a high-resolution simulation and diagnosis analysis of the physical process of the heavy precipitation during the main precipitation period of the heavy rains in Beijing was carried out on July 20 2016. Results show that before the peak of precipitation, strong water vapor convergence supports strong precipitation while humidifying the atmosphere. In the later stage, the water vapor convergence is significantly weakened, and the precipitation causes an obvious reduction in the water vapor content in the local atmosphere. Before the peak time of the precipitation, the water vapor convergence, condensation, and liquid-phase condensate convergence jointly contribute to the rapid development of the heavy precipitation cloud system. In the later stage, the weak dynamic convergence effect and the continuous consumption and divergence of the water condensate lead to the significant decrease of the water condensate content, thus resulting in the gradual disintegration of the precipitation system. During the main precipitation period, the intensity and range of the vertical upward motion gradually increased and reached the maximum peak of precipitation, after which it weakened and contracted. The peak height of the ascending motion is located at the zero level in the initial stage and then decreases to the lower part of the zero level, accompanied by a “weak-strong-weak” precipitation intensity change. Under the control of ascending motion, the change range of the water condensate is obvious, but the change range of a different water condensate is different. Graupel particles and raindrops increase most significantly; the contents reach the maximum at the peak of precipitation then decrease. The variation range of other water condensates is weaker than the above two due to the process of microphysical transformation and dynamic divergence. This paper also points out that the possible influence of different microphysical parameterization schemes on the physical process of heavy rain happened on July 20, and differences of physical processes of precipitation with different intensities are worthy of further study. -
图 1 2016年7月20日00时(北京时,下同)至21日08时 (a)实况和(b)模拟(分辨率为1.33 km)的累积降水量(彩色阴影,单位:mm)。紫色实线为200 m地形等高线,(a)中灰色圆点为累积降水量大于300 mm的观测站点,黑色圆点为累积降水量最大的观测站(东山村站,累积降水量为401.3 mm);(b)中灰色方框所示区域为文中降水物理过程分析区域
Figure 1. Distribution of the (a) observed and (b) simulated (with a resolution of 1.33 km) cumulated precipitation from 0000 BST 20 to 0800 BST (Beijing Standard Time) on July 21, 2016 (shaded, units: mm). A thick purple line denotes the 200-m terrain elevation. Gray and black dots in (a) represent stations with a cumulated precipitation of more than 300 mm and a maximum cumulated precipitation (Dongshancun station, 401.3 mm), respectively. The gray box in (b) indicates the analysis area of the precipitation physical process
图 2 2016年7月19日08时至21日02时逐6小时的500 hPa位势高度场(黑色实线,单位:gpm)和850 hPa大于12 m s−1的风场(风向杆):(a)19日08时;(b)19日14时;(c)19日20时;(d)20日02时;(e)20日08时;(f)20日14时;(g)20日20时;(h)21日02时
Figure 2. 500-hPa geopotential height (height, units: gpm), 850-hPa wind field (wind bar, >12 m s−1) at (a) 0800 BST 19, (b) 1400 BST 19, (c) 2000 BST 19, (d) 0200 BST 20, (e) 0800 BST 20, (f) 1400 BST 20, (g) 2000 BST 20, (h) 0200 BST 21 July 2016
图 4 2016年7月19日20时至21日02时的逐6小时500 hPa位势高度(蓝色实线,单位:gpm,蓝色粗实线为5880gpm等高线)、850 hPa风矢量(风向杆)和大于等于12 m s−1的风速(彩色阴影):(a1, b1, c1, d1, e1, f1)ERA-interim再分析数据;(a2–f2)D01区域(分辨率为12 km)模拟结果:(a1,a2)19日20时;(b1,b2)20日02时;(c1,c2)20日08时;(d1,d2)20日14日;(e1,e2)20日20时;(f1,f2)21日02时
Figure 4. 500-hPa geopotential height (blue counter, units: gpm, thick lines indicate 5880 gpm), 850-hPa wind field (vector) and 850-hPa wind field (shaded, ≥12 m s−1) from (a1, b1, c1, d1, e1, f1) ERA-interim reanalysis data and (a2, b2, c2, d2, e2, f2) numerical simulation data with 12 km horizontal resolution at (a1, a2) 2000 BST 19, (b1, b2) 0200 BST 20, (c1, c2) 0800 BST 20, (d1, d2) 1400 BST 20, (e1, e2) 2000 BST 20, (f1, f2)0200 BST 21 July 2016.
