Simulation of South Asian Summer Monsoon Using the FGOALS-g3 Climate System Model: Climatology and Interannual Variability
-
摘要: 南亚夏季风的变化决定着印度半岛的旱涝状况,气候系统模式则是研究南亚夏季风变化规律的重要工具。本文基于观测和JRA55再分析资料,系统评估了FGOALS-g3模式模拟的南亚夏季风气候态和年际变率,并重点关注FGOALS-g3与FGOALS-g2以及是否考虑海气相互作用的模拟差异。结果表明,由于局地海温模拟的变化,相比于FGOALS-g2,FGOALS-g3模拟的南亚夏季风在气候态热带印度洋信风和El Niño期间沃克环流下沉支上有明显改进。同时,由于对流层系统性冷偏差持续存在并且中心位于副热带300 hPa附近,造成气候态上经向温度梯度减弱,使季风环流减弱,导致FGOALS-g3中陆地季风槽的水汽辐散偏差和降水干偏差仍然存在;在年际变率上,FGOALS-g3模拟的El Niño期间赤道西太平洋海温冷异常偏弱,印度洋偶极子偏强,导致印度半岛下沉运动减弱,FGOALS-g3中ENSO—印度降水负相关关系也依然偏弱。研究表明,耦合过程导致的气候态海温偏差通过改变环流和水汽输送,有效补偿了大气模式中印度半岛中部和中南半岛的降水湿偏差;在年际变率上,耦合模式由于考虑了海温—降水—云短波辐射的负反馈过程,能够减小大气模式模拟偏差的强度,但印太暖池区海温模拟偏差导致沃克环流下沉支偏西,使得印度半岛的降水响应出现更大的湿偏差。
-
关键词:
- 南亚夏季风 /
- FGOALS模式偏差 /
- 气候态与年际变率 /
- 海气耦合
Abstract: In this study, according to observation and reanalysis data, we evaluated the performance of the South Asian summer monsoon (SASM) using the FGOALS-g3 climate system model. We focused on the differences between FGOALS-g3 and FGOALS-g2, and the coupled model and atmospheric model. The results showed that compared with FGOALS-g2, FGOALS-g3 better simulated climatological Indian Ocean trade winds and the sinking branch of the Walker circulation during El Niño, owing to the change in local sea surface temperature (SST). The FGOALS-g3 model showed that systematic cold biases persisted in the middle and upper troposphere, which reduced the meridional temperature gradient and weakened SASM, leading to biases in descending motion and moisture divergence, and dry biases occurred over the terrestrial monsoon trough. Meanwhile, the negative correlation between El Niño—Southern Oscillation and Indian summer rainfall captured by FGOALS-g3 was weaker than the observation, owing to the weaker descending motion caused by SST biases. The results also showed that climatological SST biases induced by air–sea interactions compensated the wet biases in the SASM region through the change in atmospheric circulation and water vapor transportation. At an interannual timescale, the inclusion of the negative feedback process of SST–precipitation–cloud shortwave radiation in the coupled model effectively improved the bias intensity of rainfall and atmospheric circulation simulated by the atmospheric model; however, the westward biases of the sinking branch of the Walker Circulation caused by SST biases in the coupled model led to greater wet biases in the Indian Peninsula. -
图 1 南亚夏季降水(填色,单位:mm d−1)与850 hPa风场(矢量,单位:m s−1)6~9月的气候态分布:(a)GPCP/JRA55观测;(b)FGOALS-g3模拟;(c)GAMIL3模拟;(d)FGOALS-g3模拟结果减去GPCP/JRA55观测结果;(e)FGOALS-g2模拟结果减去GPCP/JRA55观测结果;(f)FGOALS-g3减去GAMIL3模拟结果。图中白色区域表示海拔高度2000米以上,图(a)中三组三角形标识自西向东分别表示西高止山、喜马拉雅山脉和若开山脉
Figure 1. Climatology of JJAS (June–July–August–September) South Asian summer monsoon precipitation (shaded, units: mm d−1) and 850 hPa wind (vectors, units: m s−1): (a) GPCP/JRA55, (b) FGOALS-g3, (c) GAMIL3, (d) FGOALS-g3 minus GPCP/JRA55, (e) FGOALS-g2 minus GPCP/JRA55, and (f) FGOALS-g3 minus GAMIL3. White areas denote altitudes above 2000 m. Three groups of triangular marks in (a) represent the Western Ghats, the Himalayas and the Rakhine Mountains from west to east, respectively
图 2 南亚夏季降水(65°E~95°E平均)的年循环(单位:mm d−1):(a)GPCP观测;(b)FGOALS-g3模拟;(c)GAMIL3模拟;(d)FGOALS-g3模拟结果减GPCP观测结果;(e)FGOALS-g2模拟结果减GPCP观测结果;(f)FGOALS-g3减GAMIL3模拟结果
