高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2020年6~7月西南地区东部降水异常偏多的水汽输送特征

李永华 周杰 何卷雄 卢楚翰 向波

李永华, 周杰, 何卷雄, 等. 2021. 2020年6~7月西南地区东部降水异常偏多的水汽输送特征[J]. 大气科学, 45(6): 1−17 doi: 10.3878/j.issn.1006-9895.2105.21002
引用本文: 李永华, 周杰, 何卷雄, 等. 2021. 2020年6~7月西南地区东部降水异常偏多的水汽输送特征[J]. 大气科学, 45(6): 1−17 doi: 10.3878/j.issn.1006-9895.2105.21002
LI Yonghua, ZHOU Jie, HE Juanxiong, et al. 2021. Characteristics of Water Vapor Transport Associated with Abnormal Precipitation over the East of Southwestern China in June and July 2020 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(6): 1−17 doi: 10.3878/j.issn.1006-9895.2105.21002
Citation: LI Yonghua, ZHOU Jie, HE Juanxiong, et al. 2021. Characteristics of Water Vapor Transport Associated with Abnormal Precipitation over the East of Southwestern China in June and July 2020 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(6): 1−17 doi: 10.3878/j.issn.1006-9895.2105.21002

2020年6~7月西南地区东部降水异常偏多的水汽输送特征

doi: 10.3878/j.issn.1006-9895.2105.21002
基金项目: 国家自然科学基金项目41875111,国家重点研发计划项目2018YFE0196000,国家自然科学基金项目42075008、40975058
详细信息
    作者简介:

    李永华,男,1972年出生,博士,正研级高工,主要从事气候诊断预测及区域气候变化研究。E-mail: lyhcq@163.com

    通讯作者:

    周杰,E-mail: zhoujie1226@126.com

  • 中图分类号: P461

Characteristics of Water Vapor Transport Associated with Abnormal Precipitation over the East of Southwestern China in June and July 2020

Funds: National Natural Science Foundation of China (Grant 41875111), National Key Research and Development Program of China (Grant 2018YFE0196000), National Natural Science Foundation of China (Grants 42075008, 40975058)
  • 摘要: 利用1961~2020年西南地区东部118个气象站逐日降水量资料和1979~2020年欧洲中期天气预报中心(ECMWF)的ERA5逐月再分析资料以及美国气象环境预报中心和美国国家大气研究中心(NCEP/NCAR)提供的逐6 h全球再分析资料,采用相关、回归、聚类、混合单粒子拉格朗日综合轨迹(HYSPLITv5.0)模型模拟等方法对2020年6~7月西南地区东部降水异常偏多特征、大尺度水汽输送特征及水汽收支状况和主要水汽源地及贡献等进行了分析,定义了关键区水汽强度指标,分析了关键区水汽强度与海温的联系。结果表明,2020年6~7月西南地区东部平均降水量异常偏多5成,为1961年以来最多,除贵州中部和四川东北部的局部地区降水较常年略偏少外,其余地区降水均较常年明显偏多。2020年6~7月200 hPa上高空急流位置偏南,西南地区东部正好位于急流轴以南地区,高层强辐散流出,低层强辐合流入,配合从低层到高层的深厚的强烈的垂直运动,为降水提供了良好的动力条件,而西太平洋副热带高压(副高)明显西伸,有利于其西南侧的暖湿气流向西南地区东部输送,使得该区域降水偏多。采用拉格朗日方法计算的定量的水汽轨迹追踪结果表明2020年6~7月西南地区东部降水的水汽路径70.5%来自于孟加拉湾、南海和阿拉伯海等南方路径,17.6%来自于北方路径,11.9%来自于局地。前冬赤道中东太平洋海温偏高和热带印度洋全区海温偏高,西太平洋副高明显偏西、偏强,孟加拉湾和南海地区为东风距平,有利于南海地区向西的水汽偏强,不利于孟加拉湾地区向东的水汽输送;与此同时,菲律宾至我国南海附近为异常反气旋,使得中南半岛北部地区为偏南风距平,有利于中南半岛北部地区向北的水汽输送偏强,共同造成该地区降水偏多。
  • 图  1  西南地区东部118个气象站点分布

    Figure  1.  The distribution of 118 meteorological stations over the East of SouthWestern China (ESWC)

