Vertical Characteristics of Water Vapor Transport during the Rainy Season in Eastern China Based on the Lagrangian Method
-
摘要: 利用基于拉格朗日轨迹追踪模式(HYSPLIT),结合区域源汇归属法,追踪1961~2010年中国东部地区雨带推进过程中各雨季后向轨迹,定量确定各雨季不同垂直层上的水汽输送路径与水汽贡献。结果表明在南海夏季风爆发前的华南前汛期,低层最主要水汽通道为太平洋通道,轨迹占比达到52.3%,中高层最主要的水汽通道为印度洋通道,占比超过37%;水汽主要源自低层的西太平洋和中国东部地区,水汽贡献均在20%以上。南海季风爆发后的华南前汛期,低层到高层最强水汽通道均为印度洋通道,特别是中层,轨迹数量达到了65.6%;印度洋源地的贡献明显增加,中高层水汽主要源自印度洋,低层最主要的水汽源地为中国东部和南海。江淮梅雨时低层最主要通道为太平洋通道,中高层最主要通道为印度洋通道,相比华南前汛期,在中高层印度洋通道减弱,而西风通道增强。华北雨季中,低层最主要水汽通道为太平洋通道,而中高层最主要的水汽通道为欧亚大陆中纬西风通道。江淮梅雨和华北雨季中,最主要的源地为中低层的中国东部地区和西太平洋地区,特别是华北雨季中,来自中国东部局地低层的水汽达到了43.1%,表明低层局地蒸发对华北雨季降水起到至关重要的作用。
-
关键词:
- 拉格朗日轨迹追踪 /
- 拉格朗日轨迹追踪模式(HYSPLIT) /
- 水汽输送 /
- 垂直结构
Abstract: The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) platform, which was enhanced with the areal source–receptor attribution method, was used to simulate the Lagrangian trajectories of air parcels in eastern China during the summer monsoons from 1961 to 2010 at different vertical levels. At these levels, water vapor transport pathways and moisture contributions in each rainy season were quantitatively determined. During the pre-monsoon season in South China (SC), the dominant water vapor transport channel at the lower level (below 1500 m) was the West Pacific Ocean channel, with the proportion of trajectories reaching 52.3%, whereas at the middle level (1500−5000 m), the Indian Ocean channel was found to be dominant, with the proportion of trajectories exceeding 37%. The most important moisture source was the land area of East China and the West Pacific Ocean at the lower level; their contribution rate for each of the two sources exceeded 20%. After the onset of the South China Sea summer monsoon and during the entire monsoon season in SC, the Indian Ocean channel was the strongest moisture channel at the lower, middle, and upper levels (>5000 m), and the proportion of trajectories at the middle level was 65.6%. Further, the moisture contribution from the Indian Ocean showed a significant increase, and it was the most important moisture source at the middle and upper levels. However, the most important moisture source at the lower level was East China and the South China Sea. During the Meiyu season, the West Pacific and Indian Ocean channels were the dominant channels at the lower level and at the middle and upper levels, respectively. Compared with the monsoon season in SC, the Indian Ocean channel was weaker at the middle and upper levels, whereas the mid-latitude westerly channel was stronger. During the rainy season in North China, the West Pacific and mid-latitude westerly channels were the dominant water vapor channels at the lower level and at the middle and upper levels, respectively. During the Meiyu and North China rainy season, the main source areas were eastern China and the West Pacific regions. In particularly, during the rainy season in North China, the water vapor from East China at the lower level reached 43.1%, which indicates that the local evaporation at the low level plays a crucial role during the rainy season precipitation in North China. -
图 1 中国东部雨季水汽源地分布的区域划分(中国东部、南海、印度洋、西太平洋和欧亚大陆)以及华南(20°~26°N,106°~120°E)、江淮(28°~34°N,110°~123°E)与华北(35°~43°N,110°~120°E)的站点分布。华南地区70个站点,江淮流域99个站点,华北地区78个站点
