高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2020年江淮流域超强梅雨年际异常的驱动因子分析

赵俊虎 张涵 左金清 熊开国 陈丽娟

赵俊虎, 张涵, 左金清, 等. 2021. 2020年江淮流域超强梅雨年际异常的驱动因子分析[J]. 大气科学, 45(X): 1−18 doi: 10.3878/j.issn.1006-9895.2104.21011
引用本文: 赵俊虎, 张涵, 左金清, 等. 2021. 2020年江淮流域超强梅雨年际异常的驱动因子分析[J]. 大气科学, 45(X): 1−18 doi: 10.3878/j.issn.1006-9895.2104.21011
ZHAO Junhu, ZHANG Han, ZUO Jinqing, et al. 2021. What Drives the Super Strong Precipitation over the Yangtze–Huaihe River Basin in the Meiyu Period of 2020? [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(X): 1−18 doi: 10.3878/j.issn.1006-9895.2104.21011
Citation: ZHAO Junhu, ZHANG Han, ZUO Jinqing, et al. 2021. What Drives the Super Strong Precipitation over the Yangtze–Huaihe River Basin in the Meiyu Period of 2020? [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(X): 1−18 doi: 10.3878/j.issn.1006-9895.2104.21011

2020年江淮流域超强梅雨年际异常的驱动因子分析

doi: 10.3878/j.issn.1006-9895.2104.21011
基金项目: 国家重点研发计划项目2018YFC1506000,国家自然科学基金项目42075017、41975102、41875093、41805061,2021年中国气象局创新发展专项CXFZ2021Z033
详细信息
    作者简介:

    赵俊虎,男,1985年出生,高级工程师,主要从事短期气候预测研究.E-mail:zhaojh@cma.gov.cn

    通讯作者:

    陈丽娟,E-mail: chenlj@cma.gov.cn

  • 中图分类号: P461

What Drives the Super Strong Precipitation over the Yangtze–Huaihe River Basin in the Meiyu Period of 2020?

Funds: Funded by The National Key Research and Development Program on Monitoring (Grant 2018YFC1506000), National Natural Science Foundation of China (NSFC) (Grants 42075017, 41975102, 41875093, 41805061), Innovative Development Special Project of China Meteorological Administration in 2021 (Grant CXFZ2021Z033)
  • 摘要: 利用观测诊断和数值模拟相结合的方法,研究了2020年江淮流域6~7月超强梅雨年际异常的环流特征和驱动因子。结果表明:(1)2020年梅雨期长度和江淮流域总降水量均为1961年以来第一位,超强梅雨主要与西北太平洋异常反气旋(WNPAC)的异常偏强和异常西伸有关,WNPAC为江淮流域梅雨期持续的强降水提供了充沛的水汽来源;(2)2019年11月~2020年3月,赤道中东太平洋发生一次弱的中部型El Niño事件,本次事件持续时间短、强度偏弱,不足以激发和维持2020年梅雨期异常偏强的WNPAC,而春、夏季热带印度洋和热带北大西洋海温异常持续偏暖是WNPAC异常偏强和西伸的主要驱动因子;(3)热带印度洋暖海温在其东部的西太平洋激发出大气Kelvin波响应,造成了纬向风变化的不均匀分布,通过埃克曼抽吸,抑制了局地对流活动,驱动了WNPAC的生成;而热带北大西洋暖海温则引起局地对流活动增强,导致热带北大西洋上空上升运动和热带中部太平洋下沉运动增强,在西北太平洋上空激发异常的低空反气旋;热带印度洋和热带北大西洋暖海温对2020年6~7月WNPAC异常偏强均有显著的正贡献。
  • 图  1  2020年6~7月(a)累计降水量(单位:mm)和(b)降水距平百分率的空间分布,(c)1961~2020年6~7月江淮流域区域平均降水量的标准化序列

    Figure  1.  (a) Accumulated precipitation (units: mm) and (b) precipitation anomalies in June−July 2020, (c) standardized time series of regionally averaged rainfall in the Yangtze–Huaihe River basin (YHRB)

    图  2  2020年6~7月(a)日降水量大于10 mm的日数及其(b)距平的空间分布,(c)1961~2020年6~7月江淮流域区域平均不同量级日降水量日数的时间序列

    Figure  2.  (a) Spatial distribution of the rainy days with precipitation ≥ 10 mm d−1; (b) their anomalies in June−July 2020; (c) time series of rainy days with precipitation more than 10, 25, and 50 mm d−1. Contours in (a) denote 20 days