图 10 2016年7月20日00时至21日08时区域(39.5°~40.9°N,115.6°~117.3°E)平均的(a)降水率(PS,黑色实线)、水汽相关过程变率(QWV,蓝色实线)和云相关过程变率(QCM,红色实线)的时间演变,(b)QWV(灰色实线)、QWVA(三维水汽通量辐合/辐散率,红色虚线)、QWVL(水汽局地变化率的负值,蓝色虚线)、QWVD(水汽三维耗散率,橙色虚线)、QWVE(地面蒸发率,紫色虚线)(单位:mm h−1)的时间演变,(c)QCL(灰色实线)、QCLL(液相水凝物局地变率的负值,红色虚线)、QCLA(液相水凝物通量辐合/辐散率,蓝色虚线)、QCLD(液相水凝物三维耗散率,橙色虚线)的时间演变,(d)QCI(灰色实线)、QCIL(固相水凝物局地变率的负值,红色虚线)、QCIA(固相水凝物通量辐合/辐散率,蓝色虚线)、QCID(冰相水凝物三维耗散率,橙色虚线)的时间演变
Figure 10. Temporal evolutions of the area-averaged (39.5°–40.9°N, 115.6°–117.3°E) (a) PS(black solid line), moisture-related processes (QWV: blue solid line), change rates for hydrometeor-related processes (QCM, red solid line, units: mm h−1); (b) QWV(gray solid line), QWVA(3D moisture flux convergence/divergence rate, red dotted line), QWVL(negative local change rate of water vapor, blue dotted line), QWVD (3D moisture diffusion rate, orange dotted line), QWVE (surface evaporation rate, purple dotted line, units: mm h−1); (c) QCL(gray solid line), QCLL (negative local change rate of liquid-phase hydrometers, red dotted line), QCLA (3D flux convergence/divergence rate of liquid-phase hydrometers, blue dotted line), QCLD (3D diffusion rate of liquid-phase hydrometers, orange dotted line, units: mm h−1); (d) QCI (gray solid line), QCIL(negative local change rate of ice-phase hydrometers, red dotted line), QCIA (3D flux convergence/divergence rate of ice-phase hydrometers, blue dotted line), QCID (3D diffusion rate of ice-phase hydrometers, orange dotted line, units: mm h−1) from 0000 BST July 20 to 0800 BST July 21, 2016
图 11 2016年7月20日00时至21日03时区域(39.5°~40.9°N,115.6°~117.3°E)平均的云水凝物混合比和垂直速度廓线(Qg:霰粒子,Qs:雪粒子,Qi:冰晶,Qr:雨滴,Qc:云水,单位:10−3 kg kg−1;w: 垂直速度,单位:m s−1)的逐时分布。图中右上角数值代表时间(例如“0000BST20”代表20日00时)
Figure 11. Area-averaged (39.5°–40.9°N, 115.6°–117.3°E) vertical profiles of hydrometeor mixing ratios (Qg for graupel, Qs for snow, Qi for cloud ice, Qr for raindrops, Qc for cloud water, units: 10−3 kg kg−1, w for vertical speed, unit: m s−1) from 0000 BST July 20 to 0300 BST July 21, 2016
表 1 模拟方案设置
Table 1. Model configurations
D01 D02 D03 分辨率 12 km 4 km 1.33 km 积分时段(UTC) 7月19日00时至21日00时(48 h) 7月19日12时至21日00时(36 h) 7月19日12时至21日00时(36 h) 微物理参数化方案 WSM6 WSM6 WSM6 长波辐射方案 RRTM RRTM RRTM 短波辐射方案 Dudhia Dudhia Dudhia 近地面层方案 MM5 Monin-Obukhov MM5 Monin-Obukhov MM5 Monin-Obukhov 陆面过程方案 unified Noah land-surface model unified Noah land-surface model unified Noah land-surface model 边界层参数化方案 YSU YSU YSU 积云对流参数化方案 Kain-Fritsch (new Eta) - - 表 2 三维降水诊断方程各项物理含义
Table 2. Physical descriptions of terms in the 3D WRF-based precipitation equation
方程项 物理含义 PS 地面降水率/降水强度 QWVL 水汽局地变化率垂直积分的负值 QWVA 水汽三维通量辐合/辐散率垂直积分 QWVE 地(海)面蒸发率 QWVD 水汽三维耗散率垂直积分 QCLL 液相水凝物(云滴和雨滴)局地变化率垂直积分的负值 QCLA 液相水凝物(云滴和雨滴)三维通量辐合/辐散率垂直积分 QCLD 液相水凝物(云滴和雨滴)三维耗散率垂直积分 QCIL 冰相水凝物(云冰、雪、霰等)局地变化率垂直积分的负值 QCIA 冰相水凝物(云冰、雪、霰等)三维通量辐合/辐散率垂直积分 QCID 冰相水凝物(云冰、雪、霰等)三维耗散率垂直积分 -
