Aircraft Measurements of Summer Vertical Distributions of Aerosols and Transitions to Cloud Condensation Nuclei and Cloud Droplets in Central Northern China
-
摘要: 气溶胶的时空分布及其核化成云的转化过程是云降水物理研究的重点,也是气候变化中气溶胶间接效应关注的热点问题。利用2013~2014年期间在华北中部山西地区开展的9架次夏季晴天和积云天气情况下的气溶胶、云凝结核(CCN)及云滴数浓度观测资料,分析研究了气溶胶的垂直分布、谱分布、来源特征及其与云凝结核、云滴数浓度的转化关系。研究结果表明,大气边界层逆温层结对气溶胶、CCN垂直分布有重要影响,不同天气条件下气溶胶谱型在低层差异较大而高层基本一致;垂直方向上CCN数浓度与气溶胶数浓度有较好的相关性,过饱和度0.3%条件下CCN比率(云凝结核/凝结核)与气溶胶有效直径呈线性关系;积云云下气溶胶与云滴的线性拟合方程为y=1.3x−616.3,拟合相关系数为0.96,气溶胶转化为云滴的比率可达到47%。在过饱和度0.3%条件下,云下CCN与云滴的线性拟合方程为y=1.6x−473.8,拟合相关系数也为0.96,CCN转化为云滴的比率可达到69%。Abstract: Aerosols greatly influence the cloud’s microphysical properties and climate change by acting as cloud condensation nuclei (CCN). Properties of vertical distribution, size distribution, and source regions of aerosols, as well as their transition relationships with the CCN and cloud droplet number concentration, are investigated using nine flights of aircraft measurements under clear and cloudy conditions in Shanxi, central northern China. Results indicate that the atmospheric boundary inversion layer structure has an important impact on the vertical distributions of aerosols and CCN. Size distributions under different weather conditions are similar in the upper atmospheric layers but quite different in the lower layers. There is a high positive linear correlation between the aerosol number concentrations and CCN number concentrations at 0.3% supersaturation in the vertical. A linear regression of y=1.3x−616.3 is established between the cloud droplet number concentrations and aerosol number concentrations near cumulus cloud bases with a correlation coefficient of 0.96. Moreover, the conversion rate from aerosol number concentrations to cloud droplet number concentrations was about 47%. A good linear regression of y=1.6x−473.8 is also found between the CCN number concentrations and cloud droplet number concentrations near cumulus cloud bases with a correlation coefficient of 0.96 at 0.3% supersaturation. The conversion rate is found to be about 69%.
-
图 2 2013年8月3日(绿色)、4日(红色)和12日(蓝色)边界层逆温条件下气溶胶(a)数浓度Na(单位:cm−3)与(b)有效直径ED(单位:μm)的垂直分布及(c)温度、湿度廓线(实线为温度,虚线为相对湿度)
Figure 2. Vertical distributions of (a) number concentration (Na, units: cm−3), (b) effective diameter (ED, units: μm), and (c) profiles of temperature (solid lines) and relative humidity (dashed lines) with atmospheric inversion condition on 3 (green), 4 (red), and 12 (blue) August 2013
图 3 2013年8月30日(青色)、2014年8月11日(蓝色)和12日(粉色)边界层无逆温条件下(a)Na 与(b)ED的垂直分布及(c)温度、湿度廓线
Figure 3. Vertical distributions of (a) number concentration (Na, units: cm−3), (b) effective diameter (ED, units: μm), and (c) profiles of temperature (solid lines) and relative humidity (dashed lines) without atmospheric inversion condition on 30 August 2013 (cyan), 11 August 2014 (blue), and 12 August 2014 (pink)
图 5 2013年8月(a)3日、(b)4日、(c)12日、(d)30日以及2014年8月(e)11日、(f)12日观测期间太原不同高度72小时后向轨迹 红、蓝、绿、青色实线分别代表500 m、1200 m、2200 m、2700 m高度的后向轨迹。
Figure 5. Backward trajectories of air masses in Taiyuan station on (a) 3 August, (b) 4 August, (c) 12 August, (d) 30 August 2013, (e) 11 August 2014 and (f) 12 August 2014 The red, blue, green, and cyan solid lines represent the backward trajectories at 500 m, 1200 m, 2200 m, and 2700 m height, respectively.
