Establishment and Application of a Physical Inspection Method for the Artificial Precipitation Enhancement Effect
-
摘要: 本文针对基于多源探测数据的人工增雨效果物理检验,建立对比区选取的相似性度量系数(APC,Analogy Deviation-Pearson Correlation Coefficient),建立人工增雨效果物理检验的无量纲化指数PIDI(Physical Inspection Dimensionless Index)方法。结果表明:(1)人工增雨效果物理检验PIDI指数方法,能够实现以相似性度量系数APC最大程度削减增雨作业催化云体及降水的自然变率影响,以无量纲化处理方法综合多种具有量纲差异的云物理探测参数,最终以一个百分数变化率的数值形式综合度量多种云物理参数的整体变化趋势及程度。(2)应用PIDI方法对2014~2019年24架次飞机增雨作业进行增雨效果物理检验。人工增雨催化引起作业后3 h的云顶温度、云粒子有效半径、光学厚度、液水路径、组合反射率、≥30 dBZ回波面积、垂直累积液态含水量7项指标平均变化率3.4%~19.6%。18次作业的小时降水量变化率呈0~58.3%的增雨效果,6次作业的小时降水量变化率呈−37.5%~0的减雨效果。多数增雨作业引起的云物理参数变化明显小于降水变化。(3)具有增雨正效果的18次增雨作业,人工催化引起多数作业的云顶温度、组合反射率、垂直累积液态含水量呈增加趋势,多数作业的云粒子有效半径、光学厚度、液水路径呈减小趋势。(4)利用飞机增雨个例对比PIDI指数方法与K值方法异同。对于降水量变化趋势的检验二者具有一致性。二者差别在于PIDI指数方法能够反映人工催化引起的所有检验指标平均变化率。Abstract: For a physical inspection of the artificial precipitation enhancement effect based on multi-source detection data, this study established the similarity measurement coefficient, APC (Analogy Deviation-Pearson Correlation Coefficient), of a contrast area selection and the dimensionless PIDI (Physical Inspection Dimensionless Index) index method for a physical inspection of the artificial precipitation enhancement effect. The results revealed the following: (1) The PIDI index method of a physical inspection for the artificial precipitation enhancement effect can minimize the variable influence of a seeding cloud body and precipitation with the similarity coefficient APC. In addition, a variety of dimensionless cloud physical detection parameters can be synthesized using a dimensionless method. Finally, the percentage change rate was used to measure the overall variations and the degree of various cloud physical parameters. (2) The PIDI index method was applied to inspect the precipitation enhancement effect of 24 aircraft from 2014 to 2019. The average change rate of seven indices (cloud top temperature, effective particle radius, optical thickness, liquid water path, combined reflectivity, ≥30 dBZ echo area, and vertical cumulative liquid water content) caused by artificial precipitation enhancement was 3.4%–19.6%. The change rate of hourly precipitation of 18 operations was 0–58.3%; the change rate of 6 operations was −37.5% to 0. The changes in the cloud physical parameters caused by most precipitation-increasing operations are smaller than the changes in precipitation. (3) For the 18 operations with a positive effect of precipitation enhancement, the cloud top temperature, combined reflectivity, and the vertical cumulative liquid water content for most operations were increased due to the artificial catalysis, effective particle radius, and optical thickness. Moreover, the liquid water path for most operations was decreased by artificial catalysis. (4) The PIDI index and K-value methods were compared using an aircraft precipitation enhancement operation. For the test of precipitation variation trend, the two methods were consistent. The main difference was that the PIDI index method could reflect the average change rate of all inspection indices caused by artificial catalysis.
