高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

月内尺度上与冬季北太平洋大范围海温暖异常相联系的海气相互作用特征

陈宏莉 徐海明 马静 邓洁淳

陈宏莉, 徐海明, 马静, 等. 2022. 月内尺度上与冬季北太平洋大范围海温暖异常相联系的海气相互作用特征[J]. 大气科学, 46(2): 293−308 doi: 10.3878/j.issn.1006-9895.2106.21047
引用本文: 陈宏莉, 徐海明, 马静, 等. 2022. 月内尺度上与冬季北太平洋大范围海温暖异常相联系的海气相互作用特征[J]. 大气科学, 46(2): 293−308 doi: 10.3878/j.issn.1006-9895.2106.21047
CHEN Hongli, XU Haiming, MA Jing, et al. 2022. Characteristics of Air–Sea Interaction Associated with Large-Scale Sea Surface Temperature Warm Anomalies over the North Pacific in Winter on Submonthly Timescales [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(2): 293−308 doi: 10.3878/j.issn.1006-9895.2106.21047
Citation: CHEN Hongli, XU Haiming, MA Jing, et al. 2022. Characteristics of Air–Sea Interaction Associated with Large-Scale Sea Surface Temperature Warm Anomalies over the North Pacific in Winter on Submonthly Timescales [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(2): 293−308 doi: 10.3878/j.issn.1006-9895.2106.21047

月内尺度上与冬季北太平洋大范围海温暖异常相联系的海气相互作用特征

doi: 10.3878/j.issn.1006-9895.2106.21047
基金项目: 国家自然科学基金项目41975106,江苏省研究生科研与实践创新计划项目KYCX21_0966
详细信息
    作者简介:

    陈宏莉,女,1997年出生,硕士研究生,主要从事海气相互作用研究。E-mail: chenhl1120@163.com

    通讯作者:

    徐海明,E-mail: hxu@nuist.edu.cn

  • 中图分类号: P466

Characteristics of Air–Sea Interaction Associated with Large-Scale Sea Surface Temperature Warm Anomalies over the North Pacific in Winter on Submonthly Timescales

Funds: National Natural Science Foundation of China (Grant 41975106), Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant KYCX21_0966)
  • 摘要: 本文采用1985~2015年美国气象环境预报中心及能源部(NCEP/DOE)再分析以及美国国家海洋大气管理局(NOAA)海温(SST)等资料,基于大范围SST异常的确定规则,在北太平洋区域选取了8个暖事件,采用跟随SST异常中心的动态合成方法,研究分析了冬季北太平洋生命史为50天左右的大范围SST暖异常在其盛期前后的月内尺度海气结构特征。结果表明:(1)大范围SST暖异常前期主要表现为大气对海洋的强迫作用,后期则主要表现为海洋对大气的强迫作用。(2)SST暖异常伴随的大气结构在前后期发生了明显的转变,前期SST暖异常上空伴随着相当正压的偶极型气压异常(即东北侧为异常高压而西南侧为异常低压),对应大气偏东风异常。后期SST暖异常区北侧上空伴随着相当正压的低压异常,南侧为弱高压异常,对应大气偏西风异常。(3)在SST暖异常后期大气出现了气旋式环流异常响应,这主要是因为高频瞬变涡旋反馈强迫在起关键作用,且瞬变涡度的强迫作用是主要贡献因子。(4)海流结构在前后期也发生了明显的转变,前期海洋动力过程不利于维持SST暖异常,后期异常暖平流和异常下沉流均有助于维持SST暖异常及其对大气的影响。
  • 图  1  1985~2015年各个生命史内大范围海表温度(SST)暖异常事件的个数

    Figure  1.  Number of large-scale sea surface temperature warm anomaly events (WAE) in each lifespan during the 1985–2015 period

    图  2  海表温度异常(SSTA,实线,单位:°C)、表面净热通量异常(短虚线,单位:W m−2)以及10 m全风速异常(长虚线,单位:m s−1)的动态合成区域(以海温异常最大值为中心的20个经度乘以10个纬度的区域)平均值随时间(5个旬,大范围海温异常事件发展的盛期表示为“ten-day [0]”)的演变。其中海表净热通量为净感热通量、净潜热通量、净长波辐射通量以及净短波辐射通量的总和

    Figure  2.  Time evolution (namely, fifty days, and the peak stage of the large-scale sea surface temperature WAE is expressed as “ten-day [0]”) of composite sea surface temperature anomalies (SSTA, solid line, units: °C), surface net heat flux anomalies (short dashed line, units: W m−2), and 10-m wind speed anomalies (long dashed line, units: m s−1) in the area of 10° latitude by 20° longitude centered relative to each SST anomaly center. The net heat flux of the sea surface is the sum of sensible heat net flux, latent heat net flux, net longwave radiation flux, and net shortwave radiation flux.

