高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

山西一次降雪云物理特征的飞机观测研究

封秋娟 牛生杰 侯团结 范秀平 申东东 杨俊梅

封秋娟, 牛生杰, 侯团结, 等. 2021. 山西一次降雪云物理特征的飞机观测研究[J]. 大气科学, 45(5): 1−15 doi: 10.3878/j.issn.1006-9895.2106.21004
引用本文: 封秋娟, 牛生杰, 侯团结, 等. 2021. 山西一次降雪云物理特征的飞机观测研究[J]. 大气科学, 45(5): 1−15 doi: 10.3878/j.issn.1006-9895.2106.21004
FENG Qiujuan, NIU Shengjie, HOU Tuanjie, et al. 2021. Aircraft-Based Observation of the Physical Characteristics of Snowfall Cloud in Shanxi Province [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(5): 1−15 doi: 10.3878/j.issn.1006-9895.2106.21004
Citation: FENG Qiujuan, NIU Shengjie, HOU Tuanjie, et al. 2021. Aircraft-Based Observation of the Physical Characteristics of Snowfall Cloud in Shanxi Province [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(5): 1−15 doi: 10.3878/j.issn.1006-9895.2106.21004

山西一次降雪云物理特征的飞机观测研究

doi: 10.3878/j.issn.1006-9895.2106.21004
基金项目: 国家重点研发计划项目2018YFC1507905、2019YFC1510304,山西省气象局重点项目SXKZDRY20165205,中国气象局云雾物理环境重点开放实验室开放课题2017Z016,江苏省普通高校学术学位研究生科研创新计划项目KYLX16_0938
详细信息
    作者简介:

    封秋娟,女,1982年出生,博士研究生,研究方向为云降水物理与人工影响天气。E-mail: fqj119818@163.com

    通讯作者:

    牛生杰,E-mail: niusj@nuist.edu.cn

  • 中图分类号: P481

Aircraft-Based Observation of the Physical Characteristics of Snowfall Cloud in Shanxi Province

Funds: National Key R&D Program of China (Grants 2018YFC1507905, 2019YFC1510304), Key Project of Shanxi Meteorological Administration (Grant SXKZDRY20165205), Open Project of Key Laboratory for Cloud Physics of China Meteorological Administration (Grant 2017Z016), Research and Innovation Project of Academic Degree Postgraduates in Jiangsu Province (Grant KYLX16_0938)
  • 摘要: 通过飞机直接进入降雪云进行探测,并配合MICPAS(气象信息综合分析处理系统)、雷达和卫星等资料,对2011年11月29日山西一次降雪云宏、微观结构特征进行分析。研究发现:本次降雪过程的雷达回波以10~20 dBZ大片层状云回波为主,镶嵌了超过30 dBZ的块状强回波,雷达径向速度零线呈较强的“S”型弯曲,出现“牛眼”结构,从低层到高层有较强的风垂直切变。液态水含量主要位于3.2 km以下,最大值为0.0697 g m−3N50(粒子直径大于50 μm的冰雪晶数浓度)、N200(粒子直径大于200 μm的冰雪晶数浓度)和冰水含量主要产生于层积混合降雪云的上部,极大值出现在−9.3°C附近,分别为188.4 L−1、33.5 L−1和0.121 g m−3。−14.4°C~−19.7°C冰晶图像以针状、柱状和不规则状为主,以冰晶的凝华增长为主。−9.3°C附近冰雪晶图像以辐枝状、不规则状为主,辐枝状冰晶的聚并碰撞和折裂繁生可能是造成此处冰雪晶高浓度的主要原因。利用指数形式能较好地拟合冰雪晶谱分布,谱拟合参数可以用幂函数Nos=1.021λ1.684表示(其中,Nosλ分别表示截距和斜率,Nos越大表示小粒子数浓度越大,λ越大表示小粒子数浓度占总粒子数浓度比例越高),相关系数R2为0.86。3.2 km以下存在三次逆温,逆温层的出现使云微物理特征量和拟合参数Nos减小,抑制了云内淞附增长和凝华增长,导致本次观测谱拟合参数Nosλ随温度的变化规律与以往的观测不一致,逆温强度越大抑制作用越大。
  • 图  1  2011年11月29日(a)11:00(北京时,下同)的地面气压场(黑线,单位:hPa)和(b)08:00的850 hPa温度场(红线,单位:°C)、高度场(黑线,单位:dagpm)。黑色矩形代表飞行区域。图b中棕色粗实线表示500 hPa槽线,黄色粗实线表示700 hPa切变线