[1] An N, Dou J J, González-Cruz J E, et al. 2020. An observational case study of synergies between an intense heat wave and the urban heat island in Beijing [J]. J. Appl. Meteor. Climatol., 59(4): 605−620. doi: 10.1175/JAMC-D-19-0125.1 [2] 贝耐芳, 赵思雄. 2002. 1998年“二度梅”期间突发强暴雨系统的中尺度分析 [J]. 大气科学, 26(4): 526−540. doi: 10.3878/j.issn.1006-9895.2002.04.10Bei Naifang, Zhao Sixiong. 2002. Mesoscale analysis of severe local heavy rainfall during the second stage of the 1998 Meiyu season [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 26(4): 526−540. doi: 10.3878/j.issn.1006-9895.2002.04.10 [3] Cao J, Gao S T. 2007. Extended interpretations in Q vector analyses and applications in a torrential rain event [J]. Geophys. Res. Lett., 34(15): L15804. doi: 10.1029/2007GL030781 [4] 曹伟华, 梁旭东, 赵晗萍, 等. 2016. 基于Copula函数的北京强降水频率及危险性分析 [J]. 气象学报, 74(5): 772−783. doi: 10.11676/qxxb2016.056Cao Weihua, Liang Xudong, Zhao Hanping, et al. 2016. Copula-based frequency analysis and its application in hazard risk assessment of heavy rainfall in Beijing [J]. Acta Meteorologica Sinica (in Chinese), 74(5): 772−783. doi: 10.11676/qxxb2016.056 [5] 陈斌, 徐祥德, 施晓晖. 2011. 拉格朗日方法诊断2007年7月中国东部系列极端降水的水汽输送路径及其可能蒸发源区 [J]. 气象学报, 69(5): 810–818. Chen Bin, Xu Xiangde, Shi Xiaohui. 2011. Estimating the water vapor transport pathways and associated sources of water vapor for the extreme rainfall event over east of China in July 2007 using the Lagrangian method [J]. Acta Meteorologica Sinica (in Chinese), 69(5): 810−818. doi: 10.11676/qxxb2011.071 [6] Cui X P, Li X F. 2006. Role of surface evaporation in surface rainfall processes [J]. J. Geophys. Res.: Atmos., 111(D17): D17112. doi: 10.1029/2005JD006876 [7] Cui X P, Li X F. 2009. Diurnal responses of tropical convective and stratiform rainfall to diurnally varying sea surface temperature [J]. Meteor. Atmos. Phys., 104(1-2): 53−61. doi: 10.1007/s00703-008-0016-1 [8] Cui X P, Xu F W. 2009. A cloud–resolving modeling study of surface rainfall processes associated with landfalling typhoon Kaemi (2006) [J]. J. Trop. Meteor., 15(2): 181−191. [9] Cui X P, Gao S T, Wu G X. 2003. Up-sliding Slantwise Vorticity Development and the complete vorticity equation with mass forcing [J]. Adv. Atmos. Sci., 20(5): 825−836. doi: 10.1007/BF02915408 [10] Cui X P, Wang Y P, Yu H. 2015. Microphysical differences with rainfall intensity in severe tropical storm Bilis [J]. Atmos. Sci. Lett., 16(1): 27−31. doi: 10.1002/asl2.515 [11] 丁一汇, 李吉顺, 孙淑清, 等. 1980. 影响华北夏季暴雨的几类天气尺度系统分析[C]//中国科学院大气物理研究所集刊(第9号): 暴雨及强对流天气的研究. 北京: 科学出版社, 1–13Ding Yihui, Li Jishun, Sun Shuqing, et al. 1980. The analysis on mesoscale systems producing heavy rainfall in North China [C]//Papers of Institute of Atmospheric Physics, Chinese Academy of Sciences (CAS), No. 9 (in Chinese). Beijing: Science Press, 1–13. [12] 冯志刚, 程兴无, 陈星, 等. 2013. 淮河流域暴雨强降水的环流分型和气候特征 [J]. 热带气象学报, 29(5): 824−832. doi: 10.3969/j.issn.1004-4965.2013.05.012Feng Zhigang, Cheng Xingwu, Chen Xing, et al. 2013. The classification of the circulations and the climatic characteristics of rainstorms in Huaihe River basin [J]. Journal of Tropical Meteorology (in Chinese), 29(5): 824−832. doi: 10.3969/j.issn.1004-4965.2013.05.012 [13] Gao S T, Cui X P, Zhou Y S, et al. 2005. Surface rainfall processes as simulated in a cloud-resolving model [J]. J. Geophys. Res. :Atmos., 110(D10): D10202. doi: 10.1029/2004JD005467 [14] 高守亭, 孙建华, 崔晓鹏. 2008. 暴雨中尺度系统数值模拟与动力诊断研究 [J]. 大气科学, 32(4): 854−866. doi: 10.3878/j.issn.1006-9895.2008.04.13Gao Shouting, Sun Jianhua, Cui Xiaopeng. 2008. Numerical simulation and dynamic analysis of mesoscale torrential rain systems [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(4): 854−866. doi: 10.3878/j.issn.1006-9895.2008.04.13 [15] Gao S T, Tan Z M, Zhao S X, et al. 2015. Mesoscale dynamics and its application in torrential rainfall systems in China [J]. Adv. Atmos. Sci., 32(2): 192−205. doi: 10.1007/s00376-014-0005-x [16] 郭虎, 季崇萍, 张琳娜, 等. 2006. 