高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FGOALS耦合模式对赤道太平洋海温和降水年循环的模拟评估

李恬燕 俞永强

李恬燕, 俞永强. 2021. FGOALS耦合模式对赤道太平洋海温和降水年循环的模拟评估[J]. 大气科学, 45(6): 1345−1365 doi: 10.3878/j.issn.1006-9895.2105.21036
引用本文: 李恬燕, 俞永强. 2021. FGOALS耦合模式对赤道太平洋海温和降水年循环的模拟评估[J]. 大气科学, 45(6): 1345−1365 doi: 10.3878/j.issn.1006-9895.2105.21036
LI Tianyan, YU Yongqiang. 2021. Evaluation of Coupled Model FGOALS in Simulating the Annual Cycle of Tropical Pacific Rainfall and SST [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(6): 1345−1365 doi: 10.3878/j.issn.1006-9895.2105.21036
Citation: LI Tianyan, YU Yongqiang. 2021. Evaluation of Coupled Model FGOALS in Simulating the Annual Cycle of Tropical Pacific Rainfall and SST [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(6): 1345−1365 doi: 10.3878/j.issn.1006-9895.2105.21036

FGOALS耦合模式对赤道太平洋海温和降水年循环的模拟评估

doi: 10.3878/j.issn.1006-9895.2105.21036
基金项目: 中国科学院战略先导专项项目XDA19060102、XDB42000000,国家自然科学基金项目91958201
详细信息
    作者简介:

    李恬燕,女,1997年出生,硕士研究生,主要从事气候模拟和模式评估。E-mail: litianyan@mail.iap.ac.cn

    通讯作者:

    俞永强,E-mail: yyq@lasg.iap.ac.cn

  • 中图分类号: P47

Evaluation of Coupled Model FGOALS in Simulating the Annual Cycle of Tropical Pacific Rainfall and SST

Funds: Strategic Pilot Project of Chinese Academy of Sciences (Grants XDA19060102, XDB42000000), National Natural Science Foundation of China (NSFC) (Grant 91958201)
  • 摘要: 本文评估了中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG/IAP)研发的全球气候系统模式(FGOALS)的4个版本(FGOALS-g2、s2、g3、f3-L)对赤道太平洋地区的海温、降水气候态和季节循环的模拟能力。本文从海气耦合机制和热量收支的角度对耦合模式结果和相应的大气模式比较计划试验(AMIP)进行了对比分析,探讨了造成这一地区海温和降水模拟偏差的原因。结果显示,上一代模式g2和s2的海表温度均方根误差大于2°C,新一代模式g3和f3-L模拟的均方根误差降低50%,为1°C左右。因为新版本中赤道太平洋地区的净短波辐射平均态误差的减小,海洋上层热量动力输送过程的改善和净短波辐射与海温回归关系改进,赤道太平洋地区海温的平均态,南北温度和降水的不对称性都更加接近观测。f3-L比g3在上述方面改进更多,海温也更加合理。但是新一代版本模拟的降水均没有显著改进,赤道北侧ITCZ的降水偏大4 mm d−1。对流降水带来的凝结潜热释放加强了南北非绝热加热梯度,越赤道南风偏差抵消了一部分因为短波辐射偏大带来的海温偏暖,这说明海温平均态的改善是模拟误差相互抵消的结果。在季节循环的模拟方面也存在类似的现象,f3-L和g3中的海温年循环有所改进但较观测振幅仍旧偏弱。这是因为f3-L和g3模拟的经向风和潜热的年循环振幅比前版本要偏强,误差加大的同时也更大地抵消短波辐射的年循环偏差。g2和s2模拟的海温在赤道东太平洋则存在一个虚假半年循环分量,这主要是由潜热通量半年循环偏差所引起的。
  • 图  1  1985~2004年(a–e)海温(单位:°C)和(f–j)降水(单位:mm d−1)的年平均气候态(等值线)及(a–d,f–i)模式结果相对于观测的偏差场(填色):(a,f)FGOALS-g2模式;(b,g)FGOALS-s2模式;(c,h)FGOALS-g3模式;(d,i)FGOALs-f3-L模式;(e)Hadley数据;(j)GPCP数据这里用到的模式数据为耦合试验结果。

