高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

理想模拟的温带气旋中冷暖输送带特征分析

王迪 张熠 储可宽 王新敏

王迪, 张熠, 储可宽, 等. 2022. 理想模拟的温带气旋中冷暖输送带特征分析[J]. 大气科学, 46(2): 346−358 doi: 10.3878/j.issn.1006-9895.2105.20190
引用本文: 王迪, 张熠, 储可宽, 等. 2022. 理想模拟的温带气旋中冷暖输送带特征分析[J]. 大气科学, 46(2): 346−358 doi: 10.3878/j.issn.1006-9895.2105.20190
WANG Di, ZHANG Yi, CHU Kekuan, et al. 2022. Characteristic Analysis of Cold and Warm Conveyor Belts in an Idealized Extratropical Cyclone Simulation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(2): 346−358 doi: 10.3878/j.issn.1006-9895.2105.20190
Citation: WANG Di, ZHANG Yi, CHU Kekuan, et al. 2022. Characteristic Analysis of Cold and Warm Conveyor Belts in an Idealized Extratropical Cyclone Simulation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(2): 346−358 doi: 10.3878/j.issn.1006-9895.2105.20190

理想模拟的温带气旋中冷暖输送带特征分析

doi: 10.3878/j.issn.1006-9895.2105.20190
基金项目: 国家自然科学基金项目41775057、41675053,国家重点研发计划项目2017YFC1501601
详细信息
    作者简介:

    王迪,男,1991年出生,工程师,主要从事灾害性天气研究和预报。E-mail: Wdimail@126.com

    通讯作者:

    张熠,E-mail: yizhang@nju.edu.cn

  • 中图分类号: P433

Characteristic Analysis of Cold and Warm Conveyor Belts in an Idealized Extratropical Cyclone Simulation

Funds: National Natural Science Foundation of China (Grants 41775057, 41675053), National Key Research and Development Program of China (Grant 2017YFC1501601)
  • 摘要: 本文利用WRF理想斜压波模式模拟了理想湿大气中温带气旋的快速发展过程,采用拉格朗日轨迹筛选方法识别了气旋内部冷、暖输送带结构,分析了沿着输送带轨迹的物理量演变特征,探究了输送带气流对气旋降水结构的影响。本文在再现前人研究结论的基础上,发现了更精细的输送带结构特征,尤其是对冷输送带特征有了进一步认识。研究表明,根据相对气旋中心运动特征可将暖输送带划分为“前倾上升”和“后倾上升”两支。两支气流均起始于对流层低层冷锋前暖区内,旋转上升到对流层中高层出流区后分别向气旋中心的下游和上游运动,并在中高层产生负位涡扰动,促进高空系统发展。同时,暖输送带向上层输送水汽,影响锋面附近降水中心的形成和维持。在对冷输送带的研究中,本文证实了前人研究描述的上升类和低层运动类特征,而且发现其可以更精细地呈现出四支气流结构。“前倾上升”和“后倾上升”两支气流的初始位置靠近暖锋,上升运动到对流层中层后分别向气旋中心的下游和上游运动,利于促进暖锋附近降水形成;而“环气旋前倾”和“环气旋后倾”两支气流始终在对流层低层运动,初始远离暖锋朝向气旋中心运动,水汽含量增加,随后环绕气旋中心缓慢上升运动到气旋西侧后分别向气旋下游和上游下沉,这两支气流导致了气旋西北侧弱降水的发生。
  • 图  1  (a)模式初始基本场和(b)温度扰动(等值线,间隔0.2 K)的垂直剖面。图(a)中红色实线为纬向风速等值线(间隔5 m s−1),深灰色实线表征位温(间隔6 K),粗虚线为对流层顶(1.5 PVU的等位涡线,1 PVU=10−6 K kg−1 m2 s−1),填色表示相对湿度(间隔10%)

    Figure  1.  Vertical profile of (a) the initial basic field and (b) temperature perturbation (contours, interval 0.2 K) in the numerical model. Red solid lines indicate the zonal wind speed (every 5 m s−1), and dark gray solid lines show the potential temperature (every 6 K). The thick dash line represents the 1.5 PVU (1 PVU=10−6 K kg−1 m2 s−1) tropopause with the relative humidity shaded (every 10%) in (a)