北京地区2004年7月10日局地暴雨过程中的波动分析 [J]. 大气科学, 30(4): 703−711. doi: 10.3878/j.issn.1006-9895.2006.04.15Guo Hu, Ji Chongping, Zhang Linna, et al. 2006. A case study of local rainstorm in Beijing on 10 July 2004: The analysis of the gravity wave [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30(4): 703−711. doi: 10.3878/j.issn.1006-9895.2006.04.15 [17] Huang Y J, Cui X P. 2015a. Moisture sources of an extreme precipitation event in Sichuan, China, based on the Lagrangian method [J]. Atmos. Sci. Lett., 16(2): 177−183. doi: 10.1002/asl2.562 [18] Huang Y J, Cui X P. 2015b. Moisture sources of torrential rainfall events in the Sichuan Basin of China during summers of 2009–13 [J]. J. Hydrometeorol., 16(4): 1906−1917. doi: 10.1175/JHM-D-14-0220.1 [19] Huang Y J, Cui X P. 2015c. Dominant cloud microphysical processes of a torrential rainfall event in Sichuan, China [J]. Adv. Atmos. Sci., 32(3): 389−400. doi: 10.1007/s00376-014-4066-7 [20] Huang Y J, Cui X P, Li X F. 2016a. A three-dimensional WRF-based precipitation equation and its application in the analysis of roles of surface evaporation in a torrential rainfall event [J]. Atmos. Res., 169: 54−64. doi: 10.1016/j.atmosres.2015.09.026 [21] Huang Y J, Cui X P, Wang Y P. 2016b. Cloud microphysical differences with precipitation intensity in a torrential rainfall event in Sichuan, China [J]. Atmos. Ocean. Sci. Lett., 9(2): 90−98. doi: 10.1080/16742834.2016.1139436 [22] Huang Y J, Wang Y P, Cui X P. 2019. Differences between convective and stratiform precipitation budgets in a torrential rainfall event [J]. Adv. Atmos. Sci., 36(5): 495−509. doi: 10.1007/s00376-019-8159-1 [23] Jiang X L, Luo Y L, Zhang D L, et al. 2020. Urbanization enhanced summertime extreme hourly precipitation over the Yangtze River delta [J]. J. Climate, 33(13): 5809−5826. doi: 10.1175/JCLI-D-19-0884.1 [24] 雷蕾, 邢楠, 周璇, 等. 2020. 2018年北京“7.16”暖区特大暴雨特征及形成机制研究 [J]. 气象学报, 78(1): 1−17. doi: 10.11676/qxxb2020.001Lei Lei, Xing Nan, Zhou Xuan, et al. 2020. A study on the warm-sector torrential rainfall during 15–16 July 2018 in Beijing area [J]. Acta Meteorologica Sinica (in Chinese), 78(1): 1−17. doi: 10.11676/qxxb2020.001 [25] Lenderink G, van Meijgaard E. 2008. Increase in hourly precipitation extremes beyond expectations from temperature changes [J]. Nat. Geosci., 1(8): 511−514. doi: 10.1038/NGEO262 [26] Li H Q, Cui X P, Zhang W L, et al. 2016. Observational and dynamic downscaling analysis of a heavy rainfall event in Beijing, China during the 2008 Olympic Games [J]. Atmos. Sci. Lett., 17(6): 368−376. doi: 10.1002/ASL.667 [27] Li H Q, Cui X P, Zhang D L. 2017a. A statistical analysis of hourly heavy rainfall events over the Beijing metropolitan region during the warm seasons of 2007-2014 [J]. Int. J. Climatol., 37(11): 4027−4042. doi: 10.1002/joc.4983 [28] Li H Q, Cui X P, Zhang D L. 2017b. On the initiation of an isolated heavy-rain-producing storm near the central urban area of Beijing metropolitan region [J]. Mon. Wea. Rev., 145(1): 181−197. doi: 10.1175/MWR-D-16-0115.1 [29] Li H Q, Cui X P, Zhang D L. 2017c. Sensitivity of the initiation of an isolated thunderstorm over the Beijing metropolitan region to urbanization, terrain morphology and cold outflows [J]. Quart. J. Roy. Meteor. Soc., 143(709): 3153−3164. doi: 10.1002/qj.3169 [30] 李青春, 苗世光, 郑祚芳, 等. 2011. 