-
图 3 2014~2019年(a1–a24)24架次飞机增雨作业飞机航线、0~3 h逐小时影响区和对比区的三维地理空间配置。红色实线为飞机航线;空中蓝色、橘黄色区域分别为影响区、对比区;地面蓝色、橘黄色区域分别为空中影响区、对比区在地面上的投影
Figure 3. Three-dimensional geospatial configuration of the airline and 0–3 h hourly influence area and contrast area of (a1–a24) the 24 aircraft precipitation enhancement operations. The solid red lines represent the airline; the blue and orange areas in the air represent the influence area and contrast area, respectively; the blue and orange areas on the ground represent the ground projection of the influence area and contrast area in the air, respectively
图 4 (a1–a12)日间个例的物理检验各指标PIDIi及综合指数PIDI。PIDI_ttop、PIDI_ref、PIDI_optn、PIDI_lwp、PIDI_CR、PIDI_30echo、PIDI_VIL、PIDI_rh分别表征影响区人工催化引起的云顶温度、云粒子有效半径、光学厚度、液水路径、组合反射率、≥30 dBZ回波面积、垂直累积液态含水量、小时降水量的变化率,PIDI表征影响区人工催化引起的前7项指标平均变化率
Figure 4. (a1–a12) PIDIi of each indicator and comprehensive index PIDI of physical inspection of diurnal cases. PIDI_ttop、PIDI_ref、PIDI_optn、PIDI_lwp、PIDI_CR、PIDI_30echo、PIDI_VIL、PIDI_rh represent the change rate of cloud top temperature, effective particle radius, optical thickness, liquid water path, combined reflectivity, ≥30dBZ echo area, vertical cumulative liquid water content, hourly precipitation of influence area due to artificial catalysis, respectively. PIDI represents the average change rate of the first seven indices of influence area due to artificial catalysis
图 5 (a1–a12)夜间个例的物理检验各指标PIDIi及综合指数PIDI。PIDI表征影响区人工催化引起的PIDI_ttop、PIDI_CR、PIDI_30echo、PIDI_VIL四项指标平均变化率)
Figure 5. (a1–a12) PIDIi of each indicator and comprehensive index PIDI of the physical inspections of the night cases. PIDI represents the average change rate of PIDI_ttop, PIDI_CR, PIDI_30echo, and PIDI_VIL of the influence area due to artificial catalysis
图 6 2017年10月1日(a)增雨作业PIDI综合指数与各指标K值的对比以及(b)PIDI_rh指数与小时降水量K值的对比。PIDI表示影响区人工催化引起的7项检验指标平均变化率;PIDI_rh表示影响区人工催化引起的小时降水量变化率;K_ttop、K_ref、K_optn、K_lwp、K_CR、K_30echo、K_VIL、K_rh分别表示影响区与对比区的云顶温度、云粒子有效半径、光学厚度、液水路径、组合反射率、≥30 dBZ组回波面积、垂直累积液态含水量、小时降水量的观测值比值;横坐标0表示催化结束时刻,0~3表示催化结束后的3小时时段
Figure 6. (a) Comparison of the PIDI and K value of each index; (b) comparison of the PIDI_rh and K value of the hourly precipitation of the precipitation enhancement operation on October 1, 2017. PIDI represents the average change rate of the seven indices of the influence area due to artificial catalysis; PIDI_rh represents the change rate of hourly precipitation of the influence area due to artificial catalysis; K_ttop、K_ref、K_optn、K_lwp、K_CR、K_30echo、K_VIL、K_rh represent the