    图  3  (a1–a3)净感热通量异常、(b1–b3)净潜热通量异常、(c1–c3)净短波辐射通量异常和(d1–d3)净长波辐射通量异常(阴影,单位:W/m2)在大范围海温暖异常(a1–d1)前期 (ten-day [−1])、(a2–d2)盛期 (ten-day [0])、(a3–d3)后期 (ten-day [+1])的合成分布。等值线为SST异常(间隔为0.5°C)

    Figure  3.  Composite anomalies of (a1–a3) sensible heat net flux, (b1–b3) latent heat net flux, (c1–c3) net shortwave radiation flux, and (d1–d3) net longwave radiation flux (colors, units: W m−2) at (a1–d1) the early stage (ten-day [−1]), (a2–d2) peak stage (ten-day [0]), and (a3–d3) late stage (ten-day [+1]) of large-scale sea surface temperature (SST) anomalies. The contours denote SST anomalies (interval: 0.5°C)

    图  4  海水位温距平(等值线,单位:°C)在大范围SST异常区域(即以海温异常最大值为中心的20个经度乘以10个纬度的区域)的时间—深度剖面

    Figure  4.  Time–depth cross sections of composite seawater potential temperature anomalies (contours, units: °C) in the area of 10° latitude by 20° longitude centered relative to each sea surface temperature anomaly center.

    图  5  10 m深度的水平海流异常场(矢量,单位:cm s−1)和海洋上层5~50 m深度平均的垂直速度异常场(阴影,单位:10−5cm s−1)在大范围海温暖异常(a)前期 (ten-day [-2])、(b)盛期 (ten-day [0])、(c)后期 (ten-day [+2])的合成分布。等值线为SST异常(间隔为0.5°C)

    Figure  5.  Composite anomalies of the horizontal ocean current at 10-m depth (vectors, units: cm s−1) and the vertical velocity averaged in the upper 5~50 m (colors, units: 10−5 cm s−1) at (a) the early stage (ten-day [−2]), (b) peak stage (ten-day [0]), and (c) late stage (ten-day [+2]) of large-scale sea surface temperature (SST) anomalies. The contours denote SST anomalies (interval: 0.5°C)

    图  6  (a1–a3)200 hPa、(b1–b3)500 hPa、(c1–c3)850 hPa的位势高度异常(阴影,单位:gpm)和风场异常(矢量,单位:m s−1)以及(d1–d3)海平面气压异常(阴影,单位:hPa;矢量为10 m风场异常场)在大范围海温暖异常(a1–d1)前期 (ten-day [−1])、(a2–d2)盛期 (ten-day [0])、(a3–d3)后期 (ten-day [+1])的合成分布。等值线为SST异常(间隔为0.5°C)

    Figure  6.  Composite anomalies of geopotential height (colors, units: gpm), wind (vectors, units: m s−1) at (a1–a3) 200, (b1–b3) 500, and (c1–c3) 850 hPa, respectively, at (a1–d1) the early stage (ten-day [−1]), (a2–d2) peak stage (ten-day [0]), and (a3–d3) late stage (ten-day [+1]) of large-scale sea surface temperature (SST) anomalies. Correspondingly, the composite sea level pressure (colors, units: hPa), 10-m wind (vectors, units: m s−1) and SST anomalies (contours, interval: 0.5°C) are also shown in Figs. d1, d2, and d3

    图  7  大范围海温暖异常(a1–c1)前期 (ten-day [-1])、(a2–c2)盛期 (ten-day [0])、(a3–c3)后期 (ten-day [+1])的(a1–a3)风场异常(矢量,单位:10−2 m s−1)和气温异常(阴影,单位:°C)以及(b1–b3)位势高度异常(阴影,单位:gpm)沿SST异常中心经度的纬度—高度合成剖面;(c1–c3)SST异常(单位:°C)沿其中心所在经度的经向合成

    Figure  7.  Latitude–height cross sections of composite anomalies of (a1–a3) wind (vectors, units: 10−2 Pa s−1), air temperature (colors, units: °C), and (b1–b3) geopotential height (colors, units: gpm) along the sea surface temperature (SST) anomaly center’s longitude at (a1–c1) the early stage (ten-day [−1]), (a2–c2) peak stage (ten-day [0]), and (a3–c3) late stage (ten-day [+1]) of large-scale SST anomalies. Correspondingly, the composite SST anomalies (units: °C) are showed in Figs. c1, c2, and c3

    图  8  700 hPa上大气斜压性指数异常(阴影,单位:K d−1)在大范围SST暖异常发展(a)前期 (ten-day [−1])、(b)盛期 (ten-day [0])、(c)后期 (ten-day [+1]) 的合成分布。等值线为SST异常(间隔为0.5°C)

