高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2020年长江中下游地区梅汛期强降水特征及其与对流层上层斜压Rossby波的关系

孙思远 管兆勇

孙思远, 管兆勇. 2021. 2020年长江中下游地区梅汛期强降水特征及其与对流层上层斜压Rossby波的关系[J]. 大气科学, 46(4): 1−14 doi: 10.3878/j.issn.1006-9895.2106.21006
引用本文: 孙思远, 管兆勇. 2021. 2020年长江中下游地区梅汛期强降水特征及其与对流层上层斜压Rossby波的关系[J]. 大气科学, 46(4): 1−14 doi: 10.3878/j.issn.1006-9895.2106.21006
SUN Siyuan, GUAN Zhaoyong. 2021. Heavy Precipitation in the Middle and Lower Reaches of the Yangtze River during the 2020 Meiyu Period: Features and Relationship with Baroclinic Rossby Wave in the Upper Troposphere [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(4): 1−14 doi: 10.3878/j.issn.1006-9895.2106.21006
Citation: SUN Siyuan, GUAN Zhaoyong. 2021. Heavy Precipitation in the Middle and Lower Reaches of the Yangtze River during the 2020 Meiyu Period: Features and Relationship with Baroclinic Rossby Wave in the Upper Troposphere [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(4): 1−14 doi: 10.3878/j.issn.1006-9895.2106.21006

2020年长江中下游地区梅汛期强降水特征及其与对流层上层斜压Rossby波的关系

doi: 10.3878/j.issn.1006-9895.2106.21006
基金项目: 国家重点研发计划重点专项2019YFC1510201,公益性行业(气象)科研专项GYHY201406024,江苏省PAPD项目
详细信息
    作者简介:

    孙思远,女,博士研究生,1994年出生,主要从事气候动力学研究。E-mail: sunsy@nuist.edu.cn

    通讯作者:

    管兆勇,E-mail: guanzy@nuist.edu.cn

  • 中图分类号: P433

Heavy Precipitation in the Middle and Lower Reaches of the Yangtze River during the 2020 Meiyu Period: Features and Relationship with Baroclinic Rossby Wave in the Upper Troposphere

Funds: National Key Research and Development Program of China (Grant 2019YFC1510201), China Meteorological Administration Special Public Welfare Research Fund (Grant GYHY201406024), PAPD Project of Jiangsu Province
  • 摘要: 2020年梅汛期(6~7月)长江中下游地区发生了严峻的汛情。2020年梅雨期长度和强度均远超历史平均水平。本文利用逐日NCEP/NCAR再分析资料和全球降水量网格数据集,研究了本次梅汛期降水特征及其与对流层上层斜压波动活动的联系。结果表明:本次梅汛期,长江中下游地区的总降水量和降水异常大值区位于安徽南部,共有7次连续的降水过程发生。长江中下游地区在对流层中低层辐合、高层辐散,且该地区上空有强的异常上升运动,有利于异常强降水的发生发展。同时,水汽自孟加拉湾和中国南海地区输送至长江中下游地区,为强降水的发生提供了充足水汽。利用小波分析研究该地区的逐日降水标准化时间序列时,发现其存在2~4天和6~14天的显著周期。高频(2~14天)扰动所显示的Rossby波动在对流层上层表现出向下游频散的特征,波动源于贝加尔湖附近。波扰动能量和通量所显示的波动向下游的传播过程与波包的传播过程较为一致,分别源于地中海和贝加尔湖附近的波扰能向东或向东南频散至长江中下游地区,有利于该地区扰动加强并进而有利于强降水的发生和维持。以上结果加深了人们对2020年超长“暴力梅”成因的认识并可为有效预测类似事件提供线索。
  • 图  1  2020年梅汛期(a)中国东部地区总降水量(等值线,单位:mm)和降水距平(阴影,单位:mm)分布,蓝色粗实线为长江和黄河;(b)112.5°E~120°E纬向平均的经向环流异常场(流线)、位势高度异常场(等值线,单位:gpm)和垂直速度异常场(阴影,单位:10−2 Pa s−1)的垂直剖面;(c)整层积分的水汽通量散度(阴影,单位:106 kg s−1)及其辐散分量(箭头,单位:kg m−1 s−1)和旋转分量(流线,单位:kg m−1 s−1)。(a)和(c)中的橘色矩形框为本文所选的研究范围