    图  2  2020年6~7月西南地区东部(a)降水量(单位:mm)及(b)降水距平百分率的空间分布

    Figure  2.  (a) Spatial distribution of precipitation (units: mm) and (b) percentage of precipitation anomaly over the ESWC in June and July 2020

    图  3  西南地区东部(a)1961~2020年6~7月降水距平百分率及(b)2020年6~7月逐日平均降水量(单位:mm)变化,(b)中红色圆点所在日期代表区域暴雨过程的发生日期

    Figure  3.  Time series of (a) the average percentage of precipitation anomaly in June and July during 1961–2020 and (b) daily average precipitation from June to July in 2020 (units: mm) over the ESWC. The date of the red dot in (b) represents the occurrence date of the regional heavy rainfall events

    图  4  2020年6~7月平均大气环流形势:(a)200 hPa纬向风距平(阴影,单位:m s−1;绿线为气候态30 m s−1等值线,蓝线为2020年6~7月平均30 m s−1等值线);(b)500 hPa位势高度场距平(阴影,单位:gpm)及风场距平(矢量,单位:m s−1;绿线为气候态5880线,蓝线为2020年6~7月平均5880线);(c)850 hPa风场距平(矢量,单位:m s−1)和垂直速度场(阴影,单位:Pa s−1);(d)区域平均的垂直速度高度—时间剖面(单位:10−1 Pa s−1)。(a–c)中黑色矩形框代表西南地区东部位置,(c)中灰色阴影代表850 hPa地形

    Figure  4.  Characteristics of the average atmospheric circulation during June–July 2020: (a) 200-hPa zonal wind anomaly (shaded, units: m s−1; the green line is the 30 m s−1 isoline in the climatological mean; the blue line is an average 30 m s−1 isoline in June to July 2020); (b) 500-hPa geopotential height field anomaly (shaded, units: gpm) and wind field anomaly (vectors, units: m s−1; the green line is the 5880 isoline in the climatological mean and the blue line is the average 5880 isoline in June and July 2020); (c) wind field anomaly (vectors, units: m s−1) and vertical velocity field (shaded units: Pa s−1) at 850 hPa; (d) regional average of vertical velocity height-time profile (units: 10−1 Pa s−1). The black rectangular frame in (a–c) shows the location of the ESWC, the shaded gray areas in (c) represent the 850-hPa terrain.)

    图  5  2020年6~7月平均整层水汽异常情况:(a)水汽输送矢量场(单位:kg m−1 s−1);(b)水汽输送异常场(单位:kg m−1 s−1);(c)水汽通量散度异常场(单位:10−5 kg m−2 s−1)。图中黑色矩形框代表西南地区东部的位置

    Figure  5.  Anomalous water vapor integrated from the whole layer in June–July 2020: (a) Water vapor transport (units: kg m−1 s−1), (b) anomalous water vapor transport (units: kg m−1 s−1), and (c) anomalous divergence (units: 10−5 kg m−2 s−1). Black rectangular frame shows the location of the ESWC

    图  6  2020年6~7月平均整层(a)水汽通量流函数(阴影,单位106 kg s−1)、非辐散分量(矢量,单位:kg m−1 s−1)以及(b)势函数(阴影,单位:106 kg s−1)及辐散分量(矢量,单位:kg m−1 s−1)分布

    Figure  6.  Distribution of (a) integrated stream function (shaded, units: 106 kg s−1) and its nondivergent component (vectors, units: kg m−1 s−1) and the distribution of potential function (shaded, units: 106 kg s−1) and its divergent component (vectors, units: kg m−1 s−1) of the water vapor transport in June–July 2020

    图  7  2020年6月1日至7月31日(a)水汽轨迹聚类空间方差增长率、(b)水汽通道空间分布及占比、(c)水汽通道的高度变化(单位:hPa)以及(d)水汽通道的通量的变化(单位:g cm-1 hPa-1 s-1

    Figure  7.  (a) Change in the TVS (total spatial variance) as clusters combined, (b) spatial distribution of water vapor passages, (c) change in the height of vapor passages (units: hPa), and (d) change in the water vapor flux of vapor passages (units: g cm-1 hPa-1 s-1) from June 1 to July 31, 2020

    图  8  1979~2020年6~7月平均整层水汽输送的空间分布(单位:kg m−1 s−1)。图中黑色矩形框分别为水汽强度指标选取的4个区域,从西到东依次是:区域1(0°~20°N,50°~80°E)、区域2(0°~20°N,80°~100°E)、区域3(15°~25°N,100°~110°E)、区域4(5°~20°N,110°~120°E)