    Figure  1.  Climatological annual mean (a–e) sea surface temperature and (f–j) precipitation (contour, units: mm d−1) and (a–d, f–i) their biases with observations (shading) during 1985–2004: (a, f) FGOALS-g2 model; (b, g) FGOALS-s2 model; (c, h) FGOALS-g3 model; (d, i) FGOALS-f3-L model; (e) Hadley data; (j) GPCP data. Data used here are from HIST experiments

    图  2  1985~2004年平均气候态(a)降水场(单位:mm d−1)、(b)海温场(单位:°C)和(c)经向风场(单位:m s−1)沿110°W~90°W平均经向分布;(d)年平均气候态海温场沿5°N~5°S平均的纬向分布(单位:°C)。模式数据为耦合试验结果

    Figure  2.  Climatological annual mean (a) precipitation (units: mm d−1), (b) sea surface temperature (units: °C), (c) 1000-hPa meridional wind fields (units: m s−1) during 1985–2004 averaged between 110°W–90°W from observations (black and solid). The climatological mean (d) SST (units: °C) averaged between 5°N–5°S is also given. Data used here are from HIST experiments

    图  3  1985~2004年净短波辐射的年平均气候态分布(等值线,单位:W m−2)和(a–d,f–i)模式结果相对于观测的偏差场(填色):(a,f)FGOALS-g2;(b,g)FGOALS-s2;(c,h)FGOALS-g3;(d,i)FGOALs-f3-L;(e,j)Oaflux观测数据。左图为HIST试验的结果,右图为AMIP试验的结果

    Figure  3.  Climatological annual mean of net shortwave radiation flux field (contour, units: W m−2) and (a–d, f–i) their biases (shading) during 1985 to 2004: (a, f) FGOALS-g2); (b, g) FGOALS-s2; (c, h) FGOALS-g3; (d, i) FGOALs-f3-L; (e, j) observed data from OAflux. The left panel shows the results of HIST and the right panel shows the results of AMIP

    图  4  1985~2004年热带太平洋地区海表面净短波辐射和海温之间的线性回归系数(单位:W m−2 K−1):(a)观测资料;(b)FGOALS-g2;(c)FGOALS-s2;(d)FGOALS-g3;(e)FGOALs-f3-L。使用到的模式数据为耦合试验结果

    Figure  4.  Linear regression coefficients (units: W m−2 K−1) of the net surface shortwave radiation flux to SST over the tropical Pacific during 1985 to 2004: (a) Observed data; (b) FGOALS-g2; (c) FGOALS-s2; (d) FGOALS-g3; (e) FGOALS-f3-L. Model data are from HIST experiments

    图  5  1985~2004年夏季(JJA)平均的海洋位温(填色,单位:°C)和纬向速度(蓝色等值线,虚线为向西,实线为向东,0等值线加粗,单位:cm s−1)沿180°~150°W平均的纬度—深度剖面:(a)GODAS;(b)FGOALS-g2;(c)FGOALS-s2;(d)FGOALS-g3;(e)FGOALs-f3-L。这里用到的模式数据为耦合试验结果

    Figure  5.  Latitude–depth cross section of JJA mean ocean potential temperature (shaded, units: °C) and zonal current (blue contours, eastward in solid and westward in dashed lines, solid and black lines are for zero, units: cm s−1) averaged between 180° and 150°W during 1985 to 2004: (a) GODAS; (b) FGOALS-g2; (c) FGOALS-s2; (d) FGOALS-g3; (e) FGOALS-f3-L. Model data are from HIST experiments

    图  6  1985~2004年(a–e)赤道太平洋地区(6°N~6°S)平均海温的时间—经度剖面(单位:°C)和(f–j)赤道太平洋地区(140°W~90°W)平均降水的时间—纬度剖面(单位:mm d−1):(a,f)观测;(b,g)FGOALS-s2;(c,h)FGOALS-g2;(d,i)FGOALS-g3;(e,j)FGOALS-f3-L 这里用到的模式数据为耦合试验结果.