图 6 2013年7月31日、8月3日、8月4日不同高度气溶胶粒子谱分布:(a)1200 m;(b)1500 m;(c)1800 m;(d)2500 m;(e)3100 m;(f)3700 m。图中N和D分别表示粒子的数浓度和直径
Figure 6. Aerosol particle size distributions at (a) 1200 m, (b) 1500 m, (c) 1800 m, (d) 2500 m, (e) 3100 m, and (f) 3700 m on July 31, August 3, August 4, 2013. N, D represent number concentration and diameter of particle, respectively.
表 1 不同高度气溶胶数浓度Na统计特征
Table 1. Statistical summary of number concentration (Na) at different heights in each flight
边界层状况 日期 Na/cm−3 地面至1500 m 1500~3000 m 3000 m以上 平均值 最大值 平均值 最大值 平均值 最大值 逆温 2013年8月3日 2926 4257 647 972 331 538 2013年8月4日 3099 4416 603 1324 558 947 2013年8月12日 3542 5541 1173 2663 930 1626 逆温三日平均 3189 4738 807 1653 606 1037 无逆温 2013年8月30日 689 785 690 1271 142 490 2014年8月11日 1522 1725 512 1110 544 761 2014年8月12日 2318 3158 1431 2026 705 1116 无逆温三日平均 1509 1889 877 1469 463 789 表 2 不同高度气溶胶有效直径(ED)统计特征
Table 2. Statistical summary of effective diameter (ED) at different heights in each flight
边界层状况 日期 ED/μm 地面至1500 m 1500~3000 m 3000 m以上 平均值 最大值 平均值 最大值 平均值 最大值 逆温 2013年8月3日 0.4 0.45 0.43 0.76 0.69 0.86 2013年8月4日 0.39 0.46 0.44 0.74 0.45 0.88 2013年8月12日 0.3 0.35 0.38 0.62 0.45 0.93 逆温三日平均 0.36 0.42 0.42 0.71 0.53 0.89 无逆温 2013年8月30日 0.43 0.53 0.34 0.5 0.29 0.46 2014年8月11日 0.57 0.71 0.4 0.68 0.35 0.47 2014年8月12日 0.35 0.45 0.3 0.35 0.31 0.39 无逆温三日平均 0.39 0.46 0.44 0.74 0.45 0.88 表 3 不同高度CCN数浓度(NCCN;过饱和度为0.3%)统计特征
Table 3. Statistical summary of the CCN number concentration (NCCN)at 0.3% supersaturation at different heights in each case
边界层状况 日期 NCCN /cm−3 地面至1500 m 1500~3000 m 3000 m以上 平均值 最大值 平均值 最大值 平均值 最大值 逆温 2013年8月3日 1682 2161 425 537 387 467 2013年8月4日 2046 2771 390 699 368 400 2013年8月12日 2249 3038 1015 2121 670 819 逆温三日平均 1992 2656 610 1119 475 562 无逆温 2013年8月30日 515 722 403 573 124 383 2014年8月12日 1866 2931 1000 1198 596 789 无逆温两日平均 1190 1826 701 885 360 586 表 4 垂直探测过程中不同日期气溶胶数浓度与CCN数浓度的决定系数及气溶胶有效直径的统计特征
Table 4. Statistical properties for the correlation coefficient values between the CCN number concentration, Na, and ED
日期 决定系数R2 平均有效直径/μm 2013年8月3日 0.91 0.51 2013年8月4日 0.96 0.45 2013年8月12日 0.8 0.37 2013年8月30日 0.82 0.35 2014年8月12日 0.89 0.32 表 5 CCN活化谱拟合参数值
Table 5. Parameters of CCN Spectrum
日期 位置 拟合参数 R2 类型 C K 2014年7月15日 空中云外 1970 2.1 0.99 过渡型 2014年7月19日 空中云底之下200 m 679 0.61 0.84 清洁大陆型 2008年10月17日 地面 20393 0.86 大陆型 -
[1] 蔡兆鑫, 蔡淼, 李培仁, 等. 2019. 大陆性积云不同发展阶段宏观和微观物理特性的飞机观测研究 [J]. 大气科学, 43(6): 1191−1203. doi: 10.3878/j.issn.1006-9895.1903.19113Cai Zhaoxin, Cai Miao, Li Peiren, et al. 2019. Aircraft observation research on macro and microphysics characteristics of continental cumulus cloud at different development stages [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(6): 1191−1203. doi: 10.3878/j.issn.1006-9895.1903.19113 [2] 蔡兆鑫, 蔡淼, 李培仁, 等. 2021. 华北地区一次气溶胶与浅积云微物理特性的飞机观测研究 [J]. 大气科学, 45(2): 393−406. doi: 10.3878/j.issn.1006-9895.2012.20162Cai Zhaoxin, Cai Miao, Li Peiren, et al. 2021. An in-situ case study on micro physical properties of aerosol and shallow cumulus clouds in North China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(2): 393−406. doi: 10.3878/j.issn.1006-9895.2012.20162 [3] 陈鹏飞, 张蔷, 权建农, 等. 2012. 北京上空气溶胶浓度垂直廓线特征 [J]. 