    Figure  8.  Spatial distribution of the average water vapor transport in June–July from 1979 to 2020 (units: kg m−1 s−1). Black rectangular boxes in the figure are the four areas selected for the water vapor intensity index, which are in turn from west to east: Zone 1 (0°–20°N, 50°–80°E), zone 2 (0°–20°N, 80°–100°E), zone 3 (15°–25°N, 100°–110°E), zone 4 (5°–20°N, 110°–120°E))

    图  9  不同水汽强度指标与(a–c)前冬和(e–g)5~7月海平面温度(SST)的相关分布(深、浅阴影区分别代表通过0.01和0.05的显著性水平检验)以及(d)2019/2020年冬季和(h)2020年5~7月海表温度异常(SSTA)的空间分布(单位:℃):(a、e)孟加拉湾纬向水汽强度指标;(b、f)中南半岛北部经向水汽强度指标;(c、g)南海纬向水汽强度指标

    Figure  9.  Correlation distribution between different water vapor intensity indexes and the SST (Surface Sea Temperature) in (a–c) previous winter and in (e–g) MJJ (May–June–July), the dark and light shaded areas represent passing the significance test of 0.01 and 0.05, respectively; spatial distribution of SSTA (Surface Sea Temperature Anomaly) in (d) the winter of 2019/2020 and in (h) MJJ of 2020 (units: ℃): (a, e) The Bay of Bengal meridional water vapor intensity index; (b, f) North Indo-China zonal water vapor intensity index; (c, g) South China Sea zonal water vapor intensity index

    图  10  不同水汽强度指标与Niño3.4、IOBW和IOBW(去掉冬季平均的Niño3.4)的超前滞后相关系数曲线图:(a)孟加拉湾纬向水汽强度指标;(b)中南半岛北部经向水汽强度指标;(c)南海纬向水汽强度指标。图中灰色虚线为0.05显著性水平检验线

    Figure  10.  Lead–lag correlation coefficient between different water vapor intensity indexes and Niño3.4, IOBW (Indian Ocean Basin-Wide), and IOBW (excluding the average Niño3.4 in winter): (a) Bay of Bengal meridional water vapor intensity index; (b) North Indo-China zonal water vapor intensity index; (c) South China Sea zonal water vapor intensity index (the gray dotted line is the 0.05 significance test line)

    图  11  (a)前冬Niño3.4区海温指数和(b)5~7月IOBW指数与6~7月平均的500 hPa位势高度场的回归系数(单位:gpm ℃-1,图中深浅阴影区分别代表通过0.01和0.05的显著性水平检验的区域,图中红色矩形框为西南地区东部位置)

    Figure  11.  Regression coefficient (units: gpm ℃-1) of the average geopotential height field of 500 hPa during June–July using (a) the Niño3.4 SST index in the previous winter and (b) IOBW index in MJJ. The dark and light shaded areas represent the areas that have passed the significance test of 0.01 and 0.05, respectively, and the red rectangular box is the location of the ESWC

    图  12  (a)前冬Niño3.4区海温指数和(b)5~7月IOBW指数与6~7月平均的850 hPa风场的回归系数(单位:m s-1-1,图中深浅阴影区分别代表通过0.01和0.05的显著性水平检验的区域,图中红色矩形框为西南地区东部位置)

    Figure  12.  Regression coefficient (units: m s-1-1) of the average wind field of 850 hPa during June–July using (a) the Niño3.4 SST index in the previous winter and (b) the IOBW index in MJJ. The dark and light shaded areas represent the areas that have passed the significance test of 0.01 and 0.05, respectively, and the red rectangular box is the location of the ESWC

    表  1  2020年6~7月西南地区东部的区域性暴雨事件

    Table  1.   The regional heavy rainfall events over the ESWC from June to July 2020

    序号日期暴雨事件特征量
    极端强度/mm累积强度/mm累积面积
    /104 km2
    最大面积
    /104 km2
    持续时间/d综合指数综合强度
    16月2日87.7138.09.419.4110.08轻度
    26月17日109.0257.38.58.510.18轻度
    36月21~22日149.3427.412.468.1320.83中度
    46月27日124.51093.118.2518.2511.39中度
    56月30日至7月1日205.1460.110.035.7420.88中度
    67月16~17日191.41672.927.6218.2322.94重度
    77月26日262.21096.622.3322.3312.32重度
    注:表1中综合指数和综合强度的定义详见周杰等(2021)的研究。
    下载: 导出CSV