    图  3  2020年6~7月平均的大气环流场:(a)500 hPa位势高度场(等值线,单位:gpm)及其距平场(阴影),蓝色等值线表示气候平均的5880 gpm等值线;(b)850 hPa风场(矢量箭头,单位:m s−1)和流函数距平(阴影,单位:105 m2 s−1);(c)整层水汽通量(矢量箭头,单位:kg m−1 s−1)和散度距平(阴影,单位:10−5 kg m−1 s−1

    Figure  3.  Atmospheric circulation patterns in June−July 2020: (a) 500 hPa geopotential height (contour; units: gpm) and anomalies (shading), the blue contour indicates the climate mean 5880 gpm; (b) horizontal wind (UV850, vector; units: m s−1) and stream function (shading; units:105 m2 s−1) anomalies at 850 hPa; (c) the anomalies of vertically integrated (surface to 300 mb) water vapor flux (vectors; kg m−1 s−1) and water vapor divergence (shadings; 10−5 kg m−1 s−1)

    图  4  同图3,但为1979~2020年6~7月江淮流域区域平均降水量标准化指数回归的大气环流距平场,打点区和蓝色箭头均表示达到95%的置信水平

    Figure  4.  Same as in Fig. 3, but for the simultaneous regressions of the atmospheric circulation anomalies against the June−JulyYHRBRI during 1979–2020. The dots and blue vectors indicate significance at the 95% confidence level

    图  5  1979~2020年6~7月江淮流域平均降水量(YHRBRI)(灰色柱状)、同期西太副高(WNPSH)强度和西北太平洋反气旋(WNPAC)强度三者标准化指数时间序列。括号里面数字为降水量与环流指数的相关系数, *表示99%的置信水平

    Figure  5.  Normalized time series of the YHRBRI (gray bars), the western North Pacific Subtropical High (WNPSH) index (solid blue box), and the western North Pacific anomalous anticyclone (WNPAC) index (red dotted line) in June−July from 1979 to 2020. Numbers in brackets denote the correlation coefficient with the YHRBRI. * indicates significance at the 99% confidence level.

    图  6  2020年(a)前冬、(b)春季和(c)6~7月SST距平(单位:°C),

    Figure  6.  SST anomalies (units: °C) in (a) previous winter (December–February, DJF), (b) March−May (MAM), and (c) June–July (JJ) of 2020

    图  7  2018年9月至2020年8月Niño3.4指数、3个月滑动平均的Niño3.4指数、TIO指数和TNA指数(单位:°C)时间序列

    Figure  7.  Time series of the Niño 3.4 index, 3-month Niño3.4 index, TIO (tropical Indian Ocean) index, and TNA (tropical northern Atlantic) index (units: °C) from September 2018 to August 2020

    图  8  1979~2020年6~7月平均的WNPAC强度指数回归的SST距平(单位:°C):(a)前冬;(b)春季;(c)6~7月。网格区表示达到95%的置信水平

    Figure  8.  Regressions of SST anomalies (units: °C) in (a) DJF, (b) MAM, and (c) JJ against the JJ WNPAC index for the period 1979–2020. Cross-hatching denotes significance at the 95% confidence level

    图  9  1979~2020年6~7月WNPAC指数与Niño 3.4指数、TIO指数、和TNA指数的超前滞后相关。粗线和圆点分别表示达到99%和99.9%的置信水平

    Figure  9.  Lead–lag correlations of the JJ WNPAC with the Niño 3.4, TIO, and TNA indices for the period 1979–2020. Bold lines and dot lines indicate the 99% and 99.9% confidence levels, respectively

    图  10  1979~2020年海温指数和6~7月标准化WNPAC指数的散点图:(a)前冬Niño3.4指数;(b)5~7月平均的TIO指数;(c)5~7月平均的TNA指数。紫色方框表示El Niño衰减年夏季,粉色圆点表示2020年,黑色方块表示其他年份,红线表示线性拟合;右下角数字表示相关系数,括号中数字为与Niño3.4指数的偏相关

    Figure  10.  Scatter plots of the normalized index of JJ WNPAC and (a) DJF Niño 3.4 index, (b) MJJ TIO index, and (c) MJJ TNA index during 1979–2020. The purple boxes represent the El Niño decay years, the pink dot represents 2020, black squares indicate other years, and the red line represents linear fitting. The number in the lower right corner represents the correlation coefficient between WNPAC and SST index, and the number in braces represents the partial correlation with Niño 3.4 index

    图  11  2020年6~7月平均的(a)850 hPa、(b)200 hPa速度势距平(阴影,单位:106 m2 s−1)和辐散风距平(箭头,单位:m s−1