北京局地暴雨过程中近地层辐合线的形成与作用 [J]. 高原气象, 30(5): 1232−1242.Li Qingchun, Miao Shiguang, Zheng Zuofang, et al. 2011. Formation and effect of surface convergence line in local rainstorm process of Beijing [J]. Plateau Meteorology (in Chinese), 30(5): 1232−1242. [31] 李琴, 崔晓鹏, 曹洁. 2014. 四川地区一次暴雨过程的观测分析与数值模拟 [J]. 大气科学, 38(6): 1095−1108. doi: 10.3878/j.issn.1006-9895.1401.13255Li Qin, Cui Xiaopeng, Cao Jie. 2014. Observational analysis and numerical simulation of a heavy rainfall event in Sichuan Province [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(6): 1095−1108. doi: 10.3878/j.issn.1006-9895.1401.13255 [32] 李琴, 杨帅, 崔晓鹏, 等. 2016. 四川暴雨过程动力因子指示意义与预报意义研究 [J]. 大气科学, 40(2): 341−356. doi: 10.3878/j.issn.1006-9895.1507.14296Li Qin, Yang Shuai, Cui Xiaopeng, et al. 2016. Diagnosis and forecasting of dynamical parameters for a heavy rainfall event in Sichuan Province [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(2): 341−356. doi: 10.3878/j.issn.1006-9895.1507.14296 [33] 刘圣楠, 崔晓鹏. 2018. “碧利斯”(2006)暴雨过程降水强度和降水效率分析 [J]. 大气科学, 42(1): 192−208. doi: 10.3878/j.issn.1006-9895.1704.17148Liu Shengnan, Cui Xiaopeng. 2018. Diagnostic analysis of rate and efficiency of torrential rainfall associated with Bilis (2006) [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(1): 192−208. doi: 10.3878/j.issn.1006-9895.1704.17148 [34] 卢萍, 宇如聪, 周天军. 2009. 四川盆地西部暴雨对初始水汽条件敏感性的模拟研究 [J]. 大气科学, 33(2): 241−250. doi: 10.3878/j.issn.1006-9895.2009.02.04Lu Ping, Yu Rucong, Zhou Tianjun. 2009. Numerical simulation on the sensitivity of heavy rainfall over the western Sichuan Basin to initial water vapor condition [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33(2): 241−250. doi: 10.3878/j.issn.1006-9895.2009.02.04 [35] 罗亚丽, 孙继松, 李英, 等. 2020. 中国暴雨的科学与预报: 改革开放40年研究成果 [J]. 气象学报, 78(3): 419−450. doi: 10.11676/qxxb2020.057Luo Yali, Sun Jisong, Li Ying, et al. 2020. Science and prediction of heavy rainfall over China: Research progress since the reform and opening-up of the People’s Republic of China [J]. Acta Meteorologica Sinica (in Chinese), 78(3): 419−450. doi: 10.11676/qxxb2020.057 [36] Miao S G, Chen F, LeMone M A, et al. 2009. An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing [J]. J. Appl. Meteor. Climatol., 48(3): 484−501. doi: 10.1175/2008JAMC1909.1 [37] Paul S, Ghosh S, Mathew M, et al. 2018. Increased spatial variability and intensification of extreme monsoon rainfall due to urbanization [J]. Sci. Rep., 8(1): 3918. doi: 10.1038/s41598-018-22322-9 [38] Pendergrass A G, Knutti R. 2018. The uneven nature of daily precipitation and its change [J]. Geophys. Res. Lett., 45(21): 11980−11988. doi: 10.1029/2018GL080298 [39] 钱维宏, 单晓龙, 朱亚芬. 2012. 天气尺度扰动流场对区域暴雨的指示能力 [J]. 地球物理学报, 55(5): 1513−1522. doi: 10.6038/j.issn.0001-5733.2012.05.008Qian Weihong, Shan Xiaolong, Zhu Yafen. 2012. Capability of regional-scale transient wind anomalies to indicate regional heavy rains [J]. Chinese Journal of Geophysics (in Chinese), 55(5): 1513−1522. doi: 10.6038/j.issn.0001-5733.2012.05.008 [40] 钱维宏, 蒋宁, 杜钧. 2016. 中国东部7类暴雨异常环流型 [J]. 