Figure 2. Annual cycle climatology of South Asian summer monsoon precipitation averaged from 65°E to 95°E (units: mm d−1): (a) GPCP; (b) FGOALS-g3; (c) GAMIL3; (d) FGOALS-g3 minus GPCP; (e) FGOALS-g2 minus GPCP; (f) FGOALS-g3 minus GAMIL3
图 3 气候态6~9月南亚地区300 hPa温度(左列,填色,单位:K)、风场(左列,矢量,单位:m s−1)和500 hPa垂直速度(右列,单位:10−2 Pa s−1)的空间分布:(a, e)JRA55观测;(b, f)FGOALS-g3模拟结果减JRA55观测结果;(c, g)FGOALS-g2模拟结果减JRA55观测结果;(d, h)GAMIL3模拟结果减JRA55观测结果
Figure 3. Climatology of JJAS 300 hPa air temperature (left panel, shading, units: K), wind (left panel, vectors, units: m s−1), and 500 hPa vertical velocity (right panel, units: 10−2 Pa s−1): (a, e) JRA55; (b, f) FGOALS-g3 minus JRA55; (c, g) FGOALS-g2 minus JRA55; (d, h) GAMIL3 minus JRA55
图 4 气候态6~9月印度洋海表温度(左列,单位:K)和整层水汽通量积分(右列,矢量,单位:kg m−1 s−1)及其散度(右列,填色,单位:10−5 kg m−2 s−1)。(a)FGOALS-g3模拟减HadISST观测结果;(b)FGOALS-g2模拟减HadISST观测结果;(c)FGOALS-g3减FGOALS-g2模拟结果;(d)FGOALS-g3减JRA55观测结果;(e)FGOALS-g2模拟减JRA55观测结果;(f)FGOALS-g3减GAMIL3模拟结果
Figure 4. Climatology of JJAS sea surface temperature (left panel, units: K), vertically integrated moisture flux (right panel, vectors, units: kg m−1 s−1) and its divergence (right panel, shading, units: 10−5 kg m−2 s−1): (a) FGOALS-g3 minus HadISST; (b) FGOALS-g2 minus HadISST; (c) GAMIL3 minus HadISST; (d) FGOALS-g3 minus JRA55; (e) FGOALS-g2 minus JRA55; (f) GAMIL3 minus JRA55
图 5 标准化的6~9月Niño3.4指数回归的同期南亚降水(填色,单位:mm d−1)和850 hPa风场(矢量,单位:m s−1)异常的空间分布:(a)GPCP/JRA55观测;(b)FGOALS-g3模拟;(c)GAMIL3模拟;(d)FGOALS-g3模拟减GPCP/JRA55观测结果;(e)g2-GPCP,(f)g3-GAMIL3。白色区域表示海拔高度2000米以上,打点区域表示回归系数通过95%的显著性检验
Figure 5. JJAS precipitation anomalies (shading, units: mm d−1) and 850 hPa wind anomalies (vectors, units: m s−1) regressed onto standardized Niño3.4 index: (a) GPCP/JRA55; (b) FGOALS-g3; (c) GAMIL3; (d) FGOALS-g3 minus GPCP/JRA55; (e) FGOALS-g2 minus GPCP/JRA55; (f) GAMIL3 minus GPCP/JRA55. White areas denote altitudes above 2000 m and dots areas denote the 95% confidence level
图 6 标准化的6~9月Niño3.4指数回归的同期海表温度异常(填色,单位:K)的空间分布:(a)HadISST观测;(b)FGOALS-g3模拟;(c)FGOALS-g2模拟;(d)FGOALS-g3模拟减HadISST观测结果;(e)FGOALS-g2模拟减HadISST观测结果(f)FGOALS-g3减FGOALS-g2模拟结果。打点区域表示回归系数通过95%的显著性检验
Figure 6. JJAS sea surface temperature anomalies (units: K) regressed onto standardized Niño3.4 index: (a) HadISST; (b) FGOALS-g3; (c) FGOALS-g2; (d) FGOALS-g3 minus HadISST; (e) FGOALS-g2 minus HadISST; (f) FGOALS-g3 minus FGOALS-g2. Dots area denote the 95% confidence level
图 7 标准化的6~9月Niño3.4指数回归的同期850 hPa辐散风(矢量,单位:m s−1)与速度势异常(填色,单位:105 m2 s−1)和地表接收到的向下的短波辐射通量异常(单位:W m−2)的空间分布:(a, e)JRA55观测;(b, f)FGOALS-g3模拟;(c, g)FGOALS-g2模拟;(d, h)GAMIL3模拟。打点区域表示回归系数通过95%的显著性检验,所展示的辐散风与速度势均通过95%的显著性检验
Figure 7. JJAS 850 hPa divergent wind anomalies (left panel, vectors, units: m s−1), velocity potential anomalies (left panel, shading, units: 105 m2 s−1), and downward shortwave flux anomalies (right panel, units: W m−2) regressed onto standardized Niño3.4 index: (a, e) JRA55, (b, f) FGOALS-g3, (c, g) FGOALS-g2, and (d, h) GAMIL3. Dots areas denote the 95% confidence level
-