    图  2  模式积分60~126 h时段内锋面气旋在对流层低层925 hPa的发展演变特征。图(a–e)中灰实线为等高线(间隔50 gpm),黑实线为等位温线(间隔2 K);图(f–j)中实线为等高线(间隔50 gpm),符号L标识主气旋的中心,填色表示水平位温梯度 [间隔0.5 K (100 km)−1]

    Figure  2.  Development evolution of the frontal cyclone in the lower level of 925 hPa during the simulation period from 60 h to 126 h. Gray and black lines respectively indicate the height (every 50 gpm) and potential temperature (every 2 K) in Figs. (a–e). Solid lines indicate the height (every 50 gpm), and the symbol “L” denotes the primary cyclone center with the horizontal potential temperature gradient shaded [every 0.5 K (100 km)−1] in Figs. (f–j)

    图  3  主气旋中心气压时间演变特征

    Figure  3.  Temporal evolution of central pressure values of the primary cyclone

    图  4  暖输送带在模式积分96~120 h内相对气旋中心运动轨迹的示意图:(a)暖输送带轨迹的水平投影,叠加96 h的925 hPa等位温线(实线,间隔2 K)和等高线(虚线,间隔50 gpm);(b)同图(a),但背景叠加的是120 h的温压场;轨迹在(c)东西方向和(d)南北方向的垂直投影。图中红色轨迹矢为“前倾上升”支(fWCB),蓝色轨迹矢为“后倾上升”支(rWCB),箭矢间隔6 h

    Figure  4.  Trajectories of warm conveyor belts relative to the cyclone motion during the simulation period from 96 h to 120 h. Shown are horizontal snapshots at (a) 96 h and (b) 120 h, where solid lines are the potential temperature (solid lines, every 2 K) and dash lines are the height (dash lines, every 50 gpm) at the 925 hPa. Vertical profiles of trajectories are presented in the (c) west–east and (d) north–south direction. Red streamlines are “forward-sloping ascent” (fWCB) branches, and blue trajectories are “rearward-sloping ascent” (rWCB), where the arrows are added every 6 h

    图  5  沿暖输送带的主要物理量随时间演变特征。气压(p,单位:hPa),位温(TH,单位:K),位涡(PV,单位:PVU),比湿(Qv,单位:g kg−1),垂直速度(W,单位:10−2 m s−1),相当位温(ETH,单位:K),绝对涡度(AVO,单位:1 f f为地转涡度,取特征值10−4 s−1),相对湿度(RH)。蓝色加号和红色圆圈分别表示不同时刻“前倾上升”(fWCB)和“后倾上升”(rWCB)支气流轨迹点的特征值,实线为30条轨迹上各物理量的平均值

    Figure  5.  Temporal evolution of key parameters along the warm conveyor belts shown as pressure (p, units: hPa), potential temperature (TH, units: K), potential vorticity (PV, units: PVU), specific humidity (Qv, units: g kg−1), vertical velocity (W, units: cm s−1), equivalent potential temperature (ETH, units: K), absolute vorticity (AVO, units:1 f, f denotes geostrophic vorticity, taking eigenvalue 10−4 s−1), and relative humidity (RH). Blue plus signs and red circles indicate the “forward-sloping ascent” (fWCB) and “rearward-sloping ascent” (rWCB), respectively, with solid lines representing the average values

    图  6  (a)模式积分108 h时刻过去6小时累积降水与“前倾上升”暖输送带(fWCB)轨迹的水平分布,其中浅灰色细实线表示等位温线(间隔2 K),点虚线表示海平面气压(间隔5 hPa),深灰色实线表示降水零值线,填色为降水量(单位:mm),带状实线表示30条输送带的轨迹束,箭头指向轨迹运动方向,标志“L”表示气旋中心,线AB指示模式积分106 h后轨迹的大致位置。(b)沿模式积分106 h时刻的fWCB轨迹大致位置AB的垂直剖面,其中数字为输送带编号(编号所对应高度即为此刻空气粒子所在高度),浅灰色实线为等位温线(间隔2 K),两条粗实线分别对应相对湿度90 %和95 %等值线,填色表示垂直速度(间隔20 cm s−1