    Figure  1.  (a) Total precipitation (contours, unit: mm) and precipitation anomalies (shaded, units: mm) in eastern China during the 2020 Meiyu period; the thick blue line denotes the Yangtze River and Yellow River; (b) anomalous meridional circulation (streamlines), anomalous geopotential height (contours, units: m), and anomalous vertical velocity (shaded, units: 10−2 Pa/s) in vertical profiles; (c) water vapor flux divergence (shaded, units: 106 kg s−1) and its radiative dispersion component (arrows, units: kg m−1 s−1) and rotational component (streamlines, units: kg m−1 s−1) for the whole-layer integral. The orange rectangular boxes in (a) and (c) represent the study areas

    图  2  2020年梅汛期(a)长江中下游地区区域平均的逐日降水量(左侧纵坐标轴,单位:mm d−1)和西太副高的脊线位置(右侧坐标轴,蓝色实线)的时间序列,其中(a)中红色实线表示三点滑动平均,黑色柱状为每次过程的极值日;(b)极值日与其前一日降水量之差的分布(单位:mm/d),橘色矩形框为本文所选的研究范围

    Figure  2.  The time series of (a) the regional average of daily precipitation (left Y-axis, unit: mm) and the position of the ridge of the western Pacific (right Y-axis, blue solid line) paramount in the middle and lower reaches of the Yangtze River during the 2020 Meiyu period, where (a) the red solid line in (a) indicates the three-point sliding average, and the black bar denotes the extreme day of each process; (b) the distribution of the difference between the extreme day and the precipitation of the previous day (units: mm d−1). The orange rectangular box denotes the selected study range

    图  3  2020年梅汛期(a)850 hPa、(b)500 hPa、(c)300 hPa高度上异常旋转风场(流线,单位:m s−1)、辐散风场(箭头表示通过90%信度t检验,单位:m s−1)和散度(阴影,单位:10−6 s−1)分布以及(d)300 hPa高度上的环流场,(d)中阴影为纬向风,等值线为经向风,箭头为流场(单位:m s−1),黄色虚线为急流轴

    Figure  3.  Anomalous circulations at (a) 850 hPa, (b) 500 hPa, and (c) 300 hPa; (d) circulation at 300 hPa during the 2020 Meiyu period. (a), (b), and (c) show the divergence (shaded, units: 10−6 s−1), rotational component (streamlines, units: m s−1), and divergent component (arrows, units: m s−1) of the anomalous winds. (d) shows the latitudinal wind (shaded, units: m s−1) and meridional wind (contours, units: m s−1); the arrow denotes the flow field (units: m/s), and the yellow dashed line denotes the westerly jet-stream axis

    图  4  (a–i)极值日(day0)及其前后4天850 hPa上合成环流距平场(流线,单位:m s−1)和降水距平场(阴影,单位:mm)分布(圆点表示反气旋中心,星形表示气旋中心)

    Figure  4.  Composites of circulation anomalies (streamlines, units: m s−1) and precipitation anomalies (shaded, units: mm) over 850 hPa (a–i) four days before and after the extreme day (day0). The dot represents the anticyclone center and the star represents the cyclone center.