ratio of cloud top temperature, effective particle radius, optical thickness, liquid water path, combined reflectivity, ≥30 dBZ echo area, vertical cumulative liquid water content, hourly precipitation observed in the influence area to the contrast area, respectively; 0 on the x-coordinate represents the moment when seeding agent ends, 0–3 on the x-coordinate represents the 3 hours after seeding
表 1 对比区选取指标(序号1~7)、PIDI指数构成指标(序号1~8)的参数说明
Table 1. Parameter description of the contrast area selection index (numbers 1–7) and the constitution index of PIDI
序号 探测方式 探测或反演参数 定义 指导作用 单位 1 FY-2E/2G或FY-4A静止气象卫星 云顶温度(ttop) 云顶所在高度的温度 人工增雨云系播云温度窗的选择 °C 2 云粒子有效半径(ref) 指假设云层在垂直方向均匀条件下云粒子的有效半径 判断云中粒子大小,反映云可降水量 μm 3 云光学厚度(optn) 云系在整个路径上云消光总和 了解云系垂直方向云体厚实程度 无量纲 4 液水路径(lwp) 云体单位面积上的垂直方向液水总量(或称柱液水量) 了解垂直方向的云水丰沛程度 mm 5 多普勒天气
雷达组合反射率(CR) 气象雷达接收周围一定范围内不同高度云层反射雷达波的比率 反映雷达体扫对所有回波在对应格点上的最大反射率因子值 dBZ 6 ≥30 dBZ回波面积(30echo) 组合反射率数值≥30 dBZ面积大小 表示≥30 dBZ反射率的实际范围 km2 7 垂直累积液态含水量(VIL) 降水云体中某一确定面积的垂直柱体内液态水总量的分布 反映将反射率因子数据转换成等价液态水值 kg m−2 8 自动气象站 小时降水量(rh) 1小时内的总降水量 反映云降水结果的宏观及直观特征 mm 表 2 人工增雨作业过程合理性分析条件
Table 2. Reasonableness analysis condition of the artificial precipitation enhancement process
指标 要求 作业条件 (1)云系类型为层状云、层积混合云
(2)天气条件(降水云系)和水汽输送等适合增雨作业作业时机 (1)作业位于水汽含量、液态水含量充沛区域,作业区云层存在较强雷达回波
(2)作业云体存在过冷层,且具有一定厚度
(3)云顶温度<−10°C作业部位 (1)作业催化处于播云窗,利于催化剂最大核化
(2)航线设计合理,作业区具有一定面积且实现充分播撒催化剂量 催化剂量合理且充足,实现充分播撒 表 3 2014~2019年24架次飞机增雨作业信息
Table 3. Information of the 24 aircraft precipitation enhancement operations in Henan from 2014 to 2019
编号 作业日期 作业机型 催化时段
(北京时)催化时长
/h催化平均
高度/km催化剂量 催化区域 干冰
/kgAgI烟条
/根AgI焰弹
/发AgI烟管
/根19 20140823 运8 09:39~12:01 2.4 5.7 48 16 200 / 平顶山—许昌—漯河—南阳 20 20140823 运8 14:58~17:36 2.6 6.5 / 19 187 / 平顶山—许昌—漯河—周口—驻马店 21 20140826 运8 15:21~17:36 2.3 6.5 120 1 120 / 平顶山—许昌—漯河—周口—驻马店 56 20160507 运8 16:17~17:20 1.1 5.6 / 15 193 / 洛阳—焦作—郑州 58 20160520 运8 14:07~15:56 1.8 6.2 / 17 195 / 许昌—平顶山—漯河—周口—驻马店 65 20170404 运12 09:45~11:26 1.7 3.8 / 13 / / 平顶山—许昌 67 20170408 运12 10:39~11:42 1.1 4.5 / 13 / / 洛阳—焦作 69 20170410 运12 09:45~11:21 1.6 4.5 / 13 / / 洛阳—平顶山—南阳 72 20170924 MA60 14:02~17:10 3.1 5.3 / 20 180 / 南阳 73 20170925 MA60 11:57~14:59 3.0 6.2 / 18 194 / 南阳 75 20171001 MA60 11:10~12:00 0.8 6.2 / 26 191 / 南阳 76 20171001 MA60 17:19~19:43 2.4 6.2 / 37 175 / 南阳 78 20180124 MA60 09:50~11:50 2.0 4.2 / 16 182 / 平顶山—南阳 79 20180124 MA60 15:20~16:40 1.3 4.2 / 16 189 / 平顶山—漯河—南阳—驻马店 80 20180126 MA60 21:29~22:40 1.2 4.2 / 15 192 / 南阳 90 20181105 MA60 09:10~10:59 1.8 4.0 / / / 33 洛阳—南阳 91 20181105 MA60 