    表  2  2020年6~7月西南地区东部各边界和区域水汽收支(单位:105 kg s−1

    Table  2.   Water vapor budget through the four boundaries of the ESWC and the regional net water vapor budget (units: 105 kg s−1) in June–July 2020

    水汽收支/105 kg s−1
    西边界东边界南边界北边界区域收支
    2020年313.09−849.571030.35−134.87359.00
    19812010年平均184.32−450.31676.16−184.81225.36
    下载: 导出CSV

    表  3  各水汽通道轨迹总数、比湿和水汽通量贡献率以及假相当位温

    Table  3.   Total number of trajectories, contribution of specific humidity, and water vapor flux from vapor passages and potential pseudo-equivalent temperature

    物理量阿拉伯海通道孟加拉湾通道南海通道局地西北通道1西北通道2
    轨迹总数/条139819001287775524623
    比湿贡献率21.89%30.36%24.37%13.45%5.47%4.45%
    水汽通量贡献率30.41%31.13%20.89%9.57%4.55%3.45%
    假相当位温/K352.11350.40351.70347.35339.39333.65
    下载: 导出CSV

    表  4  各关键区水汽强度指标和风场强度指标与西南地区东部6~7月降水量的相关系数

    Table  4.   Correlation coefficient between the water vapor intensity index (wind field intensity index) in key areas and precipitation in the ESWC in June and July

    水汽指标水汽场指标与降水相关系数风场指标风场指标与降水相关系数
    阿拉伯海纬向水汽强度0.04阿拉伯海纬向风强度−0.18
    阿拉伯海经向水汽强度−0.08阿拉伯海经向风强度−0.17
    孟加拉湾纬向水汽强度−0.58**孟加拉湾纬向风强度−0.56**
    孟加拉湾经向水汽强度0.06孟加拉湾经向风强度0.01
    中南半岛北部纬向水汽强度−0.01中南半岛北部纬向风强度−0.11
    中南半岛北部经向水汽强度0.64**中南半岛北部经向风强度0.63**
    南海纬向水汽强度−0.58**南海纬向风强度−0.57**
    南海经向水汽强度−0.19南海经向风强度0.02
    **表示通过0.01的显著性水平检验。
    下载: 导出CSV
  • [1] 陈红专, 叶成志, 陈静静, 等. 2019. 2017年盛夏湖南持续性暴雨过程的水汽输送和收支特征分析 [J]. 气象, 45(9): 1213−1226. doi: 10.7519/j.issn.1000-0526.2019.09.003

    Chen Hongzhuan, Ye Chengzhi, Chen Jingjing, et al. 2019. Analysis of water vapor transport and budget during persistent heavy rainfall over Hunan Province in June 2017 [J]. Meteor. Mon., 45(9): 1213−1226. doi: 10.7519/j.issn.1000-0526.2019.09.003
    [2] Chu Q C, Wang Q G, Feng G L. 2017. Determination of the major moisture sources of cumulative effect of torrential rain events during the preflood season over South China using a Lagrangian particle model [J]. J. Geophys. Res., 122(16): 8369−8382. doi: 10.1002/2016JD026426
    [3] Chu Q C, Wang Q G, Feng G L. 2020. The roles of moisture transports in intraseasonal precipitation during the preflood season over South China [J]. Int. J. Climatol., 40(4): 2239−2252. doi: 10.1002/joc.6329
    [4] Chu Q C, Zhi R, Wang Q G, et al. 2019. Roles of moisture sources and transport in precipitation variabilities during boreal summer over East China [J]. Climate Dyn., 53(9): 5437−5457. doi: 10.1007/s00382-019-04877-z
    [5] 丁一汇. 1989. 天气动力学中的诊断分析方法[M]. 北京: 科学出版社, 293

    Ding Yihui. 1989. Diagnostic Analysis Method in Synoptic Dynamics (in Chinese)[M]. Beijing: China Science Press, 293.
    [6] 丁一汇, 胡国权. 2003. 1998年中国大洪水时期的水汽收支研究 [J]. 气象学报, 61(2): 129−145. doi: 10.3321/j.issn:0577-6619.2003.02.001