    Figure  11.  Velocity potential (shadings, units: 106 m2 s−1) and divergent wind (vectors, units: m s−1) anomalies at (a) 850 hPa and (b) 200 hPa in JJ of 2020

    图  12  热带印度洋海温强迫的2020年6~7月平均(a)降水距平(单位:mm d−1),(b)850 hPa风场(矢量箭头,单位:m s−1)和流函数(阴影,单位:105 m2 s−1)距平。(a)中圆点和(b)中蓝色箭头均表示达到95%的置信水平

    Figure  12.  (a) Precipitation anomalies (units: mm d−1) and (b) horizontal wind (vector; units: m s−1) and stream function anomalies (shading; units:105 m2 s−1) at 850 hPa averaged during JJ in response to the TIO SSTA forcing in 2020. Dots in (a) and blue vectors in (b) represent significance at the 95% confidence level.

    图  13  热带北大西洋海温强迫的2020年6~7月平均(a)降水距平(单位:mm d−1),(b)850 hPa风场(矢量箭头,单位:m s−1)和流函数(阴影,单位:105 m2 s−1)异常,(c)850 hPa和(d)200 hPa速度势(单位:106 m2 s−1)异常,其他同图12

    Figure  13.  (a) Precipitation anomalies (units: mm d−1) and (b) horizontal wind (vector; unit: m s−1) and stream function anomalies (shading; units: 105 m2 s−1) at 850 hPa, velocity potential anomalies (units: 106 m2 s−1) at (c) 850 hPa and (d) 200 hPa averaged during JJ in response to the TNA SSTA forcing in 2020. Others are the same as in Fig. 12

    图  14  2020年6~7月江淮流域超强梅雨形成的驱动因子及物理过程示意图

    Figure  14.  Schematic diagram describing what drives the super strong precipitation over the Yangtze–Huaihe valley in the Meiyu period of 2020

    表  1  表1数值试验方案设计

    Table  1.   Scheme design for the numerical experiments

    名称下边界强迫强迫区域
    控制试验气候态的观测海温和海冰全球
    TIO20202020年5~7月观测海温热带印度洋(20°S~20°N, 40°~120°E)
    TNA20202020年5~7月观测海温热带北大西洋(0°~20°N, 70°W~0°)
    下载: 导出CSV
  • [1] Akiyama T. 1984. A medium-scale cloud cluster in a Baiu front: Part I: Evolution process and fine structure [J]. J. Meteor. Soc. Japan, 62(3): 485−504. doi: 10.2151/jmsj1965.62.3_485
    [2] Cai W J, Wu L X, Lengaigne M, et al. 2019. Pantropical climate interactions [J]. Science, 363(6430): eaav4236. doi: 10.1126/science.aav4236
    [3] Chang C P, Zhang Y S, Li T. 2000. Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge [J]. J. Climate, 13(24): 4310−4325. doi:10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2
    [4] 陈烈庭. 2001. 青藏高原异常雪盖和ENSO在1998年长江流域洪涝中的作用 [J]. 大气科学, 25(2): 184−192. doi: 10.3878/j.issn.1006-9895.2001.02.04

    Chen Lieting. 2001. The role of the anomalous snow cover over the Qinghai–Xizang Plateau and ENSO in the great floods of 1998 in the Changjiang River valley [J]. Chinese Journal of Atmospheric Sciences, 25(2): 184−192. doi: 10.3878/j.issn.1006-9895.2001.02.04
    [5] 陈丽娟, 袁媛, 杨明珠, 等. 2013. 海温异常对东亚夏季风影响机理的研究进展 [J]. 应用气象学报, 24(5): 521−532. doi: 10.3969/j.issn.1001-7313.2013.05.002

    Chen Lijuan, Yuan Yuan, Yang Mingzhu, et al. 2013. A review of physical mechanisms of the global SSTA impact on EASM [J]. J. Appl. Meteor. Sci., 24(5): 521−532. doi: 10.3969/j.issn.1001-7313.2013.05.002
    [6] Chen L J, Gu W, Li W J. 2019. Why is the East Asian summer monsoon extremely strong in 2018? — Collaborative effects of SST and snow cover anomalies [J]. J. Meteor. Res., 33(4): 593−608. doi: 10.1007/s13351-019-8200-4
    [7] 陈涛, 张芳华, 于超, 等. 2020. 2020年6~7月长江中下游极端梅雨天气特征分析 [J]. 气象, 46(11): 1415−1426. doi: 10.7519/j.issn.1000-0526.2020.11.003