    Figure  6.  (a) Distribution of accumulative precipitation and “forward-sloping ascent” (fCCB) trajectories in the last 6 h in the simulation time of 108 h, where the thin gray line indicates the potential temperature (every 2 K), the dot-dash line denotes the sea level pressure (every 5 hPa), the thick gray line represents the zero line shaded with the rainfall amount(units: mm), arrow lines denote 30 trajectories with the arrow pointing to the motion direction, the symbol “L” is the cyclone center, and the line AB shows the approximate position of trajectories in the simulation time of 106 h. (b) Vertical profile of fCCB trajectories across the line AB in (a) at 106 h, where the numbers indicate trajectories with the height corresponding to the numbers representing the height of air particles, thin gray lines show the potential temperature (every 2 K), and two thick solid lines respectively represent the relative humidity of 90% and 95% with the vertical velocity (every 20 cm s−1) shaded

    图  7  同图4,但为冷输送带的轨迹示意图。(a,b)轨迹水平投影叠加96 h的925 hPa温压场,(c,d)轨迹水平投影叠加120 h的925 hPa温压场,(e)轨迹在东西方向的垂直投影,(f)轨迹在南北方向的垂直投影。图中蓝色、红色、绿色和橙色轨迹线分别表示“前倾上升”支(fCCB)、“后倾上升”支(rCCB)、“环气旋后倾”支(crCCB)和“环气旋前倾”支(cfCCB)冷输送带

    Figure  7.  Same as Fig. 4 but for trajectories of cold conveyor belts. Shown are horizontal snapshots with the 925 hPa temperature-pressure field at (a, b) 96 h and (c, d) 120 h. Vertical profiles of trajectories are presented in the (e) west-east and (f) north-south direction. Blue trajectories are “forward-sloping ascent” (fCCB) types, and the red trajectories are the “rearward-sloping ascent” (rCCB), while green trajectories are “wrapping around the cyclone and rearward-sloping” (crCCB), and orange trajectories are “wrapping around the cyclone and forward-sloping” (cfCCB)

    图  8  同图5,但为“后倾上升”(rCCB,红色圆圈)和“前倾上升”(fCCB,蓝色加号)冷输送带

    Figure  8.  Same as Fig. 5, but red circles and blue plus signs respectively represent the “rearward-sloping ascent” (rCCB) and “forward-sloping ascent” (fCCB) cold conveyor belts

    图  9  同图6,但为(a)102 h的过去6小时累积降水及“后倾上升”冷输送带(rCCB)轨迹,及(b)沿99 h的 rCCB轨迹

    Figure  9.  Same as Fig. 6, but (a) for the accumulative rainfall and “rearward-sloping ascent” (rCCB) trajectories in the last 6 h at 102 h, (b) for the rCCB trajectories at 99 h

    图  10  同图5,但为 “环气旋前倾”(cfCCB,橙色加号)和“环气旋后倾”(crCCB,绿色圆圈)冷输送带

    Figure  10.  Same as Fig. 5, but orange plus signs and green circles respectively represent the “wrapping around the cyclone and forward-sloping” (cfCCB) and “wrapping around the cyclone and rearward-sloping” (crCCB) cold conveyor belts

    图  11  理想温带气旋内部冷、暖输送带示意图。图中上、下两层分别为400 hPa和925 hPa高度层,实线表示等位温线(间距2 K),虚线代表等高线(间距50 gpm),粗灰实线为过去6 h降水零线。标志L指示气旋低压中心,锋面用传统符号表示,红、蓝实线分别表示暖、冷输送带

    Figure  11.  Conceptual model of cold and warm conveyor belts in the idealized extratropical cyclone where the upper is the height of 400 hPa and the lower is 925 hPa, solid lines indicate the potential temperature (every 2 K), gray dash lines represent the height (every 50 gpm), thick gray solid line is the zero line of accumulative precipitation in the last 6 h. Symbol “L” is the cyclone center, and the front is presented by the conventional symbol with red and blue arrow lines denoting the warm and cold conveyor belts, respectively