14:55~17:25 2.5 4.3 / / / 37 洛阳—三门峡—平顶山 93 20181106 MA60 16:42~17:30 0.8 4.3 / / / 36 许昌—漯河—平顶山 94 20181107 MA60 15:11~17:35 2.4 4 / / / 35 平顶山—南阳 97 20181203 MA60 16:02~18:12 2.2 4 / / / 35 周口 99 20181210 MA60 16:18~18:15 2.0 2.7 / 24 183 / 漯河—周口—驻马店 100 20181219 MA60 14:11~16:00 1.8 4.2 / 16 187 / 南阳—驻马店 101 20181219 MA60 19:15~20:50 1.6 3.6 / 16 177 / 驻马店—南阳—信阳 105 20190226 MA60 15:15~16:50 1.6 4.2 / 18 / / 南阳 注:烟条AgI含量每根125 g及每根35 g两种规格;焰弹AgI含量每发3.6 g;烟管AgI含量每根12.5 g。 表 4 24次飞机增雨作业初选对比区APC系数、最佳对比区
Table 4. Coefficient APC of the primary contrast area, best contrast area of the 24 aircraft precipitation enhancement operations
作业号 APC系数值 最佳对比区
(APC最小值)作业号 APC系数值 最佳对比区
(APC最小值)对比区1 对比区2 对比区3 对比区4 对比区1 对比区2 对比区3 对比区4 19 13.13 10.25 10.28 8.57 对比区4 78 2.57 4.63 6.49 1.25 对比区4 20 18.73 33.65 11.74 / 对比区3 79 2.91 1.35 0.47 2.80 对比区3 21 4.26 2.44 1.84 / 对比区3 80 26.18 1.12 11.02 8.12 对比区2 56 160.70 45.47 8.39 / 对比区3 90 4.24 6.65 12.03 5.50 对比区1 58 16.01 26.02 / / 对比区1 91 4.41 6.04 3.98 / 对比区3 65 16.10 7.40 14.00 22.71 对比区2 93 4.84 5.18 5.00 7.95 对比区1 67 21.96 10.82 5.70 4.08 对比区4 94 10.99 40.59 2.51 / 对比区3 69 6.94 7.95 14.90 27.97 对比区1 97 1.57 13.39 1.56 6.38 对比区3 72 2.41 1.36 1.22 4.59 对比区3 99 47.67 11.45 2.28 2.02 对比区4 73 8.55 34.95 71.27 6.63 对比区4 100 1.86 8.88 2.15 / 对比区3 75 20.78 35.53 13.77 58.23 对比区3 101 11.93 3.39 30.10 11.09 对比区2 76 7.49 7.68 14.96 4.87 对比区1 105 6.62 4.60 176.70 23.16 对比区2 表 5 具有正效果的18次增雨作业的各检验指标PIDIi正负值统计
Table 5. Statistics of the positive and negative values of PIDIi of the 18 precipitation enhancement operations with positive effects
作业号 PIDI_
ttopPIDI_
refPIDI_
optnPIDI_
lwpPIDI_
CRPIDI_
30echoPIDI_
VILPIDI_
rh19 - - + + - + - + 20 - / / / + + + + 56 - / / / + + + + 58 + 0 - - 0 - 0 + 65 + - - - + + + + 67 - - - - - - + + 69 + - - - + + + + 72 + / / / + + + + 73 + - - - - + - + 75 - - + - - - - + 76 + / / / - - - + 78 + - - - + + + + 79 + + - - + - + + 80 + / / / + + - + 90 + - - + + + + + 91 0 / / / - - - + 94 + / / / + + + + 101 0 / / / - - - + 正值作业数 11 1 2 2 10 11 10 / 负值作业数 5 8 8 8 7 7 7 / 0值作业数 2 1 0 0 1 0 1 / 注:“+”表示数值为正值,“-”表示数值为负值,“/”表示不作统计数据。 表 6 PIDI方法与K值方法对比
Table 6. Comparison of PIDI method and K value method
物理检验方法 计算公式 单位 表征含义 PIDI指数方法 公式(9)和(10) 无 PIDIi表征影响区人工催化引起的某指标变化率;
PIDI表征影响区人工催化引起的所有检验指标平均变化率K值方法 $ K=\displaystyle\frac{A}{B} $
A为影响区某指标观测值;
B为对比区某指标观测值无 影响区与对比区的某指标观测值比值 -