    图  5  (a–i)极值日前后4天300 hPa上合成环流距平场(流线,单位:m s−1)和风场的散度距平场(阴影,单位:10−6 s−1)。蓝色虚线表示波列状扰动轴线

    Figure  5.  Composites of circulation anomalies (streamlines, units: m s−1) and divergence anomalies of the wind field (shaded, units: s−1) over 300 hPa (a–i) four days before and after the extreme day The blue dotted line represents the axis of the wave-train anomaly disturbance

    图  6  长江中下游地区(a)区域平均的逐日标准化降水的Morlet小波功率谱分析(图中阴影区域为功率谱值,打点区域为通过90%的显著性检验,网格线处为边界效应)和(b)时间平均功率谱(红色虚线为红噪声检验)以及(c)300 hPa高频经向风场在30°N~60°N纬带上的功率谱(横轴为波数,纵轴为功率谱值)

    Figure  6.  (a) Morlet wavelet power spectrum analysis results of the standardized daily regional average precipitation over the middle and lower reaches of the Yangtze River (the shaded area in the figure denotes the power spectrum value, and the dotted area denotes the red noise test passing the 0.1 confidence level, with boundary effects at the grid lines); (b) the time-averaged power spectrum (the red dotted line denotes the red noise test); (c) the power spectrum of the 300 hPa high-frequency meridional wind field over 30ºN–60ºN (the horizontal axis represents the number of waves; the vertical axis denotes the power spectrum value).

    图  7  长江中下游地区Box-A梅汛期300 hPa基点处$ \psi ' $(阴影)和Ve(等值线)与相应的整个场在−3 d至+1 d的一点相关以及相应的对基点$ \psi ' $回归的波作用通量Wr(箭头,单位:m2 s−2)。相关系数≥0.3即为通过90%的显著性检验,阴影和等值线间隔为0.1,绿色等值线为正相关,棕色等值线为负相关,黑色实心圆点为基点

    Figure  7.  One-point correlations of $ \psi ' $ (Ve) at the base point of Box-A in the middle and lower reaches of the Yangtze River, with $ \psi ' $ (Ve) at 300 hPa in the whole field, and the corresponding wave action fluxes (arrows, units: m2 s−2) for the regression of $ \psi ' $ at the base point. The time lags are set from −3 d to +1 d. Contour intervals of correlations for both $ \psi ' $ and Ve are 0.1. The correlation coefficient at 90% confidence level is 0.3, according to a t-test; the solid green lines denotes positive correlation, the dashed brown line denotes negative correlation, and the solid black dot denotes the base point

    图  8  长江中下游地区Box-A梅汛期300 hPa基点处$ \psi ' $(阴影)和ψe(等值线)与相应的整个场在−3 d至+1 d的一点相关。相关系数≥0.3即为通过90%的显著性检验,阴影和等值线间隔为0.1,绿色等值线为正相关,棕色等值线为负相关,黑色实心圆点为基点

    Figure  8.  One-point correlations of $ v' $ (ψe) at the base point of Box-A in the middle and lower reaches of the Yangtze River, with $ v' $ (ψe) at 300 hPa in the whole field. The time lags are set from −3d to +1d. Contour intervals of correlations for both $ v' $ and ψe are 0.1. The correlation coefficient at 90% confidence level is 0.3, according to a t-test. The solid green line denotes positive correlation, the dashed brown line denotes negative correlation, and the solid black dot denotes the base point

    表  1  长江中下游地区区域平均的7次降水过程极值日的日期、降水量和西太副高的脊线位置

    Table  1.   Dates of 7 extremes of precipitation and the corresponding amount precipitation in the middle and lower reaches of the Yangtze River, as well as the ridge location of the western Pacific subtropical high

    次序日期降水量/mm脊线位置
    12020年6月2日26.9720.7°N
    22020年6月15日29.7525.2°N
    32020年6月21日34.1421.3°N
    42020年6月27日32.6823.6°N
    52020年7月5日54.4524.9°N
    62020年7月18日67.7025.6°N
    72020年7月26日30.7726.7°N
    下载: 导出CSV
  • [1] Ambrizzi T, Hoskins B J. 1997. Stationary Rossby-wave propagation in a baroclinic atmosphere [J]. Quart. J. Roy. Meteor. Soc., 123(540): 919−928. doi: 10.1002/qj.49712354007
    [2] 柏玲, 陈忠升, 赵本福. 2015. 集合经验模态分解在长江中下游梅雨变化多尺度分析中的应用 [J]. 长江流域资源与环境, 24(3): 482−488. doi: 10.11870/cjlyzyyhj201503019