    Figure  1.  Surface pressure field (black lines, units: hPa) at 1100 BJT (Beijing time) and (b) temperature (red lines, units: °C), geopotential height (black lines, units: dagpm) at 850 hPa at 0800 BJT on 29 November 2011. The black rectangle denotes the flight area. In Fig. b, the brown thick solid line represents the 500-hPa trough line and the thick yellow lines represent the 700-hPa shear line

    图  2  2011年11月29日10:00FY-2D卫星的(a)红外云图、(b)可见光云图。黑色矩形代表飞行区域

    Figure  2.  (a) Infrared cloud image, (b) visible light cloud image from FY-2D satellite at 1000 BJT on 29 November 2011. The black rectangle denotes the flight area

    图  3  2011年11月29日(a)09:02的1.5°仰角PPI回波(单位:dBZ),(b)沿飞行轨迹的RHI(range height indicator)回波(单位:dBZ),(c)08:57的1.5°仰角速度回波(单位:m s−1),(d)08:38~09:20时间段对应的飞行轨迹,色标代表高度(单位:m)

    Figure  3.  (a) PPI (plan position indicator) echo (units: dBZ) at 1.5° elevation at 0902 BJT, (b) RHI (range height indicator) echo (units: dBZ) along the flight path, (c) velocity echo (units: m s−1) at 1.5° elevation at 0857 BJT, (d) flight path (colors indicate heights) during 0838–0920 BJT on 29 November 2011

    图  4  2011年11月29日09:00观测的冰雪晶谱分布。N、D分别表示冰雪晶数谱密度和最大直径,空心圆来自CIP探头资料,实心圆来自PIP探头资料

    Figure  4.  Ice and snow crystal spectral distribution at 0900 BJT on 29 November 2011. N and D represent the spectral density and maximum diameter of ice and snow crystals, respectively. The values of hollow circles and solid circles obtained from CIP (Cloud Imaging Probe) and PIP (Precipitation Imaging Probe) data, respectively

    图  5  2011年11月29日08:38~08:49时段(P1)(a)N50(黑色实线,单位:L−1)、N200(黑色虚线,单位:L−1)、温度(T,红色线,单位:°C)、高度(ALT,蓝色线,单位:km),(b)Nc(黑色实线,单位:cm−3)、LWC(黑色虚线,单位:g m−3)、温度(红色线,单位:°C),(c)Nc24(黑色实线,单位:cm−3)、IWC(黑色虚线,单位:g m−3)、温度(红色线,单位:°C)随时间的变化。(d–f)同(a–c),但为08:49~09:06时段(P2)云微物理量随时间的变化。(g–i)同(a–c),但为09:06~09:20时段(P3)云微物理量随时间的变化

    Figure  5.  Variations of (a) N50 (solid black line, units: L−1), N200 (dashed black line, units: L−1), temperature (T, red line, units: °C), altitude (ALT, blue line, units: km), (b) Nc (the number concentration of cloud droplets, solid black line, units: cm−3), LWC (Liquid Water Content, dashed black line, units: g m−3), temperature (T, red line, units: °C), (c) Nc24 (solid black line, units: cm−3), IWC (Ice Water Content, dashed black line, units: g m−3), temperature (T, red line, units: °C) with time during 0838–0849 BJT (P1) on 29 November 2011. (d–f) As in (a–c), but for variations of cloud microphysical characteristics with time during 0849–0906 BJT (P2) on 29 November 2011. (g–i) As in (a–c), but for variations of cloud microphysical characteristics with time during 0906–0920 BJT (P3) on 29 November 2011

    图  6  2011年11月29日08:38~09:20时间段CDP、CIP和PIP粒子探头获取的组合粒子谱在不同高度和温度的分布

    Figure  6.  Distributions of combined particle spectrum at different heights and temperatures obtained from CDP, CIP, and PIP during 0838–0920 BJT on 29 November 2011

    7  P1、P2、P3时段观测到的冰晶图像随温度的变化(取自CIP资料)

    7.  Ice crystal image changes with temperature during P1, P2, and P3 (from the CIP data)

    图  7  (续)

    Figure  7.  (Continued)