气象, 42(6): 674−685. doi: 10.7519/j.issn.1000-0526.2016.06.003Qian Weihong, Jiang Ning, Du Jun. 2016. Seven anomalous synoptic patterns of regional heavy rain in eastern China [J]. Meteorological Monthly (in Chinese), 42(6): 674−685. doi: 10.7519/j.issn.1000-0526.2016.06.003 [41] 全美兰, 刘海文, 朱玉祥, 等. 2013. 高空急流在北京“7.21”暴雨中的动力作用 [J]. 气象学报, 71(6): 1012−1019. doi: 10.11676/qxxb2013.092Quan Meilan, Liu Haiwen, Zhu Yuxiang, et al. 2013. Study of the dynamic effects of the upper-level jet stream on the Beijing rainstorm of 21 July 2012 [J]. Acta Meteorologica Sinica (in Chinese), 71(6): 1012−1019. doi: 10.11676/qxxb2013.092 [42] Shen X Y, Zhang N, Li X F. 2011a. Effects of large-scale forcing and ice clouds on pre-summer heavy rainfall over southern China in June 2008: A partitioning analysis based on surface rainfall budget [J]. Atmos. Res., 101(1-2): 155−163. doi: 10.1016/j.atmosres.2011.02.001 [43] Shen X Y, Wang Y, Li X F. 2011b. Radiative effects of water clouds on rainfall responses to the large-scale forcing during pre-summer heavy rainfall over Southern China [J]. Atmos. Res., 99(1): 120−128. doi: 10.1016/j.atmosres.2010.09.011 [44] Shen X Y, Wang Y, Li X F. 2011c. Effects of vertical wind shear and cloud radiative processes on responses of rainfall to the large-scale forcing during pre-summer heavy rainfall over southern China [J]. Quart. J. Roy. Meteor. Soc., 137(654): 236−249. doi: 10.1002/qj.735 [45] Skamarock W C, Klemp J B, Dudhia J, et al. 2008. A description of the advanced research WRF version 3 [R]. NCAR Tech. Note NCAR/TN-475+STR. [46] Song X M, Zhang J Y, AghaKouchak A, et al. 2014. Rapid urbanization and changes in spatiotemporal characteristics of precipitation in Beijing metropolitan area [J]. J. Geophys. Res. :Atmos., 119(19): 11250−11271. doi: 10.1002/2014JD022084 [47] 孙继松. 2005a. 气流的垂直分布对地形雨落区的影响 [J]. 高原气象, 24(1): 62−69. doi: 10.3321/j.issn:1000-0534.2005.01.010Sun Jisong. 2005a. The effects of vertical distribution of the lower level flow on precipitation location [J]. Plateau Meteorology (in Chinese), 24(1): 62−69. doi: 10.3321/j.issn:1000-0534.2005.01.010 [48] 孙继松. 2005b. 北京地区夏季边界层急流的基本特征及形成机理研究 [J]. 大气科学, 29(3): 445−452. doi: 10.3878/j.issn.1006-9895.2005.03.12Sun Jisong. 2005b. A study of the basic features and mechanism of boundary layer jet in Beijing area [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 29(3): 445−452. doi: 10.3878/j.issn.1006-9895.2005.03.12 [49] 孙继松. 2014. 从天气动力学角度看云物理过程在降水预报中的作用 [J]. 气象, 40(1): 1−6. doi: 10.7519/j.issn.1000-0526.2014.01.001Sun Jisong. 2014. Role of cloud physics in precipitation forecasting by synoptic dynamics [J]. Meteorological Monthly (in Chinese), 40(1): 1−6. doi: 10.7519/j.issn.1000-0526.2014.01.001 [50] 孙建华, 张小玲, 齐琳琳, 等. 2004. 2002年中国暴雨试验期间一次低涡切变上发生发展的中尺度对流系统研究 [J]. 大气科学, 28(5): 675−691. doi: 10.3878/j.issn.1006-9895.2004.05.03Sun Jianhua, Zhang Xiaoling, Qi Linlin, et al. 2004. A study of vortex and its mesoscale convective system during China heavy rainfall experiment and study in 2002 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 28(5): 675−691. doi: 10.3878/j.issn.1006-9895.2004.05.03 [51] 孙继松, 雷蕾, 于波, 等. 2015. 近10年北京地区极端暴雨事件的基本特征 [J]. 气象学报, 73(4): 609−623. doi: 10.11676/qxxb2015.044Sun Jisong, Lei Lei, Yu Bo, et al. 2015. The fundamental features of the extreme severe rain events in the recent 10 years in the Beijing area [J]. Acta Meteorologica Sinica (in Chinese), 73(4): 609−623. doi: 10.11676/qxxb2015.044 [52] 陶诗言. 1980. 