    Figure  6.  (a–e) Time–longitude cross section of the tropical sea surface temperature (units: °C) averaged between equator (6°N–6°S) and (f–j) time–latitude cross section of precipitation (units: mm d−1) averaged along 140°W–90°W: (a, f) Observations; (b, g) FGOALS-s2; (c, h) FGOALS-g2; (d, i) FGAOLS-g3; (e, j) FGOALS-f3-L. Model data used here are from HIST experiments

    图  7  1985~2004年赤道东太平洋地区(6°N~6°S,140°W~90°W)平均的(a)海温倾向(单位:°C month−1)、(b)降水(单位:mm d−1)、(c)经向风(单位:m s−1)、(d)净短波辐射通量(单位:W m−2)、(e)潜热通量(单位:W m−2)和(f)净长波辐射通量(单位:W m−2)的季节循环。观测(黑色),FGOALS-s2(蓝色),FGOALS-g2(红色),FGAOLS-g3(黄色),FGOALS-f3-L(绿色),这里用到的模式数据为耦合试验结果

    Figure  7.  Seasonal cycle of (a) SST tendency (units: °C month−1), (b) precipitation (units: mm d−1), (c) meridional wind (m s−1), (d) net surface shortwave radiative flux (units: W m−2), (e) latent heat flux (units: W m−2), and (f) net longwave radiative flux (units: W m−2) averaged over the east tropical Pacific (6°N~6°S,140°W~90°W) from observations (black), FGOALS-s2 (blue), FGOALS-g2 (red), FGAOLS-g3 (yellow), and FGOALS-f3-L (green) during 1985–2004. Model data used here are from HIST experiments

    图  8  1985~2004年赤道太平洋地区(6°N~6°S)平均净短波辐射通量(单位:W m−2)的经度—时间剖面:(a)观测;(b)FGOALS-s2;(c)FGOALS-g2;(d)FGOALS-g3;(e)FGOALS-f3-L。这里用到的模式数据为耦合试验结果

    Figure  8.  Time–longitude cross section of the net surface shortwave radiation flux (units: W m−2) averaged over equator (6°N~6°S) during 1985—2004: (a) Observations; (b) FGOALS-s2; (c) FGOALS-g2; (d) FGAOLS-g3; (e) FGOALS-f3-L. Model data used here are from HIST experiments

    图  9  图8,但为AMIP试验结果

    Figure  9.  The same as Fig. 8, but for AMIP experiments

    图  10  1985~2004年赤道太平洋地区(6°N~6°S)平均潜热通量(单位:W m−2)的经度—时间剖面:(a)OAflux观测数据;(b)FGOALS-s2;(c)FGOALS-g2;(d)FGOALS-g3;(e)FGOALS-f3-L。赤道太平洋地区(140°W~90°W)平均1000 hPa经向风(单位:m s−1)的纬度—时间剖面:(f)NCEP再分析资料;(g)FGOALS-s2;(h)FGOALS-g2;(i)FGOALS-g3;(j)FGOALS-f3-L这里用到的模式数据为耦合试验结果。

    Figure  10.  Time–longitude cross section of the latent heat flux (units: W m−2 ) averaged over equator(6°N~6°S)during 1985–2004: (a) Observed data from OAflux; (b) FGOALS-s2; (c) FGOALS-g2; (d) FGAOLS-g3; (e) FGOALS-f3-L. Time–latitude cross section of the meridional wind (units: m s−1) averaged over equator(140°W~90°W)during 1985–2004: (f) NCEP reanalysis data; (g) FGOALS-s2; (h) FGOALS-g2; (i) FGAOLS-g3; (j) FGOALS-f3-L. Model data used here are from HIST experiments