环境科学研究, 25(11): 1215−1221. doi: 10.13198/j.res.2012.11.29.chenpf.010Chen Pengfei, Zhang Qiang, Quan Jiannong, et al. 2012. Vertical profiles of aerosol concentration in Beijing [J]. Research of Environmental Sciences (in Chinese), 25(11): 1215−1221. doi: 10.13198/j.res.2012.11.29.chenpf.010 [4] Chuang P Y, Collins D R, Pawlowska H, et al. 2000. CCN measurements during ACE-2 and their relationship to cloud microphysical properties [J]. Tellus B, 52(2): 843−867. doi: 10.1034/j.1600-0889.2000.00018.x [5] Deng Z Z, Zhao C S, Zhang Q, et al. 2009. Statistical analysis of microphysical properties and the parameterization of effective radius of warm clouds in Beijing area [J]. Atmospheric Research, 93(4): 888−896. doi: 10.1016/j.atmosres.2009.04.011 [6] 董晓波, 麦榕, 王红磊, 等. 2021. 石家庄一次沙尘大气污染物与边界层相互作用 [J]. 中国环境科学, 41(3): 1024−1033. doi: 10.3969/j.issn.1000-6923.2021.03.004Dong Xiaobo, Mai Rong, Wang Honglei, et al. 2021. An interaction study between atmospheric pollutants and boundary layer during a dust storm weather in Shijiazhuang [J]. China Environmental Science (in Chinese), 41(3): 1024−1033. doi: 10.3969/j.issn.1000-6923.2021.03.004 [7] 段婧, 楼小凤, 陈勇, 等. 2019. 基于航测的珠三角气溶胶垂直分布及活化特性 [J]. 应用气象学报, 30(6): 677−689. doi: 10.11898/1001-7313.20190604Duan Jing, Lou Xiaofeng, Chen Yong, et al. 2019. Aircraft measurements of aerosol vertical distributions and its activation efficiency over the Pearl River Delta [J]. Journal of Applied Meteorological Science (in Chinese), 30(6): 677−689. doi: 10.11898/1001-7313.20190604 [8] 范烨, 郭学良, 付丹红, 等. 2007. 北京及周边地区2004年8、9月间大气气溶胶分布特征观测分析 [J]. 气候与环境研究, 12(1): 49−62. doi: 10.3969/j.issn.1006-9585.2007.01.006Fan Ye, Guo Xueliang, Fu Danhong, et al. 2007. Observational studies on aerosol distribution during august to September in 2004 over Beijing and its surrounding areas [J]. Climatic and Environmental Research (in Chinese), 12(1): 49−62. doi: 10.3969/j.issn.1006-9585.2007.01.006 [9] 封秋娟, 李培仁, 樊明月, 等. 2012. 华北部分地区云凝结核的观测分析 [J]. 大气科学学报, 35(5): 533−540. doi: 10.3969/j.issn.1674-7097.2012.05.003Feng Qiujuan Li Peiren, Fan Mingyue, et al. 2012. Observational analysis of cloud condensation nuclei in some regions of North China [J]. Transactions of Atmospheric Sciences (in Chinese), 35(5): 533−540. doi: 10.3969/j.issn.1674-7097.2012.05.003 [10] Fitzgerald J W. 1973. Dependence of the supersaturation spectrum of CCN on aerosol size distribution and composition [J]. J. Atmos. Sci., 30(4): 628−634. doi: 10.1175/1520-0469(1973)030<0628:DOTSSO>2.0.CO;2 [11] Gunn R, Phillips B B. 1957. An experimental investigation of the effect of air pollution on the initiation of rain [J]. J. Atmos. Sci., 14(3): 272−280. doi: 10.1175/1520-0469(1957)014<0272:AEIOTE>2.0.CO;2 [12] 郝囝, 陈景华, 濮梅娟, 等. 2019. 华东地区夏季云微物理结构的飞机观测分析 [J]. 