中国之暴雨[M]. 北京: 科学出版社, 225ppTao Shiyan. 1980. Rainstorm in China (in Chinese) [M]. Beijing: Science Press, 225pp. [53] Tao W K, Simpson J, Soong S T. 1987. Statistical properties of a cloud ensemble: A numerical study [J]. J. Atmos. Sci., 44(21): 3175−3187. doi:10.1175/1520-0469(1987)044<3175:SPOACE>2.0.CO;2 [54] 陶诗言, 倪允琪, 赵思雄, 等. 2001.1998年夏季中国暴雨的形成机理与预报研究[M]. 北京: 气象出版社, 184ppTao Shiyan, Ni Yunqi, Zhao Sixiong, et al. 2001. Study on the Formation Mechanism and Forecast of Rainstorm in China in the Summer of 1998 (in Chinese) [M]. Beijing: Meteorological Publishing House, 184pp. [55] Tompkins A M. 2000. The impact of dimensionality on long-term cloud–resolving model simulations [J]. Mon. Wea. Rev., 128(5): 1521−1535. doi:10.1175/1520-0493(2000)128<1521:TIODOL>2.0.CO;2 [56] 王晓慧, 崔晓鹏, 郝世峰. 2019a. 热带气旋“苏迪罗”(2015)海上活动时段降水物理过程模拟诊断研究 [J]. 大气科学, 43(2): 417−436. doi: 10.3878/j.issn.1006-9895.1804.18118Wang Xiaohui, Cui Xiaopeng, Hao Shifeng. 2019a. Diagnostic and numerical study on surface rainfall processes associated with tropical cyclone Soudelor (2015) over the ocean [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(2): 417−436. doi: 10.3878/j.issn.1006-9895.1804.18118 [57] 王晓慧, 崔晓鹏, 郝世峰, 等. 2019b. 热带气旋“苏迪罗”(2015)海上活动时段降水物理过程模拟诊断研究——海表温度敏感性试验 [J]. 大气科学, 43(5): 1125−1142. doi: 10.3878/j.issn.1006-9895.1812.18204Wang Xiaohui, Cui Xiaopeng, Hao Shifeng, et al. 2019b. A diagnostic and numerical study on surface rainfall process of tropical cyclone Soudelor (2015) over the ocean: Sensitivity experiments on precipitation response to sea surface temperature change [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(5): 1125−1142. doi: 10.3878/j.issn.1006-9895.1812.18204 [58] Wang Y P, Huang Y J, Cui X P. 2019. Surface rainfall processes during the genesis period of tropical cyclone durian (2001) [J]. Adv. Atmos. Sci., 36(4): 451−464. doi: 10.1007/s00376-018-8157-8 [59] 吴正华, 储锁龙. 1992. 北京泥石流暴雨基本特征 [J]. 大气科学, 16(4): 476−481. doi: 10.3878/j.issn.1006-9895.1992.04.10Wu Zhenghua, Chu Suolong. 1992. Basic characteristics of the rainstorm-producting mud–rock flow in Beijing area [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 16(4): 476−481. doi: 10.3878/j.issn.1006-9895.1992.04.10 [60] 吴国雄, 蔡雅萍, 唐晓菁. 1995. 湿位涡和倾斜涡度发展 [J]. 气象学报, 53(4): 387−405.Wu Guoxiong, Cai Yaping, Tang Xiaojing. 1995. Moist potential vorticity and slantwise vorticity development [J]. Acta Meteorologica Sinica (in Chinese), 53(4): 387−405. [61] Wu M W, Luo Y L, Chen F, et al. 2019. Observed link of extreme hourly precipitation changes to urbanization over coastal South China [J]. J. Appl. Meteor. Climatol., 58(8): 1799−1819. doi: 10.1175/JAMC-D-18-0284.1 [62] Xu F W, Xu X F, Cui X P, et al. 2013. Torrential rainfall responses to radiation and ice clouds over Jiang–Huai valley, China in July 2007 [J]. Asia-Pac. J. Atmos. Sci., 49(4): 401−407. doi: 10.1007/s13143-013-0037-7 [63] 薛一迪, 崔晓鹏. 2020. “威马逊”(1409)强降水物理过程模拟诊断研究 [J]. 大气科学, 44(6): 1320−1336. Xue Yidi, Cui Xiaopeng. 2020. Diagnostic and numerical study on physical process of strong rainfall associated with rammasun (1409) [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(6): 1320–1336. doi: 10.3878/j.issn.1006-9895.2003.19224 [64] 杨默远, 潘兴瑶, 邸苏闯. 2018. 北京“7·20”特大暴雨的时空多要素分析 [J]. 