Figure 1. The division of the geographical sectors (East China, South China Sea, Indian Ocean, West Pacific Ocean, and Eurasia) was used to explain the trajectories and moisture contributions. The locations of the three rectangular target domains in South China region (20°–26°N, 106°–120°E), Yangtze–Huaihe River basin region (28°–34°N, 110°–123°E), and North China region (35°–43°N, 110°–120°E) from the south to north direction. The dots indicate the locations of the following observational stations in these three regions: 70 stations in the South China region, 99 stations in the Yangtze–Huaihe River basin region, and 78 stations in the North China region
图 2 季风爆发前的华南前汛期低层(左,1500 m以下)、中层(中,1500~5000 m)、高层(右,5000 m及以上)的(a–c)主要水汽通道的轨迹特征,(d–f)水汽源地的贡献率(CDF,单位:10−5)分布,(g–i)水汽通量(矢量)和水汽通量值(阴影)空间分布(单位:kg m−1 s−1)。图a–c中,POC、SCSC、IOC、EAC、ECC表示西太平洋水汽通道、南海水汽通道、印度洋水汽通道、欧亚大陆西风带水汽通道、中国东部水汽通道,轨迹的颜色表示比湿(单位:g/kg),轨迹的粗细表示轨迹数量,通道右侧第一个数字为通道的轨迹数量在雨季内所有轨迹的占比,第二个数字表示通道轨迹数量在该层轨迹中的占比。图d–i中的矩形框为华南前汛期研究区域
Figure 2. (a–c) Trajectories characteristics of moisture transport channels, (d–f) water vapor contribution density function (CDF, units: 10−5), (g–i) the climatology of vertically integrated atmospheric water vapor transport (vectors, units: kg m−1 s−1) and the amount of the water vapor transport (shadings, units: kg m−1 s−1) at (a) the lower (left, under 1500 m), (b) middle (middle, 1500–5000 m), and (c) upper levels (right, higher than 5000 m) during pre-flood season in the pre-monsoon in South China (SC). In Figs. a–c, POC, SCSC, IOC, EAC, ECC represent moisture transport channels were identified from the West Pacific Ocean, the South China Sea, the Indian Ocean, the Eurasian westerly region, and eastern China, respectively. Colors on the pathways indicate the average specific humidity (units: g/kg) of air parcels along the trajectories. The thickness of the pathways represents the percentage of the trajectories, which have also been marked with numbers, the first number represents the proportion for the trajectories in the rainy season and the second number represents the proportion for the trajectories in the level. In Figs. d–i, the rectangles represent the target region in SC
表 1 中国东部四个雨季各层关键的水汽通道以及关键水汽源地。POS、SCSS、IOS、EAS、ECS表示西太平洋水汽源地、南海水汽源地、印度洋水汽源地、欧亚大陆西风带水汽源地、中国东部水汽源地
Table 1. The main moisture transport channels and main moisture sources during four period of rainy season in East China. POS, SCSS, IOS, EAS, ECS represent moisture sources were identified from the West Pacific Ocean, the South China Sea, the Indian Ocean, the Eurasian westerly region, and eastern China, respectively
水汽通道 水汽源地 雨季 高层 中层 低层 高层 中层 低层 季风爆发前的华南前汛期 IOC(9.2%) IOC(14.3%)
POC(11.0%)POC(19.9%) IOS(2.6%) SCSS(10.8%) POS(24.2%)
ECS(23.1%)季风爆发后的华南前汛期 IOC(17.7%) IOC(23.4%) IOC(12.8%)
POC(12.0%)IOS(8.8%) IOS(12.7%) ECS(16.8%)
SCSS(15.3%)江淮梅雨 IOC(13.8%) IOC(18.0%) POC(14.1%) ECS(5.2%) ECS(10.5%) ECS(28.7%)
POS(18.6%)华北雨季 EAC(9.4%) EAC(14.7%) POC(17.1%) ECS(2.6%) ECS(12.0%) ECS(43.1%)
POS(21.6%)注:水汽通道中括号里的数字表示该通道轨迹数量占比,其中轨迹占比超过15%的通道用粗体表示。水汽源地中括号里的数字表示该层次该源地的水汽贡献率,其中贡献率超过20%的源地用粗体表示。 -