    Ding Yihui, Hu Guoquan. 2003. A study on water vapor budget over China during the 1998 severe flood periods [J]. Acta Meteor. Sinica, 61(2): 129−145. doi: 10.3321/j.issn:0577-6619.2003.02.001
    [7] Dong L L, Xu X D, Zhao T L, et al. 2019. Linkage between moisture transport over the Yangtze River basin and a critical area of the Tibetan Plateau during the Meiyu [J]. Climate Dyn., 53(5): 2643−2662. doi: 10.1007/s00382-019-04648-w
    [8] Draxler R R, Hess G D. 1998. An overview of the HYSPLIT_4 modelling system for trajectories, dispersion and deposition [J]. Aust. Meteor. Mag., 47(4): 295−308.
    [9] 何金海, 刘芸芸, 常越. 2005. 西北地区夏季降水异常及其水汽输送和环流特征分析 [J]. 干旱气象, 23(1): 10−16. doi: 10.3969/j.issn.1006-7639.2005.01.002

    He Jinhai, Liu Yunyun, Chang Yue. 2005. Analysis of summer precipitation anomaly and the feature of water vapor transport and circulation in Northwest China [J]. Arid Meteor., 23(1): 10−16. doi: 10.3969/j.issn.1006-7639.2005.01.002
    [10] Hersbach, H. , Bell, B. , Berrisford, P. , Biavati, G. , Horányi, A. , Muñoz Sabater, J. , Nicolas, J. , Peubey, C. , Radu, R. , Rozum, I. , Schepers, D. , Simmons, A. , Soci, C. , Dee, D. , Thépaut, J-N. 2019. ERA5 monthly averaged data on pressure levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on < 10-08-2020 >), 10.24381/cds. 6860a573
    [11] Huang, B. , Peter W. Thorne, Viva F. Banzon, Tim Boyer, Gennady Chepurin, Jay H. Lawrimore, Matthew J. Menne, Thomas M. Smith, Russell S. Vose, and Huai-Min Zhang. 2017. NOAA Extended Reconstructed Sea Surface Temperature (ERSST), Version 5. NOAA National Centers for Environmental Information. doi:10.7289/V5T72FNM [access date 15-10-2020].
    [12] 黄荣辉, 张振洲, 黄刚, 等. 1998. 夏季东亚季风区水汽输送特征及其与南亚季风区水汽输送的差别 [J]. 大气科学, 22(4): 460−469. doi: 10.3878/j.issn.1006-9895.1998.04.08

    Huang Ronghui, Zhang Zhenzhou, Huang Gang, et al. 1998. Characteristics of the water vapor transport in East Asian monsoon region and its difference from that in South Asian monsoon region in summer [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica), 22(4): 460−469. doi: 10.3878/j.issn.1006-9895.1998.04.08
    [13] 江志红, 梁卓然, 刘征宇, 等. 2011.2007年淮河流域强降水过程的水汽输送特征分析[J]. 大气科学, 35(2): 361–372

    Jiang Zhihong, Liang Zhuoran, Liu Zhengyu, et al. A diagnostic study of water vapor transport and budget during heavy precipitation over the Huaihe River basin in 2007 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35(2): 361–372. doi: 10.3878/j.issn.1006-9895.2011.02.14
    [14] 江志红, 任伟, 刘征宇, 等. 2013. 基于拉格朗日方法的江淮梅雨水汽输送特征分析 [J]. 气象学报, 71(2): 295−304. doi: 10.11676/qxxb2013.017

    Jiang Zhihong, Ren Wei, Liu Zhengyu, et al. 2013. Analysis of water vapor transport characteristics during the Meiyu over the Yangtze-Huaihe River valley using the Lagrangian method [J]. Acta Meteor. Sinica, 71(2): 295−304. doi: 10.11676/qxxb2013.017
    [15] 李永华, 徐海明, 高阳华, 等. 2010. 西南地区东部夏季旱涝的水汽输送特征 [J]. 气象学报, 68(6): 932−943. doi: 10.11676/qxxb2010.088