    Bai L, Chen Z S, Zhao B F. 2015. Application of ensemble empirical mode decomposition method in multiscale analysis of Meiyu in middle-lower reaches of Yangtze River [J]. Resources and Environment in the Yangtze basin (in Chinese), 24(3): 482−488. doi: 10.11870/cjlyzyyhj201503019
    [3] Chang E K M, Yu D B. 1999. Characteristics of wave packets in the upper troposphere. Part I: Northern Hemisphere winter [J]. J. Atmos. Sci., 56(11): 1708−1728. doi:10.1175/1520-0469(1999)056<1708:cowpit>2.0.co;2
    [4] 陈菊英, 冷春香, 程华琼. 2006. 江淮流域强暴雨过程对阻高和副高逐日变化的响应关系 [J]. 地球物理学进展, 21(3): 1012−1022. doi: 10.3969/j.issn.1004-2903.2006.03.048

    Chen J Y, Leng C X, Cheng H Q. 2006. The ural blocking high anomalous daily variation impact on the heavy rainfall in the Yangtze River basin and Huai River basin [J]. Progress in Geophysics (in Chinese), 21(3): 1012−1022. doi: 10.3969/j.issn.1004-2903.2006.03.048
    [5] 陈艳丽, 宋洁, 李崇银. 2016. 梅雨雨带北跳过程研究 [J]. 大气科学, 40(4): 703−718. doi: 10.3878/j.issn.1006-9895.1601.15258

    Chen Y L, Song J, Li C Y. 2016. A study on northward jump of the Meiyu rainbelt [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(4): 703−718. doi: 10.3878/j.issn.1006-9895.1601.15258
    [6] Cholaw B, Shi N, Ji L R, et al. 2008. Features of the EAP events on the medium-range evolution process and the mid- and high-latitude rossby wave activities during the Meiyu period [J]. Chinese Sci. Bull., 53(4): 610−623. doi: 10.1007/s11434-008-0005-2
    [7] 邓汗青, 罗勇. 2013. 近50年长江中下游春季和梅雨期降水变化特征 [J]. 应用气象学报, 24(1): 23−31. doi: 10.3969/j.issn.1001-7313.2013.01.003

    Deng H Q, Luo Y. 2013. Continuous spring and Meiyu rainfall in the mid-lower reaches of the Yangtze during the past 50 years [J]. Journal of Applied Meteorological Science (in Chinese), 24(1): 23−31. doi: 10.3969/j.issn.1001-7313.2013.01.003
    [8] 丁婷, 高辉. 2020. 2019年夏季东亚大气环流异常及对我国气候的影响 [J]. 气象, 46(1): 129−137. doi: 10.7519/j.issn.1000-0526.2020.01.013

    Ding T, Gao H. 2020. Atmospheric circulation in East Asia in summer 2019 and its influence on climate of China [J]. Meteorological Monthly (in Chinese), 46(1): 129−137. doi: 10.7519/j.issn.1000-0526.2020.01.013
    [9] Duchon C E. 1979. Lanczos filtering in one and two dimensions [J]. J. Appl. Meteor., 18(8): 1016−1022. doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2
    [10] 傅慎明, 孙建华, 赵思雄, 等. 2011. 梅雨期青藏高原东移对流系统影响江淮流域降水的研究 [J]. 气象学报, 69(4): 581−600. doi: 10.11676/qxxb2011.051