    图  8  2011年11月29日08:38~09:20冰雪晶谱拟合参数(a)Nos、(c)λ随温度的变化,−5°C层以下三次逆温层(Inversion Layer, IL1、IL2、IL3)(b)Nos和温度、(d)λ和温度随高度的垂直分布。图a、c中的黑点表示每10 s拟合参数的平均值

    Figure  8.  Variations of (a) Nos (fitting parameter, the larger Nos was, the higher the concentration of small particles was), (c) λ (fitting parameter, the larger λ was, the higher the proportion of small particle number concentration to total particle number concentration was) with temperature; vertical distributions of (b) Nos and temperature, (d) λ and temperature with height in three inversion layers (IL1, IL2, IL3) below −5°C level during 0838–0920 BJT on 29 November 2011. In Figs. a and c, the black dots denote the average value of the fitting parameters every 10 s

    图  9  2011年11月29日08:38~09:20(a)指数分布拟合冰雪晶谱得到的相关系数R2、温度随时间的变化,(b)指数拟合参数Nosλ的散点图,实线代表Nosλ的回归函数

    Figure  9.  (a) Variation with time and temperature of the correlation coefficient R2 obtained by fitting the ice and snow crystal spectra with the exponential distribution, (b) scatter diagram of the exponential fitting parameters Nos and λ (the line denotes the regression functionof Nos and λ) during 0838–0920 BJT on 29 November 2011

    表  1  DMT(droplet measurement technology)机载仪器参数

    Table  1.   DMT (droplet measurement technology) parameter list of detection probes

    序号仪器名称量程/μm通道测量内容
    1AIMMS-20温度、湿度、轨迹
    2CDP2~5030 bin,1 μm或2 μm云滴
    3CIP25~155062 bin,25 μm云滴、冰雪晶粒子、雨滴
    4PIP100~620062 bin,100 μm冰雪晶粒子、雨滴
    下载: 导出CSV

    表  2  2011年11月29日08:38~09:20穿云探测到的不同高度微物理特征量统计。 $N_{50}$$N_{200} $分别表示直径大于50 μm、200 μm冰雪晶数浓度。 $N_{{\rm{c}}24}$表示CDP获取的直径大于24 μm的粒子数浓度

    Table  2.   Statistical microphysical characteristics at different altitudes observed by cloud-penetrating exploration during 0838–0920 BJT on 29 November 2011. $N_{50}$ and $N_{200} $ represent the concentration of ice and snow crystal number with diameter greater than 50 μm and 200 μm, respectively, $N_{{\rm{c}}24}$ was the number concentration of particles greater than 24 μm obtained by CDP (Cloud Droplet Probe)

    时段高度/m温度/°CN50/L−1N200/L−1LWC/g m−3Nc24/cm−3IWC/g m−3
    P11149−1.530.14.60.06970.7480.004
    1900−2.910.45.80.04880.0230.015
    P23850−5.996.625.40.00000.0440.075
    4575−9.3188.433.50.00000.0790.121
    5180−13.0113.127.90.00000.0390.033
    P36364−19.5100.196.80.00000.0500.099
    注:液态水含量LWC由CDP观测到粒子数浓度大于或等于10 cm−3的云滴计算所得,冰水含量IWC由M-D关系计算所得。
    下载: 导出CSV
  • [1] Bailey M P, Hallett J. 2009. A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies [J]. J. Atmos. Sci., 66(9): 2888−2899. doi: 10.1175/2009JAS2883.1
    [2] Braham R R Jr. 1990. Snow particle size spectra in lake effect snows [J]. J. Appl. Meteor. Climatol., 29(3): 200−207. doi:10.1175/1520-0450(1990)029<0200:SPSSIL>2.0.CO;2
    [3] 陈万奎. 1987. 枝状雪晶碰撞攀附与折裂繁生 [J]. 气象科学研究院院刊, 2(1): 74−80.