气象科学, 39(4): 524−531. doi: 10.3969/2018jms.0024Hao J, Chen J H, Pu M J, et al. 2019. Aircraft measurements of microphysical properties of clouds over eastern China in summer [J]. Journal of the Meteorological Sciences (in Chinese), 39(4): 524−531. doi: 10.3969/2018jms.0024 [13] Hudson J G. 1993. Cloud condensation nuclei [J]. J. Appl. Meteor. Climatol., 32(4): 596−607. doi: 10.1175/1520-0450(1993)032<0596:CCN>2.0.CO;2 [14] IPCC. 2007. Climate change 2007: The physical science basis [M]//Solomon S, Qin D, Manning M, et al, Eds. Contribution of Working Group I to the Fourth Assessment Report on the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 145pp. [15] Kuwata M, Kondo Y, Miyazaki Y, et al. 2008. Cloud condensation nuclei activity at Jeju Island, Korea in spring 2005 [J]. Atmos. Chem. Phys. (in Chinese), 8(11): 2933−2948. doi: 10.5194/acp-8-2933-2008 [16] 李军霞, 李培仁, 陶玥, 等. 2014. 山西春季层状云系数值模拟及与飞机探测对比 [J]. 应用气象学报, 25(1): 22−32. doi: 10.11898/1001-7313.20140103Li Junxia, Li Peiren, Tao Yue, et al. 2014. Numerical simulation and flight observation of stratiform precipitation clouds in spring of Shanxi Province [J]. J. Appl. Meteor. Sci. (in Chinese), 25(1): 22−32. doi: 10.11898/1001-7313.20140103 [17] Li J X, Yin Y, Li P R, et al. 2015. Aircraft measurements of the vertical distribution and activation property of aerosol particles over the Loess Plateau in China [J]. Atmospheric Research (in Chinese), 155: 73−86. doi: 10.1016/j.atmosres.2014.12.004 [18] 卢广献, 郭学良. 2012. 环北京春季大气气溶胶分布、来源及其与CCN转化关系的飞机探测 [J]. 科学通报, 57(15): 1334–1344.Lu Guangxian, Guo Xueliang. 2012. Distribution and origin of aerosol and its transform relationship with CCN derived from the spring multi-aircraft measurements of Beijing Cloud Experiment (BCE) [J]. Chinese Sci. Bull. (in Chinese), 57(19): 2460–2469. [19] 马新成, 毕凯, 田海军, 等. 2016. 北京地区沙尘天气气溶胶飞机观测特征 [J]. 气象科技, 44(1): 95−103. doi: 10.3969/j.issn.1671-6345.2016.01.015Ma Xincheng, Bi Kai, Tian Haijun, et al. 2016. Aircraft measurements of aerosol characteristics during dust evens in Bejing [J]. Meteorological Science and Technology (in Chinese), 44(1): 95−103. doi: 10.3969/j.issn.1671-6345.2016.01.015 [20] O'Dowd C D, Lowe J A, Smith M H, et al. 1999. The relative importance of non-sea-salt sulphate and sea–salt aerosol to the marine cloud condensation nuclei population: An improved multi-component aerosol-cloud droplet parametrization [J]. Quart. J. Roy. Meteor. Soc., 125(556): 1295−1313. doi: 10.1002/qj.1999.49712555610 [21] 庞朝云, 张丰伟, 张建辉, 等. 2016. 甘肃夏季不同天气系统层状云的微物理结构特征 [J]. 兰州大学学报(自然科学版), 52(2): 227−234. doi: 10.13885/j.issn.0455-2059.2016.02.011Pang Zhaoyun, Zhang Fengwei, Zhang Jianhui, et al. 2016. The microphysical structure of stratiform cloud in different weather systems in Gansu in summer [J]. Journal of Lanzhou University (Natural Sciences) (in Chinese), 52(2): 227−234. doi: 10.13885/j.issn.0455-2059.2016.02.011 [22] Ramanathan V, Crutzen P J, Kiehl J T, et al. 2001a. Aerosols, climate, and the hydrological cycle [J]. Science, 294(5549): 2119−2124. doi: 10.1126/science.1064034 [23] Ramanathan V, Crutzen P J, Lelieveld J, et al. 2001b. Indian ocean experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze [J]. J. Geophys. Res., 106(D22): 28371−28398. doi: 10.1029/2001JD900133 [24] Rosenfeld D. 1999. TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall [J]. Geophys. Res. Lett., 26(20): 3105−3108. doi: 10.1029/1999GL006066 [25] Rosenfeld D. 2000. Suppression of rain and snow by urban and industrial air pollution [J]. Science, 287(5459): 1793−1796. doi: 10.1126/science.287.5459.1793 [26] 石立新, 段英. 2007. 