    Fu S M, Sun J H, Zhao S X, et al. 2011. A study of the impacts of the eastward propagation of convective cloud systems over the Tibetan Plateau on the rainfall of the Yangtze-Huai River basin [J]. Acta Meteor. Sinica (in Chinese), 69(4): 581−600. doi: 10.11676/qxxb2011.051
    [11] 郝志新, 李明启, 郑景云, 等. 2009. 长江中下游地区梅雨与旱涝的关系 [J]. 自然科学进展, 19(8): 877−882. doi: 10.3321/j.issn:1002-008X.2009.08.012

    Hao Z X, Li M Q, Zheng J Y, et al. 2009. The relationship between Meiyu and drought and flood in the middle and lower reaches of the Yangtze River [J]. Progress in Natural Science (in Chinese), 19(8): 877−882. doi: 10.3321/j.issn:1002-008X.2009.08.012
    [12] Hou J, Guan Z Y. 2013. Climatological characteristics of frontogenesis and related circulations over East China in June and July [J]. Acta Meteor. Sinica, 27(2): 144−169. doi: 10.1007/s13351-013-0202-z
    [13] 侯俊, 管兆勇. 2013. 华东地区6-7月锋生的气候学特征及环流结构 [J]. 气象学报, 71(1): 1−22. doi: 10.11676/qxxb2013.001

    Hou J, Guan Z Y. 2013. Climatic features of frontogenesis in East China and their related circulation patterns during the early summer [J]. Acta Meteor. Sinica (in Chinese), 71(1): 1−22. doi: 10.11676/qxxb2013.001
    [14] 蒋薇, 高辉. 2013. 21世纪长江中下游梅雨的新特征及成因分析 [J]. 气象, 39(9): 1139−1144. doi: 10.7519/j.issn.1000-0526.2013.09.008

    Jiang W, Gao H. 2013. New features of Meiyu over middle-lower reaches of Yangtze River in the 21st century and the possible causes [J]. Meteorological Monthly (in Chinese), 39(9): 1139−1144. doi: 10.7519/j.issn.1000-0526.2013.09.008
    [15] Li S L, Ji L R, Lin W T, et al. 2001. The maintenance of the blocking over the Ural Mountains during the second Meiyu period in the summer of 1998 [J]. Adv. Atmos. Sci., 18(1): 87−105. doi: 10.1007/s00376-001-0006-4
    [16] 李明刚, 管兆勇, 梅士龙. 2016. 夏季长江中下游地区降水持续性年(代)际变异及其与环流和Rossby波活动的联系 [J]. 大气科学, 40(6): 1199−1214. doi: 10.3878/j.issn.1006-9895.1511.15257

    Li M G, Guan Z Y, Mei S L. 2016. Interannual and interdecadal variations of summer rainfall duration over the middle and lower reaches of the Yangtze River in association with anomalous circulation and Rossby wave activities [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(6): 1199−1214. doi: 10.3878/j.issn.1006-9895.1511.15257
    [17] 李慧, 陆尔, 翟盘茂, 等. 2019. Rossby波和热带对流活动对2010年6月梅雨发生前后我国东部两次强降水过程的影响 [J]. 大气科学学报, 42(6): 824−834. doi: 10.13878/j.cnki.dqkxxb.20170321001

    Li H, Lu E, Zhai P M, et al. 2019. The impact of Rossby waves and the tropical convection activities on two precipitation events occurring before and during the June 2010 Meiyu period [J]. Transactions of Atmospheric Sciences (in Chinese), 42(6): 824−834. doi: 10.13878/j.cnki.dqkxxb.20170321001
    [18] Li L, Zhu C W, Zhang R H, et al. 2021. Roles of the Tibetan Plateau vortices in the record Meiyu rainfall in 2020 [J]. Atmos. Sci. Lett., 22(3): e1017. doi: 10.1002/asl.1017
    [19] 梁萍, 汤绪, 柯晓新, 等. 2007. 中国梅雨影响因子的研究综述 [J]. 气象科学, 27(4): 464−471. doi: 10.3969/j.issn.1009-0827.2007.04.018