    表  1  FGOALS 四个版本模式采用的分量模式和耦合器

    Table  1.   Component models and coupled module used in four versions of FGOALS

    模式名称大气模式
    分辨率
    海洋模式
    分辨率
    大气分量模式海洋分量模式陆面分量模式海冰分量模式耦合器
    FGOALS-s2
    Bao et al., 2013
    2.8°×1.8°1°×1°Spectral Atmospheric Model of IAP/LASG, version 2.0 (SAMIL2)
    Bao, et al., 2010
    LASG/IAP Climate System Ocean Model version 2.0 (LICOM2)
    刘海龙, 2002
    Community Land Model version 3 (CLM3)
    Oleson et al., 2004
    Community Sea Ice Model version 5(CSIM5)
    Briegleb et al., 2004
    NCAR version 6
    Craig et al., 2005
    FGOALS-g2
    Li et al., 2013b
    2.8°×2.8°1°×1°Grid-point Atmospheric Model of IAP LASG version 2.0 (GAMIL2.0)
    Li et al., 2013a
    同上同上sea ice component CICE4 (Community Ice CodE)-LASG
    同上
    FGOALS-g3
    Li Lijuan et al., 2020
    2°×2°1°×1°Grid-point Atmospheric Model of IAP/LASG 3.0 (GAMIL3)
    Li Lijuan et al., 2020
    LASG/IAP Climate System Ocean Model version 3.0(LICOM3)(Lin et al., 2020; 俞永强等, 2018CAS‐Land Surface Model (CAS‐LSM) for the land (Xie et al., 2021Version 4 of the Los Alamos sea ice model for sea ice(http://climate
    .lanl.gov/Models
    /CICE)
    NCAR version 7 (Craig et al., 2012
    FGOALS-f3-L
    Guo et al., 2020
    1°×1°1°×1°Finite-volume Atmospheric Model of IAP/LASG
    2.2(FAMIL)
    Zhou et al., 2015; 包庆等, 2019; Li et al., 2019
    同上Community Land Model, version 4(CLM4) (Oleson et al., 2010Community Ice Code, version 4 (CICE4)(Hunke and Lipscomb, 2010同上
    下载: 导出CSV
  • [1] Adler R F, Huffman G J, Chang A, et al. 2003. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present) [J]. J. Hydrometeorol., 4(6): 1147−1167. doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
    [2] An S I, Choi J. 2009. Seasonal locking of the ENSO asymmetry and its influence on the seasonal cycle of the tropical eastern Pacific sea surface temperature [J]. Atmos. Res., 94(1): 3−9. doi: 10.1016/j.atmosres.2008.09.029
    [3] Bao Qing, Wu Guoxiong, Liu Yimin, et al. 2010. An introduction to the coupled model FGOALS1.1-s and its performance in East Asia [J]. Adv. Atmos. Sci., 27(5): 1131−1142. doi: 10.1007/s00376-010-9177-1
    [4] Bao Qing, Lin Pengfei, Zhou Tianjun, et al. 2013. The flexible global ocean–atmosphere–land system model, spectral version 2: FGOALS-s2 [J]. Adv. Atmos. Sci., 30(3): 561−576. doi: 10.1007/s00376-012-2113-9
    [5] 包庆, 吴小飞, 李矜霄, 等. 2019. 2018~2019年秋冬季厄尔尼诺和印度洋偶极子的预测 [J]. 科学通报, 64(1): 73−78. doi: 10.1360/N972018-00913