    Li Yonghua, Xu Haiming, Gao Yanghua, et al. 2010. The characteristics of moisture transport associated with drought/flood in summer over the east of the southwestern China [J]. Acta Meteor. Sinica, 68(6): 932−943. doi: 10.11676/qxxb2010.088
    [16] 苗长明, 丁一汇, 郭品文, 等. 2015. 水汽输送与江南南部初夏雨季及降水变化的联系 [J]. 气象学报, 73(1): 72−83. doi: 10.11676/qxxb2015.006

    Miao Changming, Ding Yihui, Guo Pinwen, et al. 2015. Linkage of the water vapor transport distribution with the rainy season and its precipitation in the southern regions South of the Yangtze River during the early summer [J]. Acta Meteor. Sinica, 73(1): 72−83. doi: 10.11676/qxxb2015.006
    [17] Simmonds I, Bi D H, Hope P. 1999. Atmospheric water vapor flux and its association with rainfall over China in summer [J]. J. Climate, 12(5): 1353−1367. doi:10.1175/1520-0442(1999)012<1353:AWVFAI>2.0.CO;2
    [18] Sun B, Wang H J. 2015. Analysis of the major atmospheric moisture sources affecting three sub-regions of East China [J]. Int. J. Climatol., 35(9): 2243−2257. doi: 10.1002/joc.4145
    [19] Tang Y, Song X F, Zhang Y H, et al. 2017. Using stable isotopes to understand seasonal and interannual dynamics in moisture sources and atmospheric circulation in precipitation [J]. Hydrol. Process., 31(26): 4682−4692. doi: 10.1002/hyp.11388
    [20] 陶诗言, 赵煜佳, 陈晓傲. 1958. 东亚的梅雨期与亚洲上空大气环流季节变化的关系 [J]. 气象学报, 29(2): 119−134. doi: 10.11676/qxxb1958.014

    Tao Shiyan, Zhao Yujia, Chen Xiaoao. 1958. The relationship between May-Yü in Far East and the behaviour of circulation over Asia [J]. Acta Meteor. Sinica, 29(2): 119−134. doi: 10.11676/qxxb1958.014
    [21] 陶诗言, 朱文妹, 赵卫. 1988. 论梅雨的年际变异 [J]. 大气科学, 12(S1): 13−21. doi: 10.3878/j.issn.1006-9895.1988.t1.02

    Tao Shiyan, Zhu Wenmei, Zhao Wei. 1988. Interannual variability of Meiyu rainfalls [J]. Chinese Journal of Atmospheric Sciences, 12(S1): 13−21. doi: 10.3878/j.issn.1006-9895.1988.t1.02
    [22] Wang B, Zhang Q. 2002. Pacific-East Asian teleconnection. Part II: How the Philippine Sea anomalous anticyclone is established during El Niño development [J]. J. Climate, 15(22): 3252−3265. doi:10.1175/1520-0442(2002)015<3252:PEATPI>2.0.CO;2
    [23] Xie S P, Hu K M, Hafner J, et al. 2009. Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño [J]. J. Climate, 22(3): 730−747. doi: 10.1175/2008JCLI2544.1
    [24] Xie S P, Kosaka Y, Du Y, et al. 2016. Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review [J]. Adv. Atmos. Sci., 33(4): 411−432. doi: 10.1007/s00376-015-5192-6
    [25] 谢义炳, 戴武杰. 1959. 中国东部地区夏季水汽输送个例计算 [J]. 气象学报, 30(2): 173−185. doi: 10.11676/qxxb1959.021

    Xie Yibing, Dai Wujie. 1959. Certain computational results of water vapour transport over eastern China for a selected synoptic case [J]. Acta Meteor. Sinica, 30(2): 173−185. doi: 10.11676/qxxb1959.021
    [26] 徐祥德, 陈联寿, 王秀荣, 等. 2003. 长江流域梅雨带水汽输送源—汇结构 [J]. 科学通报, 48(21): 181−188. doi: 10.3321/j.issn:0023-074X.2003.21.015
    [27] 杨浩, 江志红, 刘征宇, 等. 2014. 基于拉格朗日法的水汽输送气候特征分析——江淮梅雨和淮北雨季的对比 [J]. 大气科学, 38(5): 965−973. doi: 10.3878/j.issn.1006-9895.1402.13228