    Liang P, Tang X, Ke X X, et al. 2007. Review of study on influencing factors of China Meiyu [J]. Scientia Meteorologica Sinica (in Chinese), 27(4): 464−471. doi: 10.3969/j.issn.1009-0827.2007.04.018
    [20] 梁萍, 陈丽娟, 丁一汇, 等. 2018. 长江梅雨的长期变率与海洋的关系及其可预报性研究 [J]. 气象学报, 76(3): 379−393. doi: 10.11676/qxxb2018.009

    Liang P, Chen L J, Ding Y H, et al. 2018. Relationship between long-term variability of Meiyu over the Yangtze River and ocean and Meiyu's predictability study [J]. Acta Meteor. Sinica (in Chinese), 76(3): 379−393. doi: 10.11676/qxxb2018.009
    [21] 刘思佳, 金荣花, 肖天贵, 等. 2018. 夏季东亚副热带西风急流高频斜压波波包分布特征 [J]. 气象, 44(3): 372−381. doi: 10.7519/j.issn.1000-0526.2018.03.004

    Liu S J, Jin R H, Xiao T G, et al. 2018. Distribution of East Asian subtropical westerly jet high frequency baroclinic wave packet in summer [J]. Meteorological Monthly (in Chinese), 44(3): 372−381. doi: 10.7519/j.issn.1000-0526.2018.03.004
    [22] 梅士龙, 管兆勇. 2009. 1998年长江中下游梅雨期间对流层上层斜压波包的传播 [J]. 热带气象学报, 25(3): 300−306. doi: 10.3969/j.issn.1004-4965.2009.03.007

    Mei S L, Guan Z Y. 2009. Propagation of baroclinic wave packets in upper troposphere during the Meiyu period of 1998 over middle and lower reaches of Yangtze River valley [J]. Journal of Tropical Meteorology (in Chinese), 25(3): 300−306. doi: 10.3969/j.issn.1004-4965.2009.03.007
    [23] Nishii K, Nakamura H. 2005. Upward and downward injection of Rossby wave activity across the tropopause: A new aspect of the troposphere-stratosphere dynamical linkage [J]. Quart. J. Roy. Meteor. Soc., 131(606): 545−564. doi: 10.1256/qj.03.91
    [24] 祁莉, 王晓芳, 何金海, 等. 2014. 前期西太平洋暖池热含量异常影响长江中下游夏季降水的可能途经 [J]. 地球物理学报, 57(6): 1769−1781. doi: 10.6038/cjg20140609

    Qi L, Wang X F, He J H, et al. 2014. The approach of the previous anomalous heat content in the western Pacific warm pool affecting the summer rainfall over the middle and lower reaches of the Yangtze River [J]. Chinese J. Geophys. (in Chinese), 57(6): 1769−1781. doi: 10.6038/cjg20140609
    [25] 钱代丽, 管兆勇. 2020. 梅雨季西太平洋副热带高压异常主要模态及其对东亚降水的可能影响 [J]. 气象科学, 40(5): 649−660. doi: 10.3969/2020jms.0078

    Qian D L, Guan Z Y. 2020. Principal modes of the Western Pacific subtropical high anomaly and their possible impacts on precipitation in East Asia during Meiyu season [J]. Journal of the Meteorological Sciences (in Chinese), 40(5): 649−660. doi: 10.3969/2020jms.0078
    [26] Takaya K, Nakamura H. 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow [J]. J. Atmos. Sci., 58(6): 608−627. doi:10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2
    [27] 谭本馗, 潘旭辉. 2002. 1998年夏季北半球斜压波活动与长江流域洪涝灾害分析 [J]. 南京大学学报(自然科学), 38(3): 354−364. doi: 10.3321/j.issn:0469-5097.2002.03.010

    Tan B K, Pan X H. 2002. Baroclinic waves of Northern Hemisphere and Yangtze River flood in the summer of 1998 [J]. Journal of Nanjing University (Natural Science) (in Chinese), 38(3): 354−364. doi: 10.3321/j.issn:0469-5097.2002.03.010
    [28] 唐玉, 李栋梁. 2020. 江淮梅雨与东亚副热带夏季风进程变异的关系 [J]. 气象科学, 40(2): 169−179. doi: 10.3969/2018jms.0103