    Figure  8.  Composite anomalies of atmospheric baroclinicity index at 700 hPa (colors, units: K d−1) at (a) the early stage (ten-day [−1]), (b) peak stage (ten-day [0]), and (c) late stage (ten-day [+1]) of large-scale sea surface temperature (SST) anomalies. The contours denote SST anomalies (interval: 0.5 °C)

    图  9  (a1–a3)850 hPa上异常的热量经向通量$ \overline {v'T'} $(阴影,单位:m·K s−1)和(b1–b3)300 hPa上异常的西风动量通量$ \overline {u'v'} $(阴影,单位:m2 s−2)在大范围海温暖异常(a1,b1)前期 (ten-day [−1])、(a2,b2)盛期 (ten-day [0])、(a3,b3)后期 (ten-day [+1]) 的合成分布。等值线为SST异常(间隔为0.5°C)

    Figure  9.  Composite anomalies of (a1–a3) meridional heat flux $ \overline {v'T'} $ at 850 hPa (colors, units: m·K s−1) and (b1–b3) westerly momentum flux $ \overline {u'v'} $ at 300 hPa (colors, units: m2 s−2) at (a1, b1) the early stage (ten-day [−1]), (a2, b2) peak stage (ten-day [0]), and (a3, b3) late stage (ten-day [+1]) of large-scale sea surface temperature (SST) anomalies. The contours denote SST anomalies (interval: 0.5°C)

    图  10  大范围海温暖异常后期 (ten-day [+1]),高频瞬变涡旋的(a1–a3)热量通量(TEFF-heat)异常(等值线,单位:m d−1)、(b1–b3)涡动通量(TEFF-vor)异常(等值线,单位:m d−1)、(c1–c3)总通量(TEFF-all)异常(等值线,单位:m d−1)在(a1–c1)300 hPa、(a2–c2)500 hPa和(a3–c3)850 hPa的合成分布

    Figure  10.  Composite anomalies of transient eddy feedback forcing (a1–a3) heat flux (TEFF-heat) (contours, units: m d−1), (b1–b3) vorticity flux (TEFF-vor) (contours, units: m d−1), and (c1–c3) total flux (TEFF-all) (contours, units: m d−1) at (a1–c1) 300, (a2–c2) 500, and (a3–c3) 850 hPa, respectively, at the late stage (ten-day [+1]) of large-scale sea surface temperature anomalies

    图  11  冬季北太平洋地区大范围SST暖异常(a)前期大气影响海洋、(b)盛期、(c)后期海洋影响大气时的大气海洋结构特征示意图(海平面红色实心圆代表SST暖异常,“A”和“C”分别表示异常反气旋和异常气旋中心,直线箭头为盛行风向,波浪形箭头为异常海流方向)

    Figure  11.  Schematic diagram of atmospheric structure features associated with large-scale sea surface temperature (SST) warm anomalies over the North Pacific in winter for (a) atmospheric forcing on the ocean at the early stage, (b) peak stage, and (c) oceanic forcing on atmosphere–ocean at the late stage (the red solid circles at the sea surface indicate SST warm anomalies. “A” and “C” stand for anomalous anticyclone and anomalous cyclone centers, respectively. The straight and wavy arrows indicate the prevailing wind and anomalous ocean current directions, respectively)

    表  1  8个大范围海温暖异常事件的发生时间

    Table  1.   The occurrence time of eight large-scale sea surface temperature warm anomaly events

    暖异常个例时间
    1994年11月下旬~1月上旬
    1998年11月下旬~1月上旬
    1999年1月上旬~2月中旬
    2001年11月下旬~1月上旬
    2007年1月中旬~2月下旬
    2008年12月下旬~2月上旬
    2010年12月中旬~1月下旬
    2012年12月上旬~1月中旬
    下载: 导出CSV
  • [1] Behringer D W, Xue Y. 2004. Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean [C]//Proceedings of the AMS 84th Annual Meeting. Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface. Seattle, Washington: Washington State Convention and Trade Center, 11–15.
    [2] Bjerknes J. 1966. A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature [J]. Tellus, 18(4): 820−829. doi: 10.3402/tellusa.v18i4.9712
    [3] Bjerknes J. 1969. Atmospheric teleconnections from the equatorial Pacific [J]. Mon. Wea. Rev., 97(3): 163−172. doi:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2
    [4] Cayan D R. 1992a. Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature [J]. J. Phys. Oceanogr., 22(8): 859−881. doi:10.1175/1520-0485(1992)022<0859:LASHFA>2.0.CO;2
    [5] Cayan D R. 1992b. Latent and sensible heat flux anomalies over the northern oceans: The connection to monthly atmospheric circulation [J]. J. Climate, 5(4): 354−369. doi:10.1175/1520-0442(1992)005<0354:LASHFA>2.0.CO;2
    [6] Cayan D R. 1992c. Variability of latent and sensible heat fluxes estimated using bulk formulae [J]. Atmos. -Ocean, 30(1): 1