    Chen Wankui. 1987. The multiplication generated by dendritic snow crystals collision and aggregation [J]. Journal of Academy of Meteorological Science (in Chinese), 2(1): 74−80.
    [4] 陈羿辰, 金永利, 丁德平, 等. 2018. 毫米波测云雷达在降雪观测中的应用初步分析 [J]. 大气科学, 42(1): 134−149. doi: 10.3878/j.issn.1006-9895.1705.17121

    Chen Yichen, Jin Yongli, Ding Deping, et al. 2018. Preliminary analysis on the application of millimeter wave cloud radar in snow observation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(1): 134−149. doi: 10.3878/j.issn.1006-9895.1705.17121
    [5] 高茜, 郭学良, 刘香娥, 等. 2020. 北京北部山区两次降雪过程微物理形成机制的观测—模拟研究 [J]. 大气科学, 44(2): 407−420. doi: 10.3878/j.issn.1006-9895.1901.18172

    Gao Qian, Guo Xueliang, Liu Xiang’e, et al. 2020. Numerical simulation and observation study on microphysical formation processes of two different snowfall cases in northern mountain area of Beijing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(2): 407−420. doi: 10.3878/j.issn.1006-9895.1901.18172
    [6] Geerts B, Yang Yang, Rasmussen R, et al. 2015. Snow growth and transport patterns in orographic storms as estimated from airborne vertical-plane dual-Doppler radar data [J]. Mon. Wea. Rev., 143(2): 644−665. doi: 10.1175/MWR-D-14-00199.1
    [7] Gunn K L S, Marshall J S. 1958. The distribution with size of aggregate snowflakes [J]. J. Atmos. Sci., 15(5): 452−461. doi:10.1175/1520-0469(1958)015<0452:TDWSOA>2.0.CO;2
    [8] Heymsfield A J, Kajikawa M. 1987. An improved approach to calculating terminal velocities of plate-like crystals and graupel [J]. J. Atmos. Sci., 44(7): 1088−1099. doi:10.1175/1520-0469(1987)044<1088:AIATCT>2.0.CO;2
    [9] Heymsfield A J, Bansemer A, Field P R, et al. 2002. Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns [J]. J. Atmos. Sci., 59(24): 3457−3491. doi:10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2
    [10] Hou Tuanjie, Lei Hengchi, He Youjiang, et al. 2021. Aircraft measurements of the microphysical properties of stratiform clouds with embedded convection [J]. Adv. Atmos. Sci., 38(6): 966−982. doi: 10.1007/s00376-021-0287-8
    [11] 黄钰, 郭学良, 毕凯, 等. 2020. 北京延庆山区降雪云物理特征的垂直观测和数值模拟研究 [J]. 大气科学, 44(2): 356−370. doi: 10.3878/j.issn.1006-9895.1903.18258

    Huang Yu, Guo Xueliang, Bi Kai, el al. 2020. Vertical observation and numerical simulation of the clouds physical characteristics of snow-producing over Yanqing Mountain area in Beijing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(2): 356−370. doi: 10.3878/j.issn.1006-9895.1903.18258
    [12] 贾星灿, 马新成, 毕凯, 等. 2018. 北京冬季降水粒子谱及其下落速度的分布特征 [J]. 气象学报, 76(1): 148−159. doi: 10.11676/qxxb2017.085