  • [1] Bjerknes J. 1919. On the structure of moving cyclones [J]. Geophys. Publ., 1(2): 1−8.
    [2] Bjerknes J, Solberg H. 1922. Life cycle of cyclones and the polar front theory of atmospheric circulation [J]. Geophys. Publ., 3(1): 3−18.
    [3] Browning K A. 1986. Conceptual models of precipitation systems [J]. Wea. Forecasting, 1(1): 23−41. doi:10.1175/1520-0434(1986)001<0023:CMOPS>2.0.CO;2
    [4] Browning K A. 1990. Organization of clouds and precipitation in extratropical cyclones [M]//Newton C W, Holopainen E O. Extratropical Cyclones: The Erik Palmén Memorial Volume. Boston: American Meteorological Society, 129–154. doi: 10.1007/978-1-944970-33-8_8
    [5] Browning K A. 1997. The dry intrusion perspective of extra-tropical cyclone [J]. Meteor. Appl., 4(4): 317−324. doi: 10.1017/S1350482797000613
    [6] Browning K A, Pardoe C W. 1973. Structure of low-level jet streams ahead of mid-latitude cold fronts [J]. Quart. J. Roy. Meteor. Soc., 99(422): 619−638. doi: 10.1002/qj.49709942204
    [7] Browning K A, Roberts N M. 1994. Structure of a frontal cyclone [J]. Quart. J. Roy. Meteor. Soc., 120(520): 1535−1557. doi: 10.1002/qj.49712052006
    [8] Carlson T N. 1980. Airflow through midlatitude cyclones and the comma cloud pattern [J]. Mon. Wea. Rev., 108(10): 1498−1509. doi:10.1175/1520-0493(1980)108<1498:ATMCAT>2.0.CO;2
    [9] Catto J L, Madonna E, Joos H, et al. 2015. Global relationship between fronts and warm conveyor belts and the impact on extreme precipitation [J]. J. Climate, 28(21): 8411−8429. doi: 10.1175/JCLI-D-15-0171.1
    [10] Coronel B, Ricard D, Rivière G, et al. 2016. Cold-conveyor-belt jet, sting jet and slantwise circulations in idealized simulations of extratropical cyclones [J]. Quart. J. Roy. Meteor. Soc., 142(697): 1781−1796. doi: 10.1002/qj.2775
    [11] Dacre H F, Martínez-Alvarado O, Mbengue C O. 2019. Linking atmospheric rivers and warm conveyor belt airflows [J]. J. Hydrometeorol., 20(6): 1183−1196. doi: 10.1175/JHM-D-18-0175.1
    [12] Eckhardt S, Stohl A, Wernli H, et al. 2004. A 15-year climatology of warm conveyor belts [J]. J. Climate, 17(1): 218−237. doi:10.1175/1520-0442(2004)017<0218:AYCOWC>2.0.CO;2
    [13] Flaounas E, Kotroni V, Lagouvardos K, et al. 2018. Heavy rainfall in Mediterranean cyclones. Part I: Contribution of deep convection and warm conveyor belt [J]. Climate Dyn., 50(7-8): 2935−2949. doi: 10.1007/s00382-017-3783-x
    [14] Fu G, Sun Y W, Sun J L, et al. 2020. A 38-year climatology of explosive cyclones over the Northern Hemisphere [J]. Adv. Atmos. Sci., 37(2): 143−159. doi: 10.1007/s00376-019-9106-x
    [15] Gray S L, Dunning C M, Methven J, et al. 2014. Systematic model forecast error in Rossby wave structure [J]. Geophys. Res. Lett., 41(8): 2979−2987. doi: 10.1002/2014GL059282
    [16] Harrold T W. 1973. Mechanisms influencing the distribution of precipitation within baroclinic disturbances [J]. Quart. J. Roy. Meteor. Soc., 99(420): 232−251. doi: 10.1002/qj.49709942003
    [17] Hoskins B. 2015. Potential vorticity and the PV perspective [J]. Adv. Atmos. Sci., 32(1): 2−9. doi: 10.1007/s00376-014-0007-8
    [18] Hoskins B J, McIntyre M E, Robertson A W. 1985. On the use and significance of isentropic potential vorticity maps [J]. Quart. J. Roy. Meteor. Soc., 111(470): 877−946. doi: 10.1002/qj.49711147002
    [19] Kain J S, Fritsch J M. 1990. A one-dimensional entraining/detraining plume model and its application in convective parameterization [J]. J. Atmos. Sci., 47(23): 2784−2802. doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2
    [20] Kain J S, Fritsch J M. 1993. Convective parameterization for mesoscale models: The Kain-Fritsch scheme [M]//Emanuel K A, Raymond D J. The Representation of Cumulus Convection in Numerical Models. Boston: American Meteorological Society, 165–170. doi: 10.1007/978-1-935704-13-3_16
    [21] Kessler E. 1969. On the distribution and continuity of water substance in atmospheric circulations [M]//Kessler E. On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Boston: American Meteorological Society, 1–84. doi: 10.1007/978-1-935704-36-2_1
    [22] 刘宁微, 齐琳琳, 韩江文. 2009. 北上低涡引发辽宁历史罕见暴雪天气过程的分析 [J]. 大气科学, 33(2): 275−284. doi: 10.3878/j.issn.1006-9895.2009.02.07