    Chen Tao, Zhang Fanghua, Yu Chao, et al. 2020. Synoptic analysis of extreme Meiyu precipitation over Yangtze River basin during June–July 2020 [J]. Meteor. Mon., 46(11): 1415−1426. doi: 10.7519/j.issn.1000-0526.2020.11.003
    [8] Chung P H, Sui C H, Li T. 2011. Interannual relationships between the tropical sea surface temperature and summertime subtropical anticyclone over the western North Pacific [J]. J. Geophys. Res., 116(D13): D13111. doi: 10.1029/2010JD015554
    [9] 丁一汇, 柳俊杰, 孙颖, 等. 2007. 东亚梅雨系统的天气—气候学研究 [J]. 大气科学, 31(6): 1082−1101. doi: 10.3878/j.issn.1006-9895.2007.06.05

    Ding Yihui, Liu Junjie, Sun Ying, et al. 2007. A study of the synoptic–climatology of the Meiyu system in East Asia [J]. Chinese Journal of Atmospheric Sciences, 31(6): 1082−1101. doi: 10.3878/j.issn.1006-9895.2007.06.05
    [10] Ding Y H, Liang P, Liu Y J, et al. 2020. Multiscale variability of Meiyu and its prediction: A new review [J]. J. Geophys. Res., 125(7): e2019JD031496. doi: 10.1029/2019JD031496
    [11] Ding Y H, Liu Y Y, Hu Z Z. 2021. The record-breaking Meiyu in 2020 and associated atmospheric circulation and tropical SST anomalies [J]. Adv. Atmos. Sci. ,https://doi.org/10.1007/s00376-021-0361-2.
    [12] 段安民, 肖志祥, 王子谦. 2018. 青藏高原冬春积雪和地表热源影响亚洲夏季风的研究进展 [J]. 大气科学, 42(4): 755−766. doi: 10.3878/j.issn.1006-9895.1801.17247

    Duan Anmin, Xiao Zhixiang, Wang Ziqian. 2018. Impacts of the Tibetan Plateau winter/spring snow depth and surface heat source on Asian summer monsoon: A review [J]. Chinese Journal of Atmospheric Sciences, 42(4): 755−766. doi: 10.3878/j.issn.1006-9895.1801.17247
    [13] 段欣妤, 薛峰, 郑飞. 2020. El Niño衰减年夏季西太平洋副热带高压的季节内变化 [J]. 大气科学, 44(6): 1364−1376. doi: 10.3878/j.issn.1006-9895.2005.19196

    Duan Xinyu, Xue Feng, Zheng Fei. 2020. Intraseasonal variation of the western Pacific subtropical high during the El Niño decaying summers [J]. Chinese Journal of Atmospheric Sciences, 44(6): 1364−1376. doi: 10.3878/j.issn.1006-9895.2005.19196
    [14] 范可. 2006. 南半球环流异常与长江中下游夏季旱涝的关系 [J]. 地球物理学报, 49(3): 672−679. doi: 10.3321/j.issn:0001-5733.2006.03.009

    Fan Ke. 2006. Atmospheric circulation anomalies in the southern Hemisphere and summer rainfall over Yangtze River valley [J]. Chinese J. Geophys., 49(3): 672−679. doi: 10.3321/j.issn:0001-5733.2006.03.009
    [15] 封国林, 赵俊虎, 杨杰, 等. 2015. 中国汛期降水动力—统计预测研究. 北京: 科学出版社, 1–330. Feng Guolin, Zhao Junhu, Yang Jie, et al. 2015. The Study on Dynamical and Statistical Prediction on Summer Precipitation over China. Beijing: Science Press, 1–330. 何金海, 吴志伟, 江志红, 等. 2006. 东北冷涡的"气候效应"及其对梅雨的影响 [J]. 科学通报, 51(23): 671−679. doi: 10.3321/j.issn:0023-074X.2006.23.016
    [16] Hong C C, Chang T C, Hsu H H. 2014. Enhanced relationship between the tropical Atlantic SST and the summertime western North Pacific subtropical high after the early 1980s [J]. J. Geophys. Res., 119(7): 3715−3722. doi: 10.1002/2013JD021394
    [17] Hong C C, Lee M Y, Hsu H H, et al. 2015. Tropical SST forcing on the anomalous WNP subtropical high during July–August 2010 and the record-high SST in the tropical Atlantic [J]. Climate Dyn., 45(3-4): 633−650. doi: 10.1007/s00382-014-2275-5
    [18] 黄刚, 胡开明, 屈侠, 等. 2016. 热带印度洋海温海盆一致模的变化规律及其对东亚夏季气候影响的回顾 [J]. 大气科学, 40(1): 121−130. doi: 10.3878/j.issn.1006-9895.1505.15143