水文, 38(2): 85−92. doi: 10.3969/j.issn.1000-0852.2018.02.014Yang Moyuan, Pan Xingyao, Di Suchuang. 2018. Multi-factor analysis of torrential rain occurred in Beijing on July 20, 2016 [J]. Journal of China Hydrology (in Chinese), 38(2): 85−92. doi: 10.3969/j.issn.1000-0852.2018.02.014 [65] 郁淑华, 滕家谟, 何光碧. 1998. 高原地形对四川盆地西部突发性暴雨影响的数值试验 [J]. 大气科学, 22(3): 379−383. doi: 10.3878/j.issn.1006-9895.1998.03.14Yu Shuhua, Teng Jiamo, He Guangbi. 1998. The numerical experiment of plateau terrain influencing for a suddenly arising torrential rain in the west of Sichuan basin [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 22(3): 379−383. doi: 10.3878/j.issn.1006-9895.1998.03.14 [66] 张文龙, 崔晓鹏. 2012. 近50a华北暴雨研究主要进展 [J]. 暴雨灾害, 31(4): 384−391.Zhang Wenlong, Cui Xiaopeng. 2012. Main progress of torrential rain researches in North China during the past 50 years [J]. Torrential Rain and Disasters (in Chinese), 31(4): 384−391. [67] 张文龙, 王迎春, 崔晓鹏, 等. 2011. 北京地区干湿雷暴数值试验对比研究 [J]. 暴雨灾害, 30(3): 202−209. doi: 10.3969/j.issn.1004-9045.2011.03.002Zhang Wenlong, Wang Yingchun, Cui Xiaopeng, et al. 2011. Comparative analysis on numerical test between dry thunder storm and moist thunder storm in Beijing [J]. Torrential Rain and Disasters (in Chinese), 30(3): 202−209. doi: 10.3969/j.issn.1004-9045.2011.03.002 [68] 张文龙, 崔晓鹏, 王迎春, 等. 2013. 对流层低层偏东风对北京局地暴雨的作用 [J]. 大气科学, 37(4): 829−840. doi: 10.3878/j.issn.1006-9895.2012.12058Zhang Wenlong, Cui Xiaopeng, Wang Yingchun, et al. 2013. Roles of low-level easterly winds in the local torrential rains of Beijing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(4): 829−840. doi: 10.3878/j.issn.1006-9895.2012.12058 [69] 张文龙, 崔晓鹏, 黄荣. 2014. 复杂地形下北京雷暴新生地点变化的加密观测研究 [J]. 大气科学, 38(5): 825−837. doi: 10.3878/j.issn.1006-9895.1401.13102Zhang Wenlong, Cui Xiaopeng, Huang Rong. 2014. Intensive observational study on evolution of formation location of thunderstorms in Beijing under complex topographical conditions [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(5): 825−837. doi: 10.3878/j.issn.1006-9895.1401.13102 [70] 赵宇, 高守亭. 2008. 对流涡度矢量在暴雨诊断分析中的应用研究 [J]. 大气科学, 32(3): 444−456. doi: 10.3878/j.issn.1006-9895.2008.03.03Zhao Yu, Gao Shouting. 2008. Application of the convective vorticity vector to the analysis of a rainstorm [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(3): 444−456. doi: 10.3878/j.issn.1006-9895.2008.03.03 [71] 赵思雄, 陶祖钰, 孙建华, 等. 2004. 长江流域梅雨锋暴雨机理的分析研究[M]. 北京: 气象出版社, 281ppZhao Sixiong, Tao Zuyu, Sun Jianhua, et al. 2004. Study on the Mechanism of Meiyu Front Rainstorm in the Yangtze River Basin (in Chinese) [M]. Beijing: Meteorological Publishing House, 281pp. [72] Zhou F F, Cui X P. 2015. The adjoint sensitivity of heavy rainfall to initial conditions in debris flow areas in China [J]. Atmos. Sci. Lett., 16(4): 485−491. doi: 10.1002/asl.586 [73] 周玉淑, 刘璐, 朱科锋, 等. 2014. 北京“7.21”特大暴雨过程中尺度系统的模拟及演变特征分析 [J]. 大气科学, 38(5): 885–896. Zhou Yushu, Liu Lu, Zhu Kefeng, et al. 2014. Simulation and evolution characteristics of mesoscale systems occurring in Beijing on 21 July 2012 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(5): 885−896. doi: 10.3878/j.issn.1006-9895.2013.13185 [74] 朱乾根, 林锦瑞, 寿绍文, 等. 2000. 天气学原理和方法 [M]. 北京: 气象出版社.Zhu Qiangen, Lin Jinrui, Shou Shaowen, et al. 2000. Synoptic Principles and Methods (in Chinese) [M]. Beijing: Meteorological Publishing House. -