    Bao Qing, Wu Xiaofei, Li Jinxiao, et al. 2019. Outlook for El Niño and the Indian Ocean dipole in autumn–winter 2018–2019 [J]. Chinese Sci. Bull., 64(1): 73−78. doi: 10.1360/N972018-00913
    [6] Behringer D, Xue Y. 2004. Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean [C]//Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, AMS 84th Annual Meeting. Seattle, Washington: Washington State Convention and Trade Center, 11–15.
    [7] Briegleb B P, Bitz C M, Hunke E C, et al. 2004. Scientific description of the sea ice component in the community climate system model. version three [R]. NCAR Tech. Note NCAR/TN-463+STR.
    [8] Chang Ping, Philander S G. 1994. A coupled ocean–atmosphere instability of relevance to the seasonal cycle [J]. J. Atmos. Sci., 51(24): 3627−3648. doi:10.1175/1520-0469(1994)051<3627:ACOIOR>2.0.CO;2
    [9] Chelton D B, Esbensen S K, Schlax M G, et al. 2001. Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific [J]. J. Climate, 14(7): 1479−1498. doi:10.1175/1520-0442(2001)014<1479:OOCBSW>2.0.CO;2
    [10] Chen Yingying, Jin Feifei. 2017. Dynamical diagnostics of the SST annual cycle in the eastern equatorial Pacific: Part II analysis of CMIP5 simulations [J]. Climate Dyn., 49(11-12): 3923−3936. doi: 10.1007/s00382-017-3550-z
    [11] Chen Yingying, Jin Feifei. 2018. Dynamical diagnostics of the SST annual cycle in the eastern equatorial Pacific: Part I a linear coupled framework [J]. Climate Dyn., 50(5-6): 1841−1862. doi: 10.1007/s00382-017-3725-7
    [12] Craig A P, Jacob R, Kauffman B, et al. 2005. CPL6: The new extensible, high performance parallel coupler for the community climate system model [J]. Int. J. High Perform. Comput. Appl., 19(3): 309−327. doi: 10.1177/1094342005056117
    [13] Craig A P, Vertenstein M, Jacob R. 2012. A new flexible coupler for earth system modeling developed for CCSM4 and CESM1 [J]. Int. J. High Perform. Comput. Appl., 26(1): 31−42. doi: 10.1177/1094342011428141
    [14] Delecluse P, Davey M K, Kitamura Y, et al. 1998. Coupled general circulation modeling of the tropical Pacific [J]. J. Geophys. Res.: Oceans, 103(C7): 14357−14373. doi: 10.1029/97jc02546
    [15] de Szoeke S P, Xie Shangping. 2008. The tropical eastern Pacific seasonal cycle: Assessment of errors and mechanisms in IPCC AR4 coupled ocean–atmosphere general circulation models [J]. J. Climate, 21(11): 2573−2590. doi: 10.1175/2007JCLI1975.1
    [16] Duffy M L, O’Gorman P A, Back L E. 2020. Importance of laplacian of low-level warming for the response of precipitation to climate change over tropical oceans [J]. J. Climate, 33(10): 4403−4417. doi: 10.1175/JCLI-D-19-0365.1
    [17] Eyring V, Bony S, Meehl G A, et al. 2016. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization [J]. Geosci. Model Dev., 9(5): 1937−1958. doi: 10.5194/gmd-9-1937-2016
    [18] Gill A E, Rasmusson E M. 1983. The 1982–83 climate anomaly in the equatorial Pacific [J]. Nature, 306(5940): 229−234. doi: 10.1038/306229a0
    [19] Gordon C T, Rosati A, Gudgel R. 2000. Tropical sensitivity of a coupled model to specified ISCCP low clouds [J]. J. Climate, 13(13): 2239−2260. doi:10.1175/1520-0442(2000)013<2239:TSOACM>2.0.CO;2
    [20] Gu Daifang, Philander S G H. 1995. Secular changes of annual and interannual variability in the tropics during the past century [J]. J. Climate, 8(4): 864−876. doi:10.1175/1520-0442(1995)008<0864:SCOAAI>2.0.CO;2
    [21] Guo Yuyang, Yu Yongqiang, Lin Pengfei, et al. 2020. Simulation and improvements of oceanic circulation and sea ice by the coupled climate system model FGOALS-f3-L [J]. Adv. Atmos. Sci., 37(10): 1133−1148. doi: 10.1007/s00376-020-0006-x
    [22] He Bian, Bao Qing, Wang Xiaocong, et al. 2019. CAS FGOALS-f3-L model datasets for CMIP6 historical atmospheric model intercomparison project simulation [J]. Adv. Atmos. Sci., 36(8): 771−778. doi: 10.1007/s00376-019-9027-8
    [23] Hunke E C, Lipscomb W H. 2010. CICE : The Los Alamos sea ice model documentation and software user’ s manual, version 4.1 [R]. Tech. Rep. LA-CC-06-012.
    [24] Hwang Y T, Frierson D M W. 2013. Link between the double-intertropical convergence zone problem and cloud biases over the southern ocean [J]. Proc. Natl. Acad. Sci. USA, 110(13): 4935−4940. doi: 10.1073/pnas.1213302110
    [25] Jin Feifei, 1996. Tropical ocean-atmosphere interaction, the Pacific cold tongue, and the el niño-southern oscillation. Science 274, 76–78.
    [26] Jin Feifei, Neelin J D, Ghil M. 1994. El Niño on the devil’s staircase: Annual subharmonic steps to chaos [J]. Science, 264(5155): 70−72. doi: 10.1126/science.264.5155.70
    [27] Kanamitsu M Y, Ebisuzaki W, Woollen J, et al. 2002. NCEP-DOE AMIP-II REANALYSIS (R-2) [J]. Bull. Amer. Meteor. Soc., 83(11): 1631−1644. doi: 10.1175/BAMS-83-11-1631
    [28] Latif M, Sperber K, Arblaster J, et al. 2001. ENSIP: The El Niño simulation intercomparison project [J]. Climate Dyn., 18(3-4): 255−276. doi: 10.1007/s003820100174
    [29] 李江龙. 2002. 耦合海气环流模式中的Double ITCZ现象分析[D]. 中国科学院大气物理研究所硕士学位论文, 45pp