    Huang Gang, Hu Kaiming, Qu Xia, et al. 2016. A review about Indian Ocean basin mode and its impacts on East Asian summer climate [J]. Chinese Journal of Atmospheric Sciences, 40(1): 121−130. doi: 10.3878/j.issn.1006-9895.1505.15143
    [19] Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project [J]. Bull. Amer. Meteor. Soc., 77(3): 437−471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [20] Kang I S, Jin K, Wang B, et al. 2002. Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs [J]. Climate Dyn., 19(5-6): 383−395. doi: 10.1007/s00382-002-0245-9
    [21] 李维京. 1999. 1998年大气环流异常及其对中国气候异常的影响 [J]. 气象, 25(4): 20−25. doi: 10.3969/j.issn.1000-0526.1999.04.004

    Li Weijing. 1999. General atmospheric circulation anomaly in 1998 and their impact on climate anomaly in China [J]. Meteor. Mon., 25(4): 20−25. doi: 10.3969/j.issn.1000-0526.1999.04.004
    [22] Li T, Tung Y C, Hwu J W. 2005. Remote and local SST forcing in shaping Asian–Australian monsoon anomalies [J]. J. Meteor. Soc. Japan, 83(2): 153−167. doi: 10.2151/jmsj.83.153
    [23] Li T, Wang B, Wu B, et al. 2017. Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review [J]. J. Meteor. Res., 31(6): 987−1006. doi: 10.1007/s13351-017-7147-6
    [24] Li W J, Ren H C, Zuo J Q, et al. 2018. Early summer southern China rainfall variability and its oceanic drivers [J]. Climate Dyn., 50(11-12): 4691−4705. doi: 10.1007/s00382-017-3898-0
    [25] Li J P, Zheng F, Sun C, et al. 2019. Pathways of influence of the Northern Hemisphere mid–high latitudes on East Asian climate: A review [J]. Adv. Atmos. Sci., 36(9): 902−921. doi: 10.1007/s00376-019-8236-5
    [26] 梁萍, 汤绪, 柯晓新, 等. 2007. 中国梅雨影响因子的研究综述 [J]. 气象科学, 27(4): 464−471. doi: 10.3969/j.issn.1009-0827.2007.04.018

    Liang Ping, Tang Xu, Ke Xiaoxin, et al. 2007. Review of study on influencing factors of China Meiyu [J]. Scientia Meteorologica Sinica, 27(4): 464−471. doi: 10.3969/j.issn.1009-0827.2007.04.018
    [27] 梁萍, 陈丽娟, 丁一汇, 等. 2018. 长江梅雨的长期变率与海洋的关系及其可预报性研究 [J]. 气象学报, 76(3): 379−393. doi: 10.11676/qxxb2018.009

    Liang Ping, Chen Lijuan, Ding Yihui, et al. 2018. Relationship between long-term variability of Meiyu over the Yangtze River and ocean and Meiyu’ s predictability study [J]. Acta Meteor. Sinica, 76(3): 379−393. doi: 10.11676/qxxb2018.009
    [28] 刘芸芸, 丁一汇. 2020. 2020年超强梅雨特征及其成因分析 [J]. 气象, 46(11): 1393−1404. doi: 10.7519/j.issn.1000-0526.2020.11.001

    Liu Yunyun, Ding Yihui. 2020. Characteristics and possible causes for the extreme Meiyu in 2020 [J]. Meteor. Mon., 46(11): 1393−1404. doi: 10.7519/j.issn.1000-0526.2020.11.001
    [29] Liu B Q, Yan Y H, Zhu C W, et al. 2020. Record-breaking Meiyu rainfall around the Yangtze River in 2020 regulated by the subseasonal phase transition of the North Atlantic Oscillation [J]. Geophys. Res. Lett., 47(22): e2020GL090342. doi: 10.1029/2020GL090342
    [30] Lu R Y. 2001. Interannual variability of the summertime North Pacific subtropical high and its relation to atmospheric convection over the warm pool [J]. J. Meteor. Soc. Japan, 79(3): 771−783. doi: 10.2151/jmsj.79.771
    [31] 陆尔, 丁一汇. 1996. 1991年江淮特大暴雨与东亚大气低频振荡 [J]. 气象学报, 54(6): 730−736. doi: 10.11676/qxxb1996.075