[1] Brimelow J C, Reuter G W. 2005. Transport of atmospheric moisture during three extreme rainfall events over the Mackenzie River basin [J]. Journal of Hydrometeorology, 6(4): 423−440. doi: 10.1175/JHM430.1 [2] 蔡兆鑫, 周毓荃, 蔡淼. 2013. 一次积层混合云系人工增雨作业的综合观测分析 [J]. 高原气象, 32(5): 1460−1469. doi: 10.7522/j.issn.1000-0534.2012.00115Cai Zhaoxin, Zhou Yuquan, Cai Miao. 2013. Analysis on comprehensive observation of artificial precipitation enhancement operation for a convective-stratiform mixed cloud [J]. Plateau Meteorology (in Chinese), 32(5): 1460−1469. doi: 10.7522/j.issn.1000-0534.2012.00115 [3] 陈英英. 2007. 利用FY-2C静止卫星资料反演云微物理参数的试验研究 [D]. 南京信息工程大学硕士学位论文. Chen Yingying. 2007. Experimental research of the retrieval of cloud microphysical parameters by FY-2C geostationary satellite data [D]. M. S. thesis (in Chinese), Nanjing University of Information Science & Technology. [4] 官福顺. 2008. 博弈论与人工影响天气效果评估初探[C]//中国气象学会2008年年会大气物理学分会场论文集. 北京: 中国气象学会, 131–137Guan Fushun. 2008. Preliminary study on game theory and artificial influence weather effect evaluation [C]//Proceedings of 2008 Annual Meeting of the Chinese Meteorological Society (in Chinese). Beijing: Chinese Meteorological Society, 131–137. [5] 国家气象中心. 2007. 卫星监测及反演产品在人工增雨效果检验中的应用初探[C]//中国气象学会2007年年会气象综合探测技术分会场论文集. 广州: 中国气象学会, 361–364National Meteorological Center. 2007. Preliminary study on the application of satellite monitoring and inversion products in artificial precipitation effect inspection [C]//Proceedings of 2007 Annual Meeting of Chinese Meteorological Society on Integrated Meteorological Sounding Technology (in Chinese). Beijing: Chinese Meteorological Society, 361–364. [6] 郭学良. 2010. 大气物理与人工影响天气[M]. 北京: 气象出版社, 618–620Guo Xueliang. 2010. Atmospheric Physics and Weather Modification (in Chinese) [M]. Beijing: China Meteorological Press, 618–620. [7] Gustafsson M, Rayner D, Chen D L. 2010. Extreme rainfall events in southern Sweden: Where does the moisture come from? [J]. Tellus A, 62(5): 605−616. doi: 10.1111/j.1600-0870.2010.00456.x [8] 黄毅梅. 2006. 卫星反演云物理参数研究及其在人工影响天气中的应用 [D]. 兰州大学硕士学位论文. Huang Yimei. 2006. The cloud physical parameters are retrieved by using satellite data and their applications in weather modification [D]. M. S. thesis (in Chinese), Lanzhou University. [9] 贾烁, 姚展予. 2016. 江淮对流云人工增雨作业效果检验个例分析 [J]. 气象, 42(2): 238−245. doi: 10.7519/j.issn.1000-0526.2016.02.012Jia Shuo, Yao Zhanyu. 2016. Case study on the convective clouds seeding effects in Yangtze-Huaihe region [J]. Meteorological Monthly (in Chinese), 42(2): 238−245. doi: 10.7519/j.issn.1000-0526.2016.02.012 [10] 李开乐. 1986. 相似密度及其使用技术 [J]. 气象学报, 44(2): 174−183. doi: 10.11676/qxxb1986.024Li Kaile. 