    Li Jianglong. 2002. Analysis of double ITCZ phenomenon in coupled air sea general circulation model [D]. M. S. thesis (in Chinese), Institute of Atmospheric Physics, Chinese Academy of Sciences, 45pp.
    [30] Li Tianming, Philander S G H. 1996. On the annual cycle of the eastern equatorial Pacific [J]. J. Climate, 9(12): 2986−2998. doi:10.1175/1520-0442(1996)009<2986:OTACOT>2.0.CO;2
    [31] Li Gen, Xie Shangping. 2014. Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems [J]. J. Climate, 27(4): 1765−1780. doi: 10.1175/JCLI-D-13-00337.1
    [32] Li Lijuan, Wang Bin, Dong Li, et al. 2013a. Evaluation of grid-point atmospheric model of IAP LASG version 2 (GAMIL2) [J]. Adv. Atmos. Sci., 30(3): 855−867. doi: 10.1007/s00376-013-2157-5
    [33] Li Lijuan, Lin Pengfei, Yu Yongqiang, et al. 2013b. The flexible global ocean–atmosphere–land system model, Grid-point Version 2: FGOALS-g2 [J]. Adv. Atmos. Sci., 30(3): 543−560. doi: 10.1007/s00376-012-2140-6
    [34] Li Jinxiao, Bao Qing, Liu Yimin, et al. 2019. Evaluation of FAMIL2 in simulating the climatology and seasonal-to-interannual variability of tropical cyclone characteristics [J]. J. Adv. Model. Earth Syst., 11(4): 1117−1136. doi: 10.1029/2018MS001506
    [35] Li Lijuan, Yu Yongqiang, Tang Yanli, et al. 2020. The flexible global ocean–atmosphere–land system model grid-point version 3 (FGOALS-g3): Description and evaluation [J]. J. Adv. Model. Earth Syst., 12(9): e2019MS002012. doi: 10.1029/2019MS002012
    [36] Lin Jialin. 2007. The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis [J]. J. Climate, 20(18): 4497−4525. doi: 10.1175/JCLI4272.1
    [37] Lindzen R S, Nigam S. 1987. On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics [J]. J. Atmos. Sci., 44(17): 2418−2436. doi:10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2
    [38] Lin Pengfei, Yu Zhipeng, Liu Hailong et al. 2020. Licom model datasets for the CMIP6 ocean model intercomparison project. [J]. Adv. Atmos. Sci.: 37.239−249. doi: 10.1007/s00376-019-9208-5
    [39] 刘海龙. 2002. 高分辨率海洋环流模式和热带太平洋上层环流的模拟研究[D]. 中国科学院研究生院博士学位论文, 86pp

    Liu Hailong. 2002. Simulation of high resolution ocean circulation model and upper tropical Pacific circulation [D]. Ph. D. dissertation (in Chinese), Institute of Atmospheric Physics, Chinese Academy of Sciences, 86pp.
    [40] 刘海龙, 俞永强, 李薇, 等. 2004. LASG/IAP气候系统海洋模式(LICOM 1.0)参考手册, 大气科学和地球力学数值模拟国家重点实验室(LASG)技术报告特刊[M]. 北京: 科学出版社, 1–128