    Lu Er, Ding Yihui. 1996. Low frequency oscillation in East Asia during the 1991 excessively heavy rain over Changjiang–Huaihe River basin [J]. Acta Meteorologica Sinica, 54(6): 730−736. doi: 10.11676/qxxb1996.075
    [32] Ren H C, Li W J, Ren H L, et al. 2016. Distinct linkage between winter Tibetan Plateau snow depth and early summer Philippine Sea anomalous anticyclone [J]. Atmos. Sci. Lett., 17(3): 223−229. doi: 10.1002/asl.646
    [33] 任宏昌, 左金清, 李维京. 2017. 1998年和2016年北大西洋海温异常对中国夏季降水影响的数值模拟研究 [J]. 气象学报, 75(6): 877−893. doi: 10.11676/qxxb2017.063

    Ren Hongchang, Zuo Jinqing, Li Weijing. 2017. Role of the North Atlantic SST anomalies in the 1998 and 2016 summer floods in China [J]. Acta Meteorologica Sinica, 75(6): 877−893. doi: 10.11676/qxxb2017.063
    [34] Ren H L, Lu B, Wan J H, et al. 2018. Identification standard for ENSO events and its application to climate monitoring and prediction in China [J]. J. Meteor. Res., 32(6): 923−936. doi: 10.1007/s13351-018-8078-6
    [35] Reynolds R W, Rayner N A, Smith T M, et al. 2002. An improved in situ and satellite SST analysis for climate [J]. J. Climate, 15(13): 1609−1625. doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2
    [36] 孙树鹏, 封国林, 郑志海, 等. 2021. 2016年梅雨持续性强降水期间大气环流稳定分量研究 [J]. 大气科学, 45(2): 245−256. doi: 10.3878/j.issn.1006-9895.2006.19167

    Sun Shupeng, Feng Guolin, Zheng Zhihai, et al. 2021. Study on the stable components of atmospheric circulation during the continuous heavy rainfall of Meiyu in 2016 [J]. Chinese Journal of Atmospheric Sciences, 45(2): 245−256. doi: 10.3878/j.issn.1006-9895.2006.19167
    [37] Tao S Y, Chen L X. 1987. A review of recent research on the East Asian summer monsoon in China [M]//Chang C P, Krishnamurti T N. Monsoon Meteorology. New York: Oxford University Press, 60–92.
    [38] Wang C Z. 2019. Three-ocean interactions and climate variability: A review and perspective [J]. Climate Dyn., 53(7-8): 5119−5136. doi: 10.1007/s00382-019-04930-x
    [39] Wang B, Zhang Q. 2002. Pacific–East Asian teleconnection. Part II: How the Philippine Sea anomalous anticyclone is established during El Niño development [J]. J. Climate, 15(22): 3252−3265. doi:10.1175/1520-0442(2002)015<3252:PEATPI>2.0.CO;2
    [40] Wang B, Wu R G, Fu X H. 2000. Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? [J]. J. Climate, 13(9): 1517−1536. doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2
    [41] 王会军, 孙建奇, 郎咸梅, 等. 2008. 几年来我国气候年际变异和短期气候预测研究的一些新成果 [J]. 大气科学, 32(4): 806−814. doi: 10.3878/j.issn.1006-9895.2008.04.09

    Wang Huijun, Sun Jianqi, Lang Xianmei, et al. 2008. Some new results in the research of the interannual climate variability and short-term climate prediction [J]. Chinese Journal of Atmospheric Sciences, 32(4): 806−814. doi: 10.3878/j.issn.1006-9895.2008.04.09
    [42] Wang B, Xiang B Q, Lee J Y. 2013. Subtropical High predictability establishes a promising way for monsoon and tropical storm predictions [J]. Proc. Natl. Acad. Sci. USA, 110(8): 2718−2722. doi: 10.1073/pnas.1214626110
    [43] 王妍凤, 孙旭光, 杨修群. 2017. 积雪在El Niño影响东亚夏季气候异常中的作用 [J]. 地球物理学报, 60(9): 3325−3337. doi: 10.6038/cjg20170905

    Wang Yanfeng, Sun Xuguang, Yang Xiuqun. 2017. Role of snow depth in the influence of El Niño on summer climate anomalies over East Asia [J]. Chinese J. Geophys., 60(9): 3325−3337. doi: 10.6038/cjg20170905
    [44] Wang L, Liu Y Y, Zhang Y, et al. 2019. Time-varying structure of the wintertime Eurasian pattern: Role of the North Atlantic sea surface temperature and atmospheric mean flow [J]. Climate Dyn., 52(3-4): 2467−2479. doi: 10.1007/s00382-018-4261-9
    [45] 魏凤英, 宋巧云. 2005. 全球海表温度年代际尺度的空间分布及其对长江中下游梅雨的影响 [J]. 气象学报, 63(4): 477−484. doi: 10.11676/qxxb2005.047