华北地区云凝结核的观测研究 [J]. 气象学报, 65(4): 644−652. doi: 10.3321/j.issn:0577-6619.2007.04.016Shi Lixin, Duan Ying. 2007. Observations of cloud condensation nuclei in North China [J]. Acta Meteorologica Sinica (in Chinese), 65(4): 644−652. doi: 10.3321/j.issn:0577-6619.2007.04.016 [27] Snider J R, Brenguier J L. 2000. Cloud condensation nuclei and cloud droplet measurements during ACE-2 [J]. Tellus B, 52(2): 828−842. doi: 10.1034/j.1600-0889.2000.00044.x [28] Squires P. 1958. The microstructure and colloidal stability of warm clouds [J]. Tellus, 10(2): 262−271. doi: 10.3402/tellusa.v10i2.9228 [29] Squires P, Twomey S. 1960. The relation between cloud droplet spectra and the spectrum of cloud nuclei [C]//Physics of Precipitation: Proceedings of the Cloud Physics Conference, Woods Hole, Massachusetts. Washington: American Geophysical Union, 211–219. [30] 孙霞, 银燕, 孙玉稳, 等. 2011. 石家庄地区春季晴、霾天气溶胶观测研究 [J]. 中国环境科学, 31(5): 705−713.Sun Xia, Yin Yan, Sun Yuwen, et al. 2011. An observational study of aerosol particles tlsing aircroft over Shijiazhuang Area in clean and hazy days during spring [J]. China Environmental Science (in Chinese), 31(5): 705−713. [31] Terliuc B, Gagin A. 1971. Cloud condensation nuclei and their possible influence on precipitation [J]. J. Appl. Meteor. Climatol., 10(3): 474−481. doi: 10.1175/1520-0450(1971)010<0474:CCNATP>2.0.CO;2 [32] Warner J. 1968. A reduction in rainfall associated with smoke from sugar-cane fires–An inadvertent weather modification? [J]. J. Appl. Meteor. Climatol., 7(2): 247−251. doi: 10.1175/1520-0450(1968)007<0247:ARIRAW>2.0.CO;2 [33] Warner J, Twomey S. 1967. The production of cloud nuclei by cane fires and the effect on cloud droplet concentration [J]. J. Atmos. Sci., 24(6): 704−706. doi: 10.1175/1520-0469(1967)024<0704:TPOCNB>2.0.CO;2 [34] Yang J M, Li J X, Li P R, et al. 2020. Spatial distribution and impacts of aerosols on clouds under Meiyu frontal weather background over Central China based on aircraft observations [J]. J. Geophys. Res., 125(15): e2019JD031915. doi: 10.1029/2019JD031915 [35] 杨怡曼, 周毓荃, 蔡兆鑫. 2020. 气溶胶垂直分布及活化特性的飞机观测个例研究 [J]. 气象, 46(9): 1199−1209. doi: 10.7519/j.issn.1000-0526.2020.09.007Yang Yiman, Zhou Yuquan, Cai Zhaoxin. 2020. A case study of aircraft observation of aerosol vertical distribution and activation characteristics [J]. Meteorological Monthly (in Chinese), 46(9): 1199−1209. doi: 10.7519/j.issn.1000-0526.2020.09.007 [36] Zhang Q, Zhao C S, Tie X X, et al. 2006. Characterizations of aerosols over the Beijing region: A case study of aircraft measurements [J]. Atmos. Environ., 40(24): 4513−4527. doi: 10.1016/j.atmosenv.2006.04.032 [37] Zhang Q, Quan J N, Tie X X, et al. 2011. Impact of aerosol particles on cloud formation: Aircraft measurements in China [J]. Atmos. Environ., 45(3): 665−672. doi: 10.1016/j.atmosenv.2010.10.025 [38] 张瑜, 银燕, 石立新, 等. 2011. 河北地区秋季气溶胶飞机探测资料分析 [J]. 气象科学, 31(6): 755−762. doi: 10.3969/j.issn.1009-0827.2011.06.013Zhang Yu, Yin Yan, Shi Lixin, et al. 2011. An observational study of the aerosol distributions over Hebei area during autumn [J]. Journal of the Meteorological Sciences (in Chinese), 31(6): 755−762. doi: 10.3969/j.issn.1009-0827.2011.06.013 -