    Liu Ningwei, Qi Linlin, Han Jiangwen. 2009. The analyses of an unusual snowstorm caused by the northbound vortex over Liaoning Province in China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33(2): 275−284. doi: 10.3878/j.issn.1006-9895.2009.02.07
    [23] Martínez-Alvarado O, Joos H, Chagnon J, et al. 2014. The dichotomous structure of the warm conveyor belt [J]. Quart. J. Roy. Meteor. Soc., 140(683): 1809−1824. doi: 10.1002/qj.2276
    [24] Mass C F, Schultz D M. 1993. The structure and evolution of a simulated midlatitude cyclone over land [J]. Mon. Wea. Rev., 121(4): 889−917. doi:10.1175/1520-0493(1993)121<0889:TSAEOA>2.0.CO;2
    [25] Methven J. 2015. Potential vorticity in warm conveyor belt outflow [J]. Quart. J. Roy. Meteor. Soc., 141(689): 1065−1071. doi: 10.1002/qj.2393
    [26] Sanders F, Gyakum J R, 1980. Synoptic-dynamic climatology of the “Bomb” [J]. Mon. Wea. Rev., 108(10): 1589–1606. doi: 10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2
    [27] Schemm S, Wernli H. 2014. The linkage between the warm and the cold conveyor belts in an idealized extratropical cyclone [J]. J. Atmos. Sci., 71(4): 1443−1459. doi: 10.1175/JAS-D-13-0177.1
    [28] Schemm S, Wernli H, Papritz L. 2013. Warm conveyor belts in idealized moist baroclinic wave simulations [J]. J. Atmos. Sci., 70(2): 627−652. doi: 10.1175/JAS-D-12-0147.1
    [29] Schultz D M. 2001. Reexamining the cold conveyor belt [J]. Mon. Wea. Rev., 129(9): 2205−2225. doi:10.1175/1520-0493(2001)129<2205:RTCCB>2.0.CO;2
    [30] Shapiro M A, Keyser D, 1990. Fronts, jet streams, and the tropopause [M]//Newton C W, Halopainen E O. Extratropical Cyclones: The Erik Palmén Memorial Volume. Amer Meteor Soc: 167-191.
    [31] Shaw W N, Lempfert R G K. 1906. The life history of surface air currents [M]. Met Office Memoir 174, Reprint, Selected Meteorological Papers of Sir Napier Shaw, Macdonald and Co. , 1955, 15–131.
    [32] Sinclair V A, Gray S L, Belcher S E. 2008. Boundary-layer ventilation by baroclinic life cycles [J]. Quart. J. Roy. Meteor. Soc., 134(635): 1409−1424. doi: 10.1002/qj.293
    [33] Smart D J, Browning K A. 2014. Attribution of strong winds to a cold conveyor belt and sting jet [J]. Quart. J. Roy. Meteor. Soc., 140(679): 595−610. doi: 10.1002/qj.2162
    [34] Tan Z M, Zhang F Q, Rotunno R, et al. 2004. Mesoscale predictability of moist baroclinic waves: Experiments with parameterized convection [J]. J. Atmos. Sci., 61(14): 1794−1804. doi:10.1175/1520-0469(2004)061<1794:MPOMBW>2.0.CO;2
    [35] Wernli H. 1997. A Lagrangian-based analysis of extratropical cyclones. II: A detailed case-study [J]. Quart. J. Roy. Meteor. Soc., 123(542): 1677−1706. doi: 10.1002/qj.49712354211
    [36] Wernli H, Davies H C. 1997. A Lagrangian-based analysis of extratropical cyclones. I: The method and some applications [J]. Quart. J. Roy. Meteor. Soc., 123(538): 467−489. doi: 10.1002/qj.49712353811
    [37] 熊秋芬, 牛宁, 章丽娜. 2013. 陆地上爆发性温带气旋的暖锋后弯结构分析 [J]. 气象学报, 71(2): 239−249. doi: 10.11676/qxxb2013.030