1986. A new similarity parameter and its application [J]. Acta Meteor. Sinica (in Chinese), 44(2): 174−183. doi: 10.11676/qxxb1986.024 [11] 李荣平, 李剑玲. 2004. 多指标统计综合评价方法研究 [J]. 河北科技大学学报, 25(1): 85−88. doi: 10.3969/j.issn.1008-1542.2004.01.024Li Rongping, Li Jianling. 2004. Research on regional technique creativity and vires evaluation method [J]. Journal of Hebei University of Science and Technology (in Chinese), 25(1): 85−88. doi: 10.3969/j.issn.1008-1542.2004.01.024 [12] 李大山, 章澄昌, 许焕斌, 等. 2002. 人工影响天气现状与展望[M]. 北京: 气象出版社, 345–350Li Dashan, Zhang Chengchang, Xu Huanbin, et al. 2002. Current Situation and Prospect of Weather Modification (in Chinese) [M]. Beijing: China Meteorological Press, 345–350. [13] 李宏彬, 赫光中, 果秋婷. 2015. 基于皮尔逊相关系数的有机质谱相似性检索方法 [J]. 化学分析计量, 24(3): 33−37. doi: 10.3969/j.issn.1008-6145.2015.03.009Li Hongbin, He Guangzhong, Guo Qiuting. 2015. Similarity retrieval method of organic mass spectrometry based on the Pearson correlation coefficient [J]. Chemical Analysis and Meterage (in Chinese), 24(3): 33−37. doi: 10.3969/j.issn.1008-6145.2015.03.009 [14] 李玲玉, 郭亚军, 易平涛. 2016. 无量纲化方法的选取原则 [J]. 系统管理学报, 25(6): 1040−1045.Li Lingyu, Guo Yajun, Yi Pingtao. 2016. Analyzing the principles for choosing dimensionless methods [J]. Journal of Systems & Management (in Chinese), 25(6): 1040−1045. [15] 林丹, 王维佳. 2015. 一次飞机增雨作业的云参数变化响应分析 [J]. 高原山地气象研究, 35(1): 67−73. doi: 10.3969/j.issn.1674-2184.2015.01.011Lin Dan, Wang Weijia. 2015. Case analysis of satellite-retrieved cloud parameters of artificial precipitation enhancement operation [J]. Plateau and Mountain Meteorology Research (in Chinese), 35(1): 67−73. doi: 10.3969/j.issn.1674-2184.2015.01.011 [16] 刘晴, 姚展予. 2013. 飞机增雨作业物理检验方法探究及个例分析 [J]. 气象, 39(10): 1359−1368. doi: 10.7519/j.issn.1000-0526.2013.10.015Liu Qing, Yao Zhanyu. 2013. On physical eveluation of aircraft cloud seeding and case study [J]. Meteorological Monthly (in Chinese), 39(10): 1359−1368. doi: 10.7519/j.issn.1000-0526.2013.10.015 [17] Rosenfeld D, Woodley W L. 1993. Effects of cloud seeding in west texas: Additional results and new insights [J]. J. Appl. Meteor., 32(12): 1848−1866. doi: 10.1175/1520-0450(1993)032<1848:EOCSIW>2.0.CO;2 [18] 盛裴轩, 毛节泰, 李建国, 等. 2003. 大气物理学[M]. 北京: 北京大学出版社, 315ppSheng Peixuan, Mao Jietai, Li Jianguo, et al. 2003. Atmospheric Physics (in Chinese) [M]. Beijing: Peking University Press, 315pp. [19] 苏为华. 2000. 多指标综合评价理论与方法问题研究 [D]. 厦门大学博士学位论文. Su Weihua. 