[1] Achuthavarier D, Krishnamurthy V, Kirtman B P, et al. 2012. Role of the Indian Ocean in the ENSO–Indian summer monsoon teleconnection in the NCEP climate forecast system [J]. J. Climate, 25(7): 2490−2508. doi: 10.1175/JCLI-D-11-00111.1 [2] Adler R F, Huffman G J, Chang A, et al. 2003. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present) [J]. Journal of Hydrometeorology, 4(6): 1147−1167. doi: 10.1175/1525-7541(2003)004<1147:tvgpcp>2.0.co;2 [3] Annamalai H, Hamilton K, Sperber K R. 2007. The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations [J]. J. Climate, 20(6): 1071−1092. doi: 10.1175/JCLI4035.1 [4] Annamalai H, Taguchi B, McCreary J P, et al. 2017. Systematic errors in South Asian monsoon simulation: Importance of equatorial Indian Ocean processes [J]. J. Climate, 30(20): 8159−8178. doi: 10.1175/JCLI-D-16-0573.1 [5] Ashok K, Guan Z Y, Yamagata T. 2001. Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO [J]. Geophys. Res. Lett., 28(23): 4499−4502. doi: 10.1029/2001gl013294 [6] Ashok K, Guan Z Y, Saji N H, et al. 2004. Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon [J]. J. Climate, 17(16): 3141−3155. doi: 10.1175/1520-0442(2004)017<3141:iacioe>2.0.co;2 [7] Bollasina M, Nigam S. 2009. Indian Ocean SST, evaporation, and precipitation during the South Asian summer monsoon in IPCC-AR4 coupled simulations [J]. Climate Dyn., 33(7–8): 1017–1032. doi:10.1007/s00382-008-0477-4 [8] Boos W R, Kuang Z M. 2010. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating [J]. Nature, 463(7278): 218−222. doi: 10.1038/nature08707 [9] Boos W R, Hurley J V. 2013. Thermodynamic bias in the multi-model mean boreal summer monsoon [J]. J. Climate, 26(7): 2279−2287. doi: 10.1175/JCLI-D-12-00493.1 [10] Chen L, Yu Y Q, Zheng W P. 2016. Improved ENSO simulation from climate system model FGOALS-g1.0 to FGOALS-g2 [J]. Climate Dyn., 47(7): 2617−2634. doi: 10.1007/s00382-016-2988-8 [11] Cherchi A, Navarra A. 2013. Influence of ENSO and of the Indian Ocean dipole on the Indian summer monsoon variability [J]. Climate Dyn., 41(1): 81−103. doi: 10.1007/s00382-012-1602-y [12] Dai A G, Li H M, Sun Y, et al. 2013. The relative roles of upper and lower tropospheric thermal contrasts and tropical influences in driving Asian summer monsoons [J]. J. Geophys. Res., 118(13): 7024−7045. doi: 10.1002/jgrd.50565 [13] Gill A E. 1980. Some simple solutions for heat-induced tropical circulation [J]. Quart. J. Roy. Meteor. Soc., 106(449): 277−462. doi: 10.1002/qj.49710644905 [14] Guo Z, Zhou T J. 2014. An improved diagnostic stratocumulus scheme based on estimated inversion strength and its performance in GAMIL2 [J]. Science China Earth Sciences, 57(11): 2637−2649. doi: 10.1007/s11430-014-4891-7 [15] Hanf F S, Annamalai H. 2020. Systematic errors in South Asian monsoon precipitation: Process-based diagnostics and sensitivity to entrainment in NCAR models [J]. J. Climate, 33(7): 2817−2840. doi: 10.1175/jcli-d-18-0495.1 [16] He L Q, Hao X, Han T T. 2020. The asymmetric impacts of ENSO modoki on boreal winter climate over the Pacific and its rim [J]. Climate Dyn., 56(1): 29−44. doi: 10.1007/s00382-020-05395-z [17] 黄昕, 周天军, 吴波, 等. 2019. 气候系统模式FGOALS模拟的南亚夏季风: 偏差和原因分析 [J]. 