    Liu Hailong, Yu Yongqiang, Li Wei, et al. 2004. Manual for LASG/IAP Climate System Ocean Model (LICOM1.0) (in Chinese) [M]. Beijing: Science Press, 1–128.
    [41] Mechoso C R, Robertson A W, Barth N, et al. 1995. The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models [J]. Mon. Wea. Rev., 123(9): 2825−2838. doi:10.1175/1520-0493(1995)123<2825:TSCOTT>2.0.CO;2
    [42] Meehl G A, Covey C, Delworth T, et al. 2007. The WCRP CMIP3 multimodel dataset: A new era in climate change research [J]. Bull. Amer. Meteor. Soc., 88(9): 1383−1394. doi: 10.1175/BAMS-88-9-1383
    [43] Mitchell T P, Wallace J M. 1992. The annual cycle in equatorial convection and sea surface temperature [J]. J. Climate, 5(10): 1140−1156. doi:10.1175/1520-0442(1992)005<1140:TACIEC>2.0.CO;2
    [44] Nigam S, Chao Yi. 1996. Evolution dynamics of tropical ocean–atmosphere annual cycle variability [J]. J. Climate, 9(12): 3187−3205. doi:10.1175/1520-0442(1996)009<3187:EDOTOA>2.0.CO;2
    [45] Oleson K W, Dai Yongjiu Bonan G B, et al. 2004. Technical description of the community land model (CLM) [R]. NCAR/TN-461+STR. doi: 10.5065/D6N877R0
    [46] Oleson K W, Lawrence D M, Bonan G B, et al. 2010. Technical description of version 4.0 of the community land model (CLM) [R]. NCAR/TN-478+STR. doi: 10.5065/D6FB50WZ
    [47] Oueslati B, Bellon G. 2013. Convective entrainment and large-scale organization of tropical precipitation: Sensitivity of the CNRM-CM5 hierarchy of models [J]. J. Climate, 26(9): 2931−2946. doi: 10.1175/JCLI-D-12-00314.1
    [48] Philander S G H, Gu D, Lambert G, et al. 1996. Why the ITCZ is mostly north of the equator [J]. J. Climate, 9(12): 2958−2972. doi:10.1175/1520-0442(1996)009<2958:WTIIMN>2.0.CO;2
    [49] Rayner N A, Parker D E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century [J]. J. Geophys. Res. :Atmos., 108(D14): 4407. doi: 10.1029/2002jd002670
    [50] Song Xiaoliang, Zhang Guangjun. 2009. Convection parameterization, tropical Pacific double ITCZ, and upper-ocean biases in the NCAR CCSM3. Part I: Climatology and atmospheric feedback [J]. J. Climate, 22(16): 4299−4315. doi: 10.1175/2009JCLI2642.1
    [51] Stockdale T N, Busalacchi A J, Harrison D E, et al. 1998. Ocean modeling for ENSO [J]. J. Geophys. Res.: Oceans, 103(C7): 14325−14355. doi: 10.1029/97JC02440
    [52] Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of CMIP5 and the experiment design [J]. Bull. Amer. Meteor. Soc., 93(4): 485−498. doi: 10.1175/BAMS-D-11-00094.1
    [53] Tian Baijun, Dong Xinyu. 2020. The DOuble-ITCZ bias in CMIP3, CMIP5, and CMIP6 models based on annual mean precipitation [J]. Geophys. Res. Lett., 47(8): e2020GL087232. doi: 10.1029/2020GL087232
    [54] Tziperman E, Stone L, Cane M A, et al. 1994. El Niño chaos: Overlapping of resonances between the seasonal cycle and the Pacific ocean–atmosphere oscillator [J]. Science, 264(5155): 72−74. doi: 10.1126/science.264.5155.72
    [55] Wengel C, Latif M, Park W, et al. 2019. Eastern equatorial Pacific sea surface temperature annual cycle in the Kiel Climate Model: Simulation benefits from enhancing atmospheric resolution [J]. Climate Dyn., 52(3-4): 1983−2003. doi: 10.1007/s00382-018-4233-0
    [56] Xiang Baoqiang, Zhao Ming, Held I M, et al. 2017. Predicting the severity of spurious “double ITCZ” problem in CMIP5 coupled models from AMIP simulations [J]. Geophys. Res. Lett., 44(3): 1520−1527. doi: 10.1002/2016GL071992
    [57] Xie Shangping. 1994. On the genesis of the equatorial annual cycle [J]. J. Climate, 7(12): 2008−2013. doi:10.1175/1520-0442(1994)007<2008:OTGOTE>2.0.CO;2
    [58] Xie Shangping. 2004. The shape of continents, air–sea interaction, and the rising branch of the hadley circulation [M]//Diaz H F, Bradley R S. The Hadley Circulation: Present, Past and Future. Dordrecht: Springer. doi: 10.1007/978-1-4020-2944-8_5
    [59] Xie Shangping, Miyama T, Wang Yuqing, et al. 2007. A regional ocean–atmosphere model for eastern Pacific climate: Toward reducing tropical biases [J]. J. Climate, 20(8): 1504−1522. doi: 10.1175/JCLI4080.1
    [60] Xie Jinbo, Xie Zhenghui, Jia Binghao, et al. 2021. Coupling of the CAS-LSM land-surface model with the CAS-FGOALS-g3 climate system model [J]. J. Adv. Model. Earth Syst., 13(1): e2020MS002171. doi: 10.1029/2020MS002171
    [61] Yu Jinyi, Mechoso C R. 1999. Links between annual variations of peruvian stratocumulus clouds and of SST in the eastern equatorial Pacific [J]. J. Climate, 12(11): 3305−3318. doi:10.1175/1520-0442(1999)012<3305:LBAVOP>2.0.CO;2
    [62] Yu Lisan, Jin Xiangze, Weller R A. 2008. Multidecade global flux datasets from the objectively analyzed air–sea fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables [R]. Woods Hole Oceanographic Institution OAFlux Project Tech. Rep. (OA-2008-01).
    [63] Yu Yongqiang, He Jie, Zheng Weipeng, et al. 2013. Annual cycle and interannual variability in the tropical Pacific as simulated by three versions of FGOALS [J]. Adv. Atmos. Sci., 30(3): 621−637. doi: 10.1007/s00376-013-2184-2
    [64] 俞永强, 唐绍蕾, 刘海龙, 等. 2018. 任意正交曲线坐标系下的海洋模式动力框架的发展与评估 [J]. 大气科学, 42(4): 877−889. doi: 10.3878/j.issn.1006-9895.1805.17284