    Wei Fengying, Song Qiaoyun. 2005. Spatial distribution of the global sea surface temperature with interdecadal scale and their potential influence on Meiyu in middle and lower reaches of Yangtze River [J]. Acta Meteor. Sinica, 63(4): 477−484. doi: 10.11676/qxxb2005.047
    [46] Wu R G, Hu Z Z, Kirtman B P. 2003. Evolution of ENSO–related rainfall anomalies in East Asia [J]. J. Climate, 16(22): 3742−3758. doi:10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2
    [47] Wu R G, Kinter III J L, Kirtman B P. 2005. Discrepancy of interdecadal changes in the Asian region among the NCEP-NCAR reanalysis, objective analyses, and observations [J]. J. Climate, 18(15): 3048−3067. doi: 10.1175/JCLI3465.1
    [48] 吴志伟, 何金海, 李建平, 等. 2006. 长江中下游夏季旱涝并存及其异常年海气特征分析 [J]. 大气科学, 30(4): 570−577. doi: 10.3878/j.issn.1006-9895.2006.04.03

    Wu Zhiwei, He Jinhai, Li Jianping, et al. 2006. The summer drought–flood coexistence in the middle and lower reaches of the Yangtze River and analysis of its air–sea background feathers in anomalous years [J]. Chinese Journal of Atmospheric Sciences, 30(4): 570−577. doi: 10.3878/j.issn.1006-9895.2006.04.03
    [49] Wu B, Zhou T J, Li T. 2009. Seasonally evolving dominant interannual variability modes of East Asian climate [J]. J. Climate, 22(11): 2992−3005. doi: 10.1175/2008JCLI2710.1
    [50] Wu B, Li T, Zhou T J. 2010. Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer [J]. J. Climate, 23(11): 2974−2986. doi: 10.1175/2010JCLI3300.1
    [51] Xie S P, Hu K M, Hafner J, et al. 2009. Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño [J]. J. Climate, 22(3): 730−747. doi: 10.1175/2008JCLI2544.1
    [52] Xie S P, Kosaka Y, Du Y, et al. 2016. Indo–Western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review [J]. Adv. Atmos. Sci., 33(4): 411−432. doi: 10.1007/s00376-015-5192-6
    [53] 徐志清, 范可. 2012. 冬季和春季印度洋海温异常年际变率模态对中国东部夏季降水的可能影响过程 [J]. 大气科学, 36(5): 879−888. doi: 10.3878/j.issn.1006-9895.2012.11176

    Xu Zhiqing, Fan Ke. 2012. Possible process for influences of winter and spring Indian Ocean SST anomalies interannual variability mode on summer rainfall over eastern China [J]. Chinese Journal of Atmospheric Sciences, 36(5): 879−888. doi: 10.3878/j.issn.1006-9895.2012.11176
    [54] Yang J L, Liu Q Y, Xie S P, et al. 2007. Impact of the Indian Ocean SST basin mode on the Asian summer monsoon [J]. Geophys. Res. Lett., 34(2): L02708. doi: 10.1029/2006GL028571
    [55] 袁媛, 高辉, 李维京, 等. 2017. 2016年和1998年汛期降水特征及物理机制对比分析 [J]. 气象学报, 75(1): 19−38. doi: 10.11676/qxxb2017.019

    Yuan Yuan, Gao Hui, Li Weijing, et al. 2017. Analysis and comparison of summer precipitation features and physical mechanisms between 2016 and 1998 [J]. Acta Meteorologica Sinica, 75(1): 19−38. doi: 10.11676/qxxb2017.019
    [56] 张庆云, 陶诗言. 1999. 夏季西太平洋副热带高压北跳及异常的研究 [J]. 气象学报, 57(5): 539−548. doi: 10.11676/qxxb1999.052

    Zhang Qingyun, Tao Shiyan. 1999. The study of the sudden northward jump of the subtropical high over the western Pacific [J]. Acta Meteor. Sinica, 57(5): 539−548. doi: 10.11676/qxxb1999.052
    [57] 张顺利, 陶诗言. 2001. 青藏高原积雪对亚洲夏季风影响的诊断及数值研究 [J]. 大气科学, 25(3): 372−390. doi: 10.3878/j.issn.1006-9895.2001.03.07