大气科学, 43(2): 437−455. doi: 10.3878/j.issn.1006-9895.1805.18131Huang Xin, Zhou Tianjun, Wu Bo, et al. 2019. South Asian summer monsoon simulated by two versions of FGOALS climate system model: Model biases and mechanims [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(2): 437−455. doi: 10.3878/j.issn.1006-9895.1805.18131 [18] Huang X, Zhou T J, Turner A, et al. 2020a. The recent decline and recovery of Indian summer monsoon rainfall: Relative roles of external forcing and internal variability [J]. J. Climate, 33(12): 5035−5060. doi: 10.1175/JCLI-D-19-0833.1 [19] Huang X, Zhou T J, Dai A G, et al. 2020b. South Asian summer monsoon projections constrained by the interdecadal Pacific oscillation [J]. Science Advances, 6(11): eaay6546. doi: 10.1126/sciadv.aay6546 [20] Izumo T, Montégut C, Luo J J, et al. 2008. The role of the western Arabian Sea upwelling in Indian monsoon rainfall variability [J]. J. Climate, 21(21): 5603−5623. doi: 10.1175/2008jcli2158.1 [21] Jin Q J, Wang C E. 2017. A revival of Indian summer monsoon rainfall since 2002 [J]. Nature Climate Change, 7(8): 587−594. doi: 10.1038/nclimate3348 [22] John V O, Soden B J. 2007. Temperature and humidity biases in global climate models and their impact on climate feedbacks [J]. Geophys. Res. Lett., 34(18): L18704. doi: 10.1029/2007gl030429 [23] Johnson S J, Levine R C, Turner A G, et al. 2016. The resolution sensitivity of the South Asian monsoon and Indo-Pacific in a global 0.35° AGCM [J]. Climate Dyn., 46(3–4): 807–831. doi:10.1007/s00382-015-2614-1 [24] Kobayashi S, Ota Y, Harada Y, et al. 2015. The JRA-55 reanalysis: General specifications and basic characteristics [J]. J. Meteor. Soc. Japan, 93(1): 5−48. doi: 10.2151/jmsj.2015-001 [25] Lau N C, Nath M J. 2009. A model investigation of the role of air–sea interaction in the climatological evolution and ENSO-related variability of the summer monsoon over the South China Sea and western North Pacific [J]. J. Climate, 22(18): 4771−4792. doi: 10.1175/2009jcli2758.1 [26] Levine R C, Turner A G, Marathayil D, et al. 2013. The role of northern Arabian Sea surface temperature biases in CMIP5 model simulations and future projections of Indian summer monsoon rainfall [J]. Climate Dyn., 41(1): 155−172. doi: 10.1007/s00382-012-1656-x [27] Li L J, Dong L, Xie J B, et al. 2020a. The GAMIL3: Model description and evaluation [J]. J. Geophys. Res., 125(15): e2020JD032574. doi: 10.1029/2020JD032574 [28] Li L J, Yu Y Q, Tang Y L, et al. 2020b. The flexible global ocean-atmosphere-land system model grid-point version 3 (FGOALS-g3): Description and evaluation [J]. Journal of Advances in Modeling Earth Systems, 12(9): e2019MS002012. doi: 10.1029/2019MS002012 [29] Lin P F, Yu Y Q, Liu H L. 2013. Oceanic climatology in the coupled model FGOALS-g2: Improvements and biases [J]. Adv. Atmos. Sci., 30(3): 819−840. doi: 10.1007/s00376-012-2137-1 [30] Lin P F, Liu H L, Xue W, et al. 2016. A coupled experiment with LICOM2 as the ocean component of CESM1 [J]. J. Meteor. Res., 30(1): 76−92. doi: 10.1007/s13351-015-5045-3 [31] Lin P F, Yu Z P, Liu H L, et al. 2020. LICOM model datasets for the CMIP6 ocean model Intercomparison project [J]. Adv. Atmos. Sci., 37(3): 239−249. doi: 10.1007/s00376-019-9208-5 [32] Martin G M, Milton S F, Senior C A, et al. 2010. Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate [J]. J. Climate, 23(22): 5933−5957. doi: 10.1175/2010JCLI3541.1 [33] Mishra V, Smoliak B V, Lettenmaier D P, et al. 2012. A prominent pattern of year-to-year variability in Indian Summer monsoon rainfall [J]. Proceedings of the National Academy of Sciences of the United States of America, 109(19): 7213−7217. doi: 10.1073/pnas.1119150109 [34] Neale R B, Richter J H, Jochum M. 2008. The impact of convection on ENSO: From a delayed oscillator to a series of events [J]. J. Climate, 21(22): 5904−5924. doi: 10.1175/2008JCLI2244.1 [35] Nie Y, Li L J, Tang Y L, et al. 2019. Impacts of changes of external forcings from CMIP5 to CMIP6 on surface temperature in FGOALS-g2 [J]. Sola, 15: 211−215. doi: 10.2151/sola.2019-038 [36] Pandey P, Dwivedi S, Goswami B N, et al. 2020. A new perspective on ENSO−Indian summer monsoon rainfall relationship in a warming environment [J]. Climate Dyn., 55(11−12): 3307−3326. doi:10.1007/s00382-020-05452-7 [37] Rayner N A, Parker D E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century [J]. J. Geophys. Res., 108(D14): 4407. doi: 10.1029/2002jd002670 [38] Roxy M K, Ritika K, Terray P, et al. 2015. Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land−sea thermal gradient [J]. Nature Communications, 6(1): 7423. doi: 10.1038/ncomms8423 [39] Shi X J, Zhang W T, Liu J J. 2019. Comparison of anthropogenic aerosol climate effects among three climate models with reduced complexity [J]. Atmosphere, 10(8): 456. doi: 10.3390/atmos10080456 [40] Sperber K R, Annamalai H, Kang I S, et al. 2013. The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century [J]. Climate Dyn., 41(9–10): 2711–2744. doi:10.1007/s00382-012-1607-6 [41] Stevens B, Fiedler S, Kinne S, et al. 2017. MACv2-SP: A parameterization of anthropogenic aerosol optical properties and an associated Twomey effect for use in CMIP6 [J]. Geoscientific Model Development, 10(1): 433−452. doi: 10.5194/gmd-10-433-2017 [42] Sun W Q, Li L J, Wang B. 2016. Reducing the biases in shortwave cloud radiative forcing in tropical and subtropical regions from the perspective of boundary layer processes [J]. Science China Earth Sciences, 59(7): 1427−1439. doi: 10.1007/s11430-016-5290-z [43] Tian B J, Fetzer E J, Kahn B H, et al. 2013. Evaluating CMIP5 models using AIRS tropospheric air temperature and specific humidity climatology [J]. J. Geophys. Res., 118(1): 114−134. doi: 10.1029/2012JD018607 [44] Wang P X, Wang B, Cheng H, et al. 2017. The global monsoon across time scales: Mechanisms and outstanding issues [J]. Earth-Sci. Rev., 174: 84−121. doi: 10.1016/j.earscirev.2017.07.006 [45] 王晨琦, 邹立维, 周天军, 等. 2019. 年代际气候预测系统IAP DecPreS的海洋同化试验在西北太平洋的海温偏差及其对亚洲夏季风的影响 [J]. 大气科学, 43(3): 498−510. doi: 10.3878/j.issn.1006-9895.1809.18133Wang Chenqi, Zou Liwei, Zhou Tianjun, et al. 2019. SST Biasover the Northwest Pacific in oceanic data assimilation experiments with the interdecadal climate prediction system IAP DecPreS and its impacts on the Asian summer monsoon simulation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(3): 498−510. doi: 10.3878/j.issn.1006-9895.1809.18133 [46] Webster P J, Yang S. 1992. Monsoon and ENSO: Selectively interactive systems [J]. Quart. J. Roy. Meteor. Soc., 118(507): 877−926. doi: 10.1002/qj.49711850705 [47] Wu X Q, Deng L P, Song X L, et al. 2007. Coupling of convective momentum transport with convective heating in global climate simulations [J]. J. Atmos. Sci., 64(4): 