[1] Bertò A, Buzzi A, Zardi D. 2004. Back-tracking water vapour contributing to a precipitation event over Trentino: A case study [J]. Meteor. Z., 13(3): 189−200. doi: 10.1127/0941-2948/2004/0013-0189 [2] Bottyán E, Czuppon G, Kármán K, et al. 2014. Moisture source diagnostic for Hungary based on trajectory analysis and stable isotopic composition of precipitation [C]//EGU General Assembly Conference Abstracts. Vienna, Austria: EGU. [3] Brubaker K L, Dirmeyer P A, Sudradjat A, et al. 2001. A 36-yr climatological description of the evaporative sources of warm-season precipitation in the Mississippi River basin [J]. Journal of Hydrometeorology, 2(6): 537−557. doi:10.1175/1525-7541(2001)002<0537:AYCDOT>2.0.CO;2 [4] 常越, 何金海, 刘芸芸, 等. 2006. 华南旱、涝年前汛期水汽输送特征的对比分析 [J]. 高原气象, 25(6): 1064−1070. doi: 10.3321/j.issn:1000-0534.2006.06.013Chang Yue, He Jinhai, Liu Yunyun, et al. 2006. Features of moisture transport of in pre-summmer flood season of drought and flood years over South China [J]. Plateau Meteorology (in Chinese), 25(6): 1064−1070. doi: 10.3321/j.issn:1000-0534.2006.06.013 [5] 陈世训, 高绍风, 杨裕. 1982.5~6月我国南方降水的水汽来源及其异常[C]//全国热带夏季风学术会议文集. 昆明: 云南人民出版社, 97–100.Chen Shixun, Gao Shaofeng, Yang Yu. 1982. The moisture source of the rainy in South China and its anomaly during May and June [C]//Collected Works of National Academic Conference on Tropical Summer Monsoon (in Chinese). Kunming: Yunnan People’s Press, 97–100. [6] 陈隆勋, 朱乾根, 罗会邦, 等. 1991. 东亚季风[M]. 北京: 气象出版社, 362pp.Chen Longxun, Zhu Qiangen, Luo Huibang, et al. 1991. East Asian Monsoon (in Chinese) [M]. Beijing: China Meteorological Press, 362pp. [7] Diem J E, Brown D P. 2006. Tropospheric moisture and monsoonal rainfall over the southwestern United States [J]. J. Geophys. Res.: Atmos, 111(D16): D16112. doi: 10.1029/2005jd006836 [8] Dirmeyer P A, Schlosser C A, Brubaker K L. 2009. Precipitation, recycling, and land memory: An integrated analysis [J]. Journal of Hydrometeorology, 10(1): 278−288. doi: 10.1175/2008JHM1016.1 [9] Dominguez F, Kumar P, Liang X Z, et al. 2006. Impact of atmospheric moisture storage on precipitation recycling [J]. J. Climate, 19(8): 1513−1530. doi: 10.1175/JCLI3691.1 [10] Drumond A, Nieto R, Gimeno L. 2011. Sources of moisture for China and their variations during drier and wetter conditions in 2000–2004: A Lagrangian approach [J]. Climate Research, 50(2-3): 215−225. doi: 10.3354/cr01043 [11] Drumond A, Marengo J, Ambrizzi T, et al. 2014. The role of the Amazon Basin moisture in the atmospheric branch of the hydrological cycle: A Lagrangian analysis [J]. Hydrology and Earth System Sciences, 18(7): 2577−2598. doi: 10.5194/hess-18-2577-2014 [12] Gimeno L, Drumond A, Nieto R, et al. 2010. On the origin of continental precipitation [J]. Geophys. Res. Lett., 37(13): L13804. doi: 10.1029/2010GL043712 [13] He J H, Sun C H, Liu Y Y, et al. 2007. Seasonal transition features of large-scale moisture transport in the Asian–Australian monsoon region [J]. Advances in Atmospheric Sciences, 24(1): 1−14. doi: 10.1007/s00376-007-0001-5 [14] 黄荣辉, 张振洲, 黄刚, 等. 1998. 夏季东亚季风区水汽输送特征及其与南亚季风区水汽输送的差别 [J]. 大气科学, 22(4): 460−469. doi: 10.3878/j.issn.1006-9895.1998.04.08Huang Ronghui, Zhang Zhenzhou, Huang Gang, et al. 1998. Characteristics of the water vapor transport in East Asian monsoon region and its difference from that in South Asian monsoon region in summer [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 22(4): 460−469. doi: 10.3878/j.issn.1006-9895.1998.04.08 [15] 黄荣辉, 顾雷, 陈际龙, 等. 2008. 东亚季风系统的时空变化及其对我国气候异常影响的最近研究进展 [J]. 