2000. Research on the theory and method of multi-index comprehensive evaluation [D]. Ph. D. dissertation (in Chinese), Xiamen University. [20] 唐仁茂, 向玉春, 叶建元, 等. 2009. 多种探测资料在人工增雨作业效果物理检验中的应用 [J]. 气象, 35(8): 70−75. doi: 10.7519/j.issn.1000-0526.2009.8.008Tang Renmao, Xiang Yuchun, Ye Jianyuan, et al. 2009. Application of data observed by several instruments in effective verification of artificial precipitation enhancement [J]. Meteorological Monthly (in Chinese), 35(8): 70−75. doi: 10.7519/j.issn.1000-0526.2009.8.008 [21] 唐仁茂, 袁正腾, 向玉春, 等. 2010. 依据雷达回波自动选取对比云进行人工增雨效果检验的方法 [J]. 气象, 36(4): 96−100. doi: 10.7519/j.issn.1000-0526.2010.4.017Tang Renmao, Yuan Zhengteng, Xiang Yuchun, et al. 2010. A method for selecting contrast cloud automatically based on radar echo in effectiveness evaluation of rain enhancement [J]. Meteorological Monthly (in Chinese), 36(4): 96−100. doi: 10.7519/j.issn.1000-0526.2010.4.017 [22] 王佳津, 王春学, 陈朝平, 等. 2015. 基于HYSPLIT4的一次四川盆地夏季暴雨水汽路径和源地分析 [J]. 气象, 41(11): 1315−1327. doi: 10.7519/j.issn.1000-0526.2015.11.002Wang Jiajin, Wang Chunxue, Chen Chaoping, et al. 2015. Analysis of a summer rainstorm water vapor paths and sources in Sichuan basin based on HYSPLIT4 model [J]. Meteorological Monthly (in Chinese), 41(11): 1315−1327. doi: 10.7519/j.issn.1000-0526.2015.11.002 [23] 王以琳, 姚展予, 林长城. 2018. 人工增雨作业前后不同高度雷达回波分析 [J]. 干旱气象, 36(4): 644−651. doi: 10.11755/j.issn.1006-7639(2018)-04-0644Wang Yilin, Yao Zhanyu, Lin Changcheng. 2018. Analysis of radar echoes at different heights before and after precipitation enhancement [J]. Journal of Arid Meteorology (in Chinese), 36(4): 644−651. doi: 10.11755/j.issn.1006-7639(2018)-04-0644 [24] 辛乐. 2010. 人工增雨效果物理检验应用技术研究及个例分析 [D]. 中国气象科学研究院硕士学位论文. Xin Le. 2010. Studies on the application technology of artificial precipitation effort evaluation and case studies [D]. M. S. thesis (in Chinese), Chinese Academy of Meteorological Sciences. [25] 周毓荃, 陈英英, 李娟, 等. 2008. 用FY-2C/D卫星等综合观测资料反演云物理特性产品及检验 [J]. 气象, 34(12): 27−35. doi: 10.7519/j.issn.1000-0526.2008.12.004Zhou Yuquan, Chen Yingying, Li Juan, et al. 2008. Retrieval and preliminary test of cloud physical parameters from combination of FY-2C/D geostationary satellite data and other observation data [J]. Meteorological Monthly (in Chinese), 34(12): 27−35. doi: 10.7519/j.issn.1000-0526.2008.12.004 [26] 祝晓芸. 2016. 江西省对流云火箭增雨作业效果检验技术方法研究 [D]. 中国气象科学研究院硕士学位论文. Zhu Xiaoyun. 2016. Technical methods study of convective clouds seeding effects in Jiangxi province by rockets [D]. M. S. thesis (in Chinese), Chinese Academy of Meteorological Sciences. -