1334−1349. doi: 10.1175/JAS3894.1 [48] Xie Z H, Wang L H, Wang Y, et al. 2020. Land surface model CAS-LSM: Model description and evaluation [J]. Journal of Advances in Modeling Earth Systems, 12(12): e2020MS002339. doi: 10.1029/2020MS002339 [49] Xin X G, Li Z X, Yu R C, et al. 2008. Impacts of upper tropospheric cooling upon the late spring drought in East Asia simulated by a regional climate model [J]. Adv. Atmos. Sci., 25(4): 555−562. doi: 10.1007/s00376-008-0555-x [50] Yang B, Zhang Y C, Qian Y, et al. 2019. Better monsoon precipitation in coupled climate models due to bias compensation [J]. npj Clim. Atmos. Sci., 2(1): 43. doi: 10.1038/s41612-019-0100-x [51] Yu R C. 1994. A two-step shape-preserving advection scheme. Advances in Atmospheric Sciences, 11(4): 479–490. doi:10.1007/BF02658169 [52] Yu R C, Zhou T J. 2007. Seasonality and three-dimensional structure of interdecadal change in the East Asian monsoon [J]. J. Climate, 20(21): 5344−5355. doi: 10.1175/2007JCLI1559.1 [53] Yu R C, Wang B, Zhou T J. 2004. Tropospheric cooling and summer monsoon weakening trend over East Asia [J]. Geophys. Res. Lett., 31(22): L22212. doi: 10.1029/2004GL021270 [54] 俞永强, 唐绍磊, 刘海龙, 等. 2018. 任意正交曲线坐标系下的海洋模式动力框架的发展与评估 [J]. 大气科学, 42(4): 877–889. Yu Yongqiang, Tang Shaolei, Liu Hailong, et al. 2018. Development and evaluation of the dynamic framework of an ocean general circulation model with arbitrary orthogonal curvilinear coordinate [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(4): 877−889. doi:10.3878/j.issn.1006-9895.1805.17284 [55] 于子棚, 林鹏飞, 刘海龙, 等. 2019. CMIP6海洋模式比较计划(OMIP)概况与评述 [J]. 气候变化研究进展, 15(5): 503−509. doi: 10.12006/j.issn.1673-1719.2019.086Yu Zipeng, Lin Pengfei, Liu Hailong, et al. 2019. Short commentary on CMIP6 Ocean Model Intercomparison Project (OMIP) [J]. Climate Change Research (in Chinese), 15(5): 503−509. doi: 10.12006/j.issn.1673-1719.2019.086 [56] Zhang R H, Yu Y Q, Song Z Y, et al. 2020. A review of progress in coupled ocean-atmosphere model developments for ENSO studies in China [J]. Journal of Oceanology and Limnology, 38(4): 930−961. doi: 10.1007/s00343-020-0157-8 [57] Zhao M, Golaz J C, Held I M, et al. 2018. The GFDL global atmosphere and land model AM4.0/LM4.0: 2. Model description, sensitivity studies, and tuning strategies [J]. Journal of Advances in Modeling Earth Systems, 10(3): 735−769. doi: 10.1002/2017MS001209 [58] Zhou T J, Turner A G, Kinter J L, et al. 2016. GMMIP (v1.0) contribution to CMIP6: Global monsoons model inter-comparison project [J]. Geosci. Model Dev., 9(10): 3589−3604. doi: 10.5194/gmd-9-3589-2016 [59] 周天军, 陈晓龙, 何编, 等. 2019a. 全球季风模式比较计划(GMMIP)概述 [J]. 气候变化研究进展, 15(5): 493−497. doi: 10.12006/j.issn.1673-1719.2019.132Zhou Tianjun, Chen Xiaolong, He Bian, et al. 2019a. Short commentary on CMIP6 Global Monsoons Model Intercomparison Project (GMMIP) [J]. Climate Change Research (in Chinese), 15(5): 493−497. doi: 10.12006/j.issn.1673-1719.2019.132 [60] 周天军, 邹立维, 陈晓龙. 2019b. 第六次国际耦合模式比较计划(CMIP6)评述 [J]. 气候变化研究进展, 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193Zhou Tianjun, Zou Liwei, Chen Xiaolong. 2019b. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6) [J]. Climate Change Research (in Chinese), 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193 -