    Tang Y, Li D L. 2020. The relationship between the Meiyu in the Yangtze–Huaihe region and the variation of the East Asian subtropical summer monsoon process [J]. Journal of the Meteorological Sciences (in Chinese), 40(2): 169−179. doi: 10.3969/2018jms.0103
    [29] 陶诗言, 卫捷, 梁丰, 等. 2010. Rossby波的下游效应引发我国高影响天气的分析 [J]. 气象, 36(7): 81−93. doi: 10.7519/j.issn.1000-0526.2010.7.015

    Tao S Y, Wei J, Liang F, et al. 2010. Analysis of high impact weather induced by the downstream effect of Rossby waves [J]. Meteorological Monthly (in Chinese), 36(7): 81−93. doi: 10.7519/j.issn.1000-0526.2010.7.015
    [30] Torrence C, Compo G P. 1998. A practical guide to wavelet analysis [J]. Bull. Amer. Meteor. Soc., 79(1): 61−78. doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
    [31] Wang B, Lin H. 2002. Rainy season of the Asian-pacific summer monsoon [J]. J. Climate, 15(4): 386−398. doi:10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2
    [32] 魏凤英, 谢宇. 2005. 近百年长江中下游梅雨的年际及年代际振荡 [J]. 应用气象学报, 16(4): 492−499. doi: 10.3969/j.issn.1001-7313.2005.04.010

    Wei F Y, Xie Y. 2005. Interannual and interdecadal oscillations of Meiyu over the middle-lower reaches of the Changjiang River for 1885-2000 [J]. Journal of Applied Meteorological Science (in Chinese), 16(4): 492−499. doi: 10.3969/j.issn.1001-7313.2005.04.010
    [33] 吴尚森, 梁建茵, 李春晖. 2003. 南海夏季风强度与我国汛期降水的关系 [J]. 热带气象学报, 19(S1): 25−36. doi: 10.3969/j.issn.1004-4965.2003.z1.003

    Wu S S, Liang J Y, Li C H. 2003. Relationship between the intensity of South China Sea summer monsoon and the precipitation in raining seasons in China [J]. Journal of Tropical Meteorology (in Chinese), 19(S1): 25−36. doi: 10.3969/j.issn.1004-4965.2003.z1.003
    [34] 吴志伟, 何金海, 韩桂荣, 等. 2006. 长江中下游梅雨与春季南半球年际模态(SAM)的关系分析 [J]. 热带气象学报, 22(1): 79−85. doi: 10.3969/j.issn.1004-4965.2006.01.012

    Wu Z W, He J H, Han G R, et al. 2006. The relationship between Meiyu in the mid- and lower reaches of the Yangtze River valley and the boreal spring Southern Hemisphere annular mode [J]. Journal of Tropical Meteorology (in Chinese), 22(1): 79−85. doi: 10.3969/j.issn.1004-4965.2006.01.012
    [35] 杨宁, 金荣花, 肖天贵, 等. 2020. 夏季沿亚洲副热带西风急流Rossby波传播及其与我国降水异常的联系 [J]. 气象, 46(1): 1−14. doi: 10.7519/j.issn.1000-0526.2020.01.001

    Yang N, Jin R H, Xiao T G, et al. 2020. Propagation of Rossby wave along Asian subtropical westerly jet in summer and its impact on anomaly of precipitation in China [J]. Meteorological Monthly (in Chinese), 46(1): 1−14. doi: 10.7519/j.issn.1000-0526.2020.01.001
    [36] Ye D C, Guan Z Y, Jin D C. 2019. Climatic features of summertime baroclinic wave packets over Eurasia and the associated possible impacts on precipitation in southern China [J]. Atmos. Sci. Lett., 20(4): e889. doi: 10.1002/asl.889
    [37] 叶德超, 管兆勇, 孙思远, 等. 2019. 2016年梅雨期间长江中下游强降水与对流层上层斜压波包的关系 [J]. 气象学报, 77(1): 73−83. doi: 10.11676/qxxb2018.038