大气科学, 32(4): 691−719. doi: 10.3878/j.issn.1006-9895.2008.04.02Huang Ronghui, Gu Lei, Chen Jilong, et al. 2008. Recent progresses in studies of the temporal–spatial variations of the East Asian monsoon system and their impacts on climate anomalies in China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(4): 691−719. doi: 10.3878/j.issn.1006-9895.2008.04.02 [16] 蒋兴文, 李跃清. 2009. 长江流域地区水汽输送及其对旱涝影响研究综述 [J]. 气象科学, 29(1): 138−142. doi: 10.3969/j.issn.1009-0827.2009.01.024Jiang Xingwen, Li Yueqing. 2009. The review of water vapor transportation and its effects on drought and flood over China [J]. Scientia Meteorologica Sinica (in Chinese), 29(1): 138−142. doi: 10.3969/j.issn.1009-0827.2009.01.024 [17] 江志红, 梁卓然, 刘征宇, 等. 2011. 2007年淮河流域强降水过程的水汽输送特征分析 [J]. 大气科学, 35(2): 361−372. doi: 10.3878/j.issn.1006-9895.2011.02.14Jiang Zhihong, Liang Zhuoran, Liu Zhengyu, et al. 2011. A diagnostic study of water vapor transport and budget during heavy precipitation over the Huaihe River basin in 2007 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35(2): 361−372. doi: 10.3878/j.issn.1006-9895.2011.02.14 [18] Li L T, Dolman A J, Xu Z X. 2016. Atmospheric moisture sources, paths, and the quantitative importance to the eastern Asian monsoon region [J]. Journal of Hydrometeorology, 17(2): 637−649. doi: 10.1175/JHM-D-15-0082.1 [19] 林爱兰, 谷德军, 郑彬, 等. 2014. 广东前汛期暴雨水汽输送异常变化特征 [J]. 热带气象学报, 30(6): 1001−1010. doi: 10.3969/j.issn.1004-4965.2014.06.001Lin Ailan, Gu Dejun, Zheng Bin, et al. 2014. Anomalous transport of water vapor for sustained torrential rain and its variation [J]. J. Trop. Meteor. (in Chinese), 30(6): 1001−1010. doi: 10.3969/j.issn.1004-4965.2014.06.001 [20] NOAA ARL. 2011. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) [EB/OL]. National Oceanic and Atmospheric Administration, Air Resources Laboratory, https://ready.arl.noaa.gov/HYSPLIT.php [2021-03-05]. [21] Perry L B, Konrad C E, Schmidlin T W. 2007. Antecedent upstream air trajectories associated with northwest flow snowfall in the southern Appalachians [J]. Wea. Forecasting, 22(2): 334−352. doi: 10.1175/WAF978.1 [22] 邱金晶, 孙照渤. 2013. 夏季索马里越赤道气流垂直结构的变化特征及其与东亚夏季风活动的关系 [J]. 大气科学, 37(5): 1129−1142. doi: 10.3878/j.issn.1006-9895.2013.12174Qiu Jinjing, Sun Zhaobo. 2013. Variation characteristics of the vertical structure of the summer Somali cross-equatorial flow and its relationship with East Asia summer monsoon activity [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(5): 1129−1142. doi: 10.3878/j.issn.1006-9895.2013.12174 [23] Salih A A M, Zhang Q, Tjernström M. 2015. Lagrangian tracing of Sahelian Sudan moisture sources [J]. J. Geophys. Res.: Atmos., 120(14): 6793−6808. doi: 10.1002/2015JD023238 [24] 沈如桂, 黄更生. 1981.1980年夏季热带季风环流与我国南方降水水汽输送关系[C]//全国热带夏季风学术会议文集. 昆明: 云南人民出版社, 116–128.Shen Rugui, Huang Gengsheng. 1981. The relationship between summer tropical monsoon circulation and water vapor transport of precipitation in South China in 1980 [C]//Collected Works of National Academic Conference on Tropical Summer Monsoon (in Chinese). Kunming: Yunnan People’s Press, 116–128. [25] Shi Y, Jiang Z H, Liu Z Y, et al. 2020. A Lagrangian analysis of water vapor sources and pathways for precipitation in East China in different stages of the East Asian summer monsoon [J]. J. Climate, 33(3): 977−992. doi: 10.1175/JCLI-D-19-0089.1 [26] Sodemann H, Stohl A. 2009. Asymmetries in the moisture origin of Antarctic precipitation [J]. Geophys. Res. Lett., 