    Yang Hao, Jiang Zhihong, Liu Zhengyu, et al. 2014. Analysis of climatic characteristics of water vapor transport based on the Lagrangian method: A comparison between Meiyu in the Yangtze−Huaihe River region and the Huaibei rainy season [J]. Chinese Journal of Atmospheric Sciences, 38(5): 965−973. doi: 10.3878/j.issn.1006-9895.1402.13228
    [28] 杨柳, 赵俊虎, 封国林. 2018. 中国东部季风区夏季四类雨型的水汽输送特征及差异 [J]. 大气科学, 42(1): 81−95. doi: 10.3878/j.issn.1006-9895.1706.16273

    Yang Liu, Zhao Junhu, Feng Guolin. 2018. Characteristics and differences of summertime moisture transport associated with four rainfall patterns over eastern China monsoon region [J]. Chinese Journal of Atmospheric Sciences, 42(1): 81−95. doi: 10.3878/j.issn.1006-9895.1706.16273
    [29] 叶敏, 封国林. 2015. 长江中下游地区夏季降水的水汽路径的客观定量化研究 [J]. 大气科学, 39(4): 777−788. doi: 10.3878/j.issn.1006-9895.1409.14208

    Ye Min, Feng Guolin. 2015. Objective quantification of moisture transport that influences summer rainfall in the middle and lower reaches of the Yangtze River [J]. Chinese Journal of Atmospheric Sciences, 39(4): 777−788. doi: 10.3878/j.issn.1006-9895.1409.14208
    [30] 袁媛, 高辉, 柳艳菊. 2017. 2016年夏季我国东部降水异常特征及成因简析 [J]. 气象, 43(1): 115−121. doi: 10.7519/j.issn.1000-0526.2017.01.013

    Yuan Yuan, Gao Hui, Liu Yanju. 2017. Analysis of the characteristics and causes of precipitation anomalies over eastern China in the summer of 2016 [J]. Meteor. Mon., 43(1): 115−121. doi: 10.7519/j.issn.1000-0526.2017.01.013
    [31] Zhang R H, Sumi A, Kimoto M. 1999. A diagnostic study of the impact of El Niño on the precipitation in China [J]. Adv. Atmos. Sci., 16(2): 229−241. doi: 10.1007/BF02973084
    [32] 赵俊虎, 陈丽娟, 王东阡. 2018. 2016年我国梅雨异常特征及成因分析 [J]. 大气科学, 42(5): 1055−1066. doi: 10.3878/j.issn.1006-9895.1708.17170

    Zhao Junhu, Chen Lijuan, Wang Dongqian. 2018. Characteristics and causes analysis of abnormal Meiyu in China in 2016 [J]. Chinese Journal of Atmospheric Sciences, 42(5): 1055−1066. doi: 10.3878/j.issn.1006-9895.1708.17170
    [33] 周杰, 赵俊虎, 李永华, 等. 2021. 西南地区东部区域性暴雨事件的客观识别及其变化特征 [J]. 高原气象, 40(4): 789−800.

    Zhou Jie, Zhao Junhu, Li Yonghua, et al. 2021. Objective identification and variation characteristics of regional heavy rainfall events in the east of southwestern China [J]. Plateau Meteor., 40(4): 789−800.
    [34] 周玉淑, 颜玲, 吴天贻, 等. 2019. 高原涡和西南涡影响的两次四川暴雨过程的对比分析 [J]. 大气科学, 43(4): 813−830. doi: 10.3878/j.issn.1006-9895.1807.18147

    Zhou Yushu, Yan Ling, Wu Tianyi, et al. 2019. Comparative analysis of two rainstorm processes in Sichuan Province affected by the Tibetan Plateau vortex and Southwest vortex [J]. Chinese Journal of Atmospheric Sciences, 43(4): 813−830. doi: 10.3878/j.issn.1006-9895.1807.18147
    [35] 邹梦, 乔少博, 吴永萍, 等. 2017. 热带印度洋—西太平洋水汽输送异常对中国东部夏季降水的影响 [J]. 大气科学, 41(5): 988−998. doi: 10.3878/j.issn.1006-9895.1702.16232

    Zou Meng, Qiao Shaobo, Wu Yongping, et al. 2017. Effects of anomalous water vapor transport from tropical Indian Ocean–western Pacific on summer rainfall in eastern China [J]. Chinese Journal of Atmospheric Sciences, 41(5): 988−998. doi: 10.3878/j.issn.1006-9895.1702.16232
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  5
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-08
  • 录用日期:  2021-05-17
  • 网络出版日期:  2021-06-03

目录

    /

    返回文章
    返回