    Zhang Shunli, Tao Shiyan. 2001. The influences of snow cover over the Tibetan Plateau on Asian summer monsoon [J]. Chinese Journal of Atmospheric Sciences, 25(3): 372−390. doi: 10.3878/j.issn.1006-9895.2001.03.07
    [58] Zhang R H, Sumi A, Kimoto M. 1999. A diagnostic study of the impact of El Niño on the precipitation in China [J]. Adv. Atmos. Sci., 16(2): 229−241. doi: 10.1007/BF02973084
    [59] 张庆云, 陶诗言, 张顺利. 2003. 夏季长江流域暴雨洪涝灾害的天气气候条件 [J]. 大气科学, 27(6): 1018−1030. doi: 10.3878/j.issn.1006-9895.2003.06.06

    Zhang Qingyun, Tao Shiyan, Zhang Shunli. 2003. The persistent heavy rainfall over the Yangtze River valley and its associations with the circulations over East Asian during summer [J]. Chinese Journal of Atmospheric Sciences, 27(6): 1018−1030. doi: 10.3878/j.issn.1006-9895.2003.06.06
    [60] 张芳华, 陈涛, 张芳, 等. 2020. 2020年6~7月长江中下游地区梅汛期强降水的极端性特征 [J]. 气象, 46(11): 1405−1414. doi: 10.7519/j.issn.1000-0526.2020.11.002

    Zhang Fanghua, Chen Tao, Zhang Fang, et al. 2020. Extreme features of severe precipitation in Meiyu period over the middle and lower reaches of Yangtze River basin in June–July 2020 [J]. Meteor. Mon., 46(11): 1405−1414. doi: 10.7519/j.issn.1000-0526.2020.11.002
    [61] 赵俊虎, 陈丽娟, 熊开国. 2018a. 基于新监测指标的江南入梅早晚的气候特征及影响系统分析 [J]. 气象学报, 76(5): 680−698. doi: 10.11676/qxxb2018.025

    Zhao Junhu, Chen Lijuan, Xiong Kaiguo. 2018a. Climate characteristics and influential systems of Meiyu to the south of the Yangtze River based on the new monitoring rules [J]. Acta Meteor. Sinica, 76(5): 680−698. doi: 10.11676/qxxb2018.025
    [62] 赵俊虎, 陈丽娟, 王东阡. 2018b. 2016年我国梅雨异常特征及成因分析 [J]. 大气科学, 42(5): 1055−1066. doi: 10.3878/j.issn.1006-9895.1708.17170

    Zhao Junhu, Chen Lijuan, Wang Dongqian. 2018b. Characteristics and causes analysis of abnormal meiyu in China in 2016 [J]. Chinese Journal of Atmospheric Sciences, 42(5): 1055−1066. doi: 10.3878/j.issn.1006-9895.1708.17170
    [63] 周天军, 俞永强, 宇如聪, 等. 2004. 印度洋对ENSO事件的响应: 观测与模拟 [J]. 大气科学, 28(3): 357−373. doi: 10.3878/j.issn.1006-9895.2004.03.04

    Zhou Tianjun, Yu Yongqiang, Yu Rucong, et al. 2004. Indian Ocean response to ENSO: Observation and air–sea coupled model simulation [J]. Chinese Journal of Atmospheric Sciences, 28(3): 357−373. doi: 10.3878/j.issn.1006-9895.2004.03.04
    [64] Zhou Z Q, Xie S P, Zhang R H. 2021. Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions [J]. Proc. Natl. Acad. Sci. USA, 118(12): e2022255118. doi: 10.1073/pnas.2022255118
    [65] 朱益民, 杨修群. 2003. 太平洋年代际振荡与中国气候变率的联系 [J]. 气象学报, 61(6): 641−654. doi: 10.3321/j.issn:0577-6619.2003.06.001

    Zhu Yimin, Yang Xiuqun. 2003. Relationships between Pacific decadal oscillation (PDO) and climate variabilities in China [J]. Acta Meteor. Sinica, 61(6): 641−654. doi: 10.3321/j.issn:0577-6619.2003.06.001
    [66] Zuo J Q, Li W J, Sun C H, et al. 2019. Remote forcing of the northern tropical Atlantic SST anomalies on the western North Pacific anomalous anticyclone [J]. Climate Dyn., 52(5-6): 2837−2853. doi: 10.1007/s00382-018-4298-9
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  122
  • HTML全文浏览量:  25
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-24
  • 录用日期:  2021-04-19
  • 网络出版日期:  2021-04-21

目录

    /

    返回文章
    返回