    Jia Xingcan, Ma Xincheng, Bi Kai, el al. 2018. Distributions of particle size and fall velocities of winter precipitation in Beijing [J]. Acta Meteorologica Sinica (in Chinese), 76(1): 148−159. doi: 10.11676/qxxb2017.085
    [13] Jing Xiaoqin, Geerts B, Friedrich K, et al. 2015. Dual-polarization radar data analysis of the impact of ground-based glaciogenic seeding on winter orographic clouds. Part I: Mostly stratiform clouds [J]. J. Appl. Meteor. Climatol., 54(9): 1944−1969. doi: 10.1175/JAMC-D-14-0257.1
    [14] Kim D K, Lee D I. 2015. Atmospheric thickness and vertical structure properties in wintertime precipitation events from microwave radiometer, radiosonde and wind profiler observations [J]. Meteorological Applications, 22(3): 599−609. doi: 10.1002/met.1494
    [15] Korolev A, Isaac G A, Hallett J. 2000. Ice particle habits in stratiform clouds [J]. Quart. J. Roy. Meteor. Soc., 126(569): 2873−2902. doi: 10.1002/qj.49712656913
    [16] Lance S, Brock C A, Rogers D, et al. 2010. Water droplet calibration of the Cloud Droplet Probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC [J]. Atmos. Meas. Tech., 3: 1683−1706. doi: 10.5194/amt-3-1683-2010
    [17] Lo K K, Passarelli R E. 1982. The growth of snow in winter storms: An airborne observational study [J]. J. Atmos. Sci., 39(4): 697−706. doi:10.1175/1520-0469(1982)039<0697:TGOSIW>2.0.CO;2
    [18] Ma Xincheng, Bi Kai, Chen Yunbo, et al. 2017. Characteristics of winter clouds and precipitation over the mountains of northern Beijing [J]. Adv. Meteor., 2017: 3536107. doi: 10.1155/2017/3536107
    [19] Mitchell D L, Zhang R, Pitter R L. 1990. Mass dimensional relationships for ice particles and the influence of riming on snowfall rates [J]. J. Appl. Meteor., 29(2): 153−163. doi:10.1175/1520-0450(1990)029<0153:MDRFIP>2.0.CO;2
    [20] Rauber R M. 1987. Characteristics of cloud ice and precipitation during wintertime storms over the mountains of northern Colorado [J]. J. Appl. Meteor. Climatol., 26(4): 488−524. doi:10.1175/1520-0450(1987)026<0488:COCIAP>2.0.CO;2
    [21] Reynolds D W, Kuciauskas A P. 1988. Remote and in situ observations of Sierra Nevada winter mountain clouds: Relationships between mesoscale structure, precipitation and liquid water [J]. J. Appl. Meteor. Climatol., 27(2): 140−156. doi:10.1175/1520-0450(1988)027<0140:RAISOO>2.0.CO;2
    [22] Saleeby S M, Cotton W R, Fuller J D. 2011. The cumulative impact of cloud droplet nucleating aerosols on orographic snowfall in Colorado [J]. J. Appl. Meteor. Climatol., 50(3): 604−625. doi: 10.1175/2010JAMC2594.1
    [23] Sekhon R S, Srivastava R C. 1970. Snow size spectra and radar reflectivity [J]. J. Atmos. Sci., 27(2): 299−307. doi:10.1175/1520-0469(1970)027<0299:SSSARR>2.0.CO;2
    [24] Woods C P, Stoelinga M T, Locatelli J D. 2008. Size spectra of snow particles measured in wintertime precipitation in the Pacific Northwest [J]. J. Atmos. Sci., 65(1): 189−205. doi: 10.1175/2007JAS2243.1
    [25] Yang Jiefan, Lei Hengchi, Hu Zhaoxia, et al. 2014. Particle size spectra and possible mechanisms of high ice concentration in nimbostratus over Hebei Province, China [J]. Atmos. Res., 142: 79−90. doi: 10.1016/j.atmosres.2013.12.018
    [26] Yang Jiefan, Lei Hengchi. 2016. In situ observations of snow particle size distributions over a cold frontal rainband within an extratropical cyclone [J]. Asia-Pacific J. Atmos. Sci., 52(1): 51−62. doi: 10.1007/s13143-015-0089-y
    [27] 游来光, 王守荣, 王鼎丰, 等. 1989. 新疆冬季降雪微结构及其增长过程的初步研究 [J]. 气象学报, 47(1): 73−81. doi: 10.11676/qxxb1989.009

    You Laiguang, Wang Shourong, Wang Dingfeng, et al. 1989. The microphysical structure of snow cloud and the growth process of snow in winter in Xinjiang [J]. Acta Meteorologica Sinica (in Chinese), 47(1): 73−81. doi: 10.11676/qxxb1989.009
    [28] 游来光, 李炎辉, 刘玉宝. 1992. 自然云中冰晶生成的核化过程及雪晶对过冷云滴的撞冻 [J]. 气象学报, 50(2): 232−238. doi: 10.11676/qxxb1992.026

    You Laiguang, Li Yanhui, Liu Yubao. 1992. On the nucleation processes of ice crystal and the collision efficiency between the dendritic snow crystal and droplets in natural clouds [J]. Acta Meteorologica Sinica (in Chinese), 50(2): 232−238. doi: 10.11676/qxxb1992.026
    [29] 赵桂香, 杜莉, 范卫东, 等. 2011. 山西省大雪天气的分析预报 [J]. 高原气象, 30(3): 727−738.

    Zhao Guixiang, Du Li, Fan Weidong, et al. 2011. Analysis and forecast of heavy snow in Shanxi Province [J]. Plateau Meteorology (in Chinese), 30(3): 727−738.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  25
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-09
  • 录用日期:  2021-06-21
  • 网络出版日期:  2021-07-17

目录

    /

    返回文章
    返回