    Ye D C, Guan Z Y, Sun S Y, et al. 2019. The relationship between heavy precipitation in the middle and lower reaches of Yangtze River and baroclinic wave packets in the upper troposphere during the Meiyu period of 2016 [J]. Acta Meteor. Sinica (in Chinese), 77(1): 73−83. doi: 10.11676/qxxb2018.038
    [38] 易兵, 乔全明, 张立. 1991. 梅雨锋锋生过程的诊断分析 [J]. 大气科学, 15(2): 92−100. doi: 10.3878/j.issn.1006-9895.1991.02.11

    Yi B, Qiao Q M, Zhang L. 1991. Diagnosis of frontogenesis of Meiyu front [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 15(2): 92−100. doi: 10.3878/j.issn.1006-9895.1991.02.11
    [39] 俞亚勋, 王式功, 钱正安, 等. 2013. 夏半年西太副高位置与东亚季风雨带(区)的气候联系 [J]. 高原气象, 32(5): 1510−1525. doi: 10.7522/j.issn.1000-0534.2013.00033

    Yu Y X, Wang S G, Qian Z A, et al. 2013. Climatic linkages between SHWP position and EASM rainy-belts and-areas in East Part of China in summer half year [J]. Plateau Meteorology (in Chinese), 32(5): 1510−1525. doi: 10.7522/j.issn.1000-0534.2013.00033
    [40] Zhang M K, Jin D C, Liu X, et al. 2021. Asia precipitation tripole during boreal summer: Anomalous water vapour transport along the “Southern Silk Road” [J]. Int. J. Climatol., 41(S1): E249−E258. doi: 10.1002/joc.6681
    [41] 赵玉春. 2011. 梅雨锋对引发暴雨的中尺度对流系统发生发展影响的研究 [J]. 大气科学, 35(1): 81−94. doi: 10.3878/j.issn.1006-9895.2011.01.07

    Zhao Y C. 2011. Impacts of Meiyu front upon the initiation and development of Mesoscale convection systems producing rainstorms [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35(1): 81−94. doi: 10.3878/j.issn.1006-9895.2011.01.07
    [42] 赵宇, 裴昌春, 赵光平, 等. 2018. 梅雨锋暴雨中尺度对流系统的组织特征和触发条件分析 [J]. 大气科学学报, 41(6): 807−818. doi: 10.13878/j.cnki.dqkxxb.20161229001

    Zhao Y, Pei C C, Zhao G P, et al. 2018. Analysis of organization modes and initiation conditions of a heavy-rain-producing mesoscale convective system along a Meiyu front [J]. Transactions of Atmospheric Sciences (in Chinese), 41(6): 807−818. doi: 10.13878/j.cnki.dqkxxb.20161229001
    [43] 周丽, 魏凤英. 2006. 近百年全球海温异常变化与长江中下游梅雨 [J]. 高原气象, 25(6): 1111−1119. doi: 10.3321/j.issn:1000-0534.2006.06.019

    Zhou L, Wei F Y. 2006. Relationships between the Meiyu in the mid-and lower-reaches of Changjiang River and the Global SST anomalies during the last 100 years [J]. Plateau Meteorology (in Chinese), 25(6): 1111−1119. doi: 10.3321/j.issn:1000-0534.2006.06.019
    [44] Zimin A V, Szunyogh I, Patil D J, et al. 2003. [J]. Mon. Wea. Rev. , 131(5): 1011–1017. doi: 10.1175/1520-0493(2003)131<1011:eeorwp>2.0.co;2
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  1
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-11
  • 录用日期:  2021-11-22
  • 网络出版日期:  2021-11-30

目录

    /

    返回文章
    返回