    Yu Yongqiang, Tang Shaolei, Liu Hailong, et al. 2018. Development and evaluation of the dynamic framework of an ocean general circulation model with arbitrary orthogonal curvilinear coordinate [J]. Chinese Journal of Atmospheric Sciences, 42(4): 877−889. doi: 10.3878/j.issn.1006-9895.1805.17284
    [65] Zhang G J, Song Xiaoliang. 2010. Convection parameterization, tropical Pacific double ITCZ, and upper-ocean biases in the NCAR CCSM3. Part II: Coupled feedback and the role of ocean heat transport [J]. J. Climate, 23(3): 800−812. doi: 10.1175/2009JCLI3109.1
    [66] 张学洪, 俞永强, 宇如聪, 等. 2003. 一个大洋环流模式和相应的海气耦合模式的评估Ⅰ. 热带太平洋年平均状态 [J]. 大气科学, 27(6): 949−970. doi: 10.3878/j.issn.1006-9895.2003.06.01

    Zhang Xuehong, Yu Yongqiang, Yu Rucong, et al. 2003. Assessments of an OGCM and the relevant CGCM. Part I: Annual mean simulations in the tropical Pacific ocean [J]. Chinese Journal of Atmospheric Sciences, 27(6): 949−970. doi: 10.3878/j.issn.1006-9895.2003.06.01
    [67] Zhang G J, Song Xiaoliang, Wang Yong. 2019. The double ITCZ syndrome in GCMs: A coupled feedback problem among convection, clouds, atmospheric and ocean circulations [J]. Atmos. Res., 229: 255−268. doi: 10.1016/j.atmosres.2019.06.023
    [68] Zhou Linjiong, Bao Qing, Liu Yimin, et al. 2015. Global energy and water balance: Characteristics from finite-volume atmospheric model of the IAP/LASG (FAMIL1) [J]. J. Adv. Model. Earth Syst., 7(1): 1−20. doi: 10.1002/2014MS000349
    [69] Zhou Shijie, Huang Gang, Huang Ping. 2020. Excessive ITCZ but negative SST biases in the tropical Pacific simulated by CMIP5/6 models: The role of the meridional pattern of SST bias [J]. J. Climate, 33(12): 5305−5316. doi: 10.1175/JCLI-D-19-0922.1
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  7
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-03
  • 录用日期:  2021-05-14
  • 网络出版日期:  2021-05-28
  • 刊出日期:  2021-11-25

目录

    /

    返回文章
    返回