    Xiong Qiufen, Niu Ning, Zhang Li’na. 2013. Analysis of the back-bent warm front structure associated with an explosive extratropical cyclone over land [J]. Acta Meteorologica Sinica (in Chinese), 71(2): 239−249. doi: 10.11676/qxxb2013.030
    [38] Young M V, Monk G A, Browning K A. 1987. Interpretation of satellite imagery of a rapidly deepening cyclone [J]. Quart. J. Roy. Meteor. Soc., 113(478): 1089−1115. doi: 10.1002/qj.49711347803
    [39] 张熠, 谈哲敏. 2007. 地表拖曳对斜压波地面锋生的影响 [J]. 中国科学 D辑: 地球科学, 36(11): 1052–1067. Zhang Yi, Tan Zhemin. 2007. Effects of surface drag on low-level frontogenesis within baroclinic waves [J]. Science in China Series D: Earth Sciences, 50(2): 306–319. doi: 10.3969/j.issn.1674-7240.2006.11.009
    [40] Zhang Y, Tan Z M, Chu K K. 2016. Effects of surface drag on upper-level frontogenesis within a developing baroclinic wave [J]. J. Meteor. Res., 30(5): 706−718. doi: 10.1007/s13351-016-6018-x
    [41] 赵琳娜, 赵思雄. 2004. 一次引发华北和北京沙尘暴天气的快速发展气旋的诊断研究 [J]. 大气科学, 28(5): 722−735. doi: 10.3878/j.issn.1006-9895.2004.05.07

    Zhao Linna, Zhao Sixiong. 2004. A diagnostic study of rapid developing cyclone in North China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 28(5): 722−735. doi: 10.3878/j.issn.1006-9895.2004.05.07
    [42] 赵兵科, 吴国雄, 姚秀萍. 2008. 2003年夏季梅雨期一次强气旋发展的位涡诊断分析 [J]. 大气科学, 32(6): 1241−1255. doi: 10.3878/j.issn.1006-9895.2008.06.02

    Zhao Bingke, Wu Guoxiong, Yao Xiuping. 2008. A diagnostic analysis of potential vorticity associated with development of a strong cyclone during the Meiyu period of 2003 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(6): 1241−1255. doi: 10.3878/j.issn.1006-9895.2008.06.02
    [43] 赵宇, 蓝欣, 杨成芳. 2018. 一次冬季江淮气旋逗点云区的雷达回波和气流结构分析 [J]. 气象学报, 76(5): 726−741. doi: 10.11676/qxxb2018.030

    Zhao Yu, Lan Xin, Yang Chengfang. 2018. Radar echo and airmass structure of the comma head within a Jiang–Huai cyclone in winter [J]. Acta Meteorologica Sinica (in Chinese), 76(5): 726−741. doi: 10.11676/qxxb2018.030
    [44] 赵思雄, 孙建华, 鲁蓉, 等. 2018. “7·20”华北和北京大暴雨过程的分析 [J]. 气象, 44(3): 351−360. doi: 10.7519/j.issn.1000-0526.2018.03.002

    Zhao Sixiong, Sun Jianhua, Lu Rong, et al. 2018. Analysis of the 20 July 2016 unusual heavy rainfall in North China and Beijing [J]. Meteorological Monthly (in Chinese), 44(3): 351−360. doi: 10.7519/j.issn.1000-0526.2018.03.002
    [45] Ziv B, Saaroni H, Romem M, et al. 2010. Analysis of conveyor belts in winter Mediterranean cyclones [J]. Theor. Appl. Climatol., 99(3-4): 441−455. doi: 10.1007/s00704-009-0150-9
  • 加载中
图(11)
计量
  • 文章访问数:  174
  • HTML全文浏览量:  23
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-06
  • 录用日期:  2021-07-19
  • 网络出版日期:  2021-09-09
  • 刊出日期:  2022-03-16

目录

    /

    返回文章
    返回