36(22): L22803. doi: 10.1029/2009gl040242 [27] Stohl A, James P. 2004. A Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: Method description, validation, and demonstration for the August 2002 flooding in central Europe [J]. Journal of Hydrometeorology, 5(4): 656−678. doi:10.1175/1525-7541(2004)005<0656:ALAOTA>2.0.CO;2 [28] Stohl A, James P. 2005. A Lagrangian analysis of the atmospheric branch of the global water cycle. Part II: Moisture transports between earth’s ocean basins and river catchments [J]. Journal of Hydrometeorology, 6(6): 961−984. doi: 10.1175/JHM470.1 [29] 苏继峰, 周韬, 朱彬, 等. 2010. 2009年6月皖南梅雨暴雨诊断分析和水汽后向轨迹模拟 [J]. 气象与环境学报, 26(3): 34−38. doi: 10.3969/j.issn.1673-503X.2010.03.006Sun Jifeng, Zhou Tao, Zhu Bin, et al. 2010. Diagnostic analysis on Meiyu rainstorm and its simulation based on backward trajectory analysis method during June 2009 in the south of Anhui Province [J]. Journal of Meteorology and Environment (in Chinese), 26(3): 34−38. doi: 10.3969/j.issn.1673-503X.2010.03.006 [30] Sun B, Wang H J. 2014. Moisture sources of semiarid grassland in China using the Lagrangian Particle Model FLEXPART [J]. J. Climate, 27(6): 2457−2474. doi: 10.1175/JCLI-D-13-00517.1 [31] Sun B, Wang H J. 2015. Analysis of the major atmospheric moisture sources affecting three sub-regions of East China [J]. International Journal of Climatology, 35(9): 2243−2257. doi: 10.1002/joc.4145 [32] 孙妍, 栾猛, 蒋立, 等. 2011. 2010年7月吉林省暴雨诊断分析和水汽后向轨迹模拟 [J]. 安徽农业科学, 39(28): 17502−17503, 17513. doi: 10.3969/j.issn.0517-6611.2011.28.144Sun Yan, Luan Meng, Jiang Li, et al. 2011. Diagnostic analysis of rainstorm and backward trajectory simulation of water vapor in Jilin Province in July, 2010 [J]. Journal of Anhui Agricultural Sciences, 39(28): 17502−17503, 17513. doi: 10.3969/j.issn.0517-6611.2011.28.144 [33] 孙建华, 赵思雄, 傅慎明, 等. 2013. 2012年7月21日北京特大暴雨的多尺度特征 [J]. 大气科学, 37(3): 705−718. doi: 10.3878/j.issn.1006-9895.2013.12202Sun Jianhua, Zhao Sixiong, Fu Shenming, et al. 2013. Multi-scale characteristics of record heavy rainfall over Beijing area on July 21, 2012 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(3): 705−718. doi: 10.3878/j.issn.1006-9895.2013.12202 [34] Tao S Y, Chen L X. 1987. A review of recent research on the East Asian summer monsoon in China [M]//Chang C P, Krishnamurti T N. Monsoon Meteorology. Oxford: Oxford University Press, 60–92. [35] Wang B, Lin H, Zhang Y S, et al. 2004. Definition of South China Sea monsoon onset and commencement of the East Asia summer monsoon [J]. J. Climate, 17(4): 699−710. doi: 10.1175/2932.1 [36] 吴凡, 阙志萍, 龙余良. 2014. 2014年5月中旬江西地区暴雨天气过程水汽输送特征分析 [J]. 气象与减灾研究, 37(3): 17−22. doi: 10.3969/j.issn.1007-9033.2014.03.003Wu Fan, Que Zhiping, Long Yuliang. 2014. The characteristics of water vapor transportation during a rainstorm process in Jiangxi Province in May 2014 [J]. Meteorology and Disaster Reduction Research (in Chinese), 37(3): 17−22. doi: 10.3969/j.issn.1007-9033.2014.03.003 [37] 谢坤, 任雪娟. 2008. 华北夏季大气水汽输送特征及其与夏季旱涝的关系 [J]. 气象科学, 28(5): 508−514. doi: 10.3969/j.issn.1009-0827.2008.05.006Xie Kun, Ren Xuejuan. 2008. Climatological characteristics of atmospheric water vapor transport and its relation with rainfall over North China in summer [J]. Scientia Meteorologica Sinica (in Chinese), 28(5): 508−514. doi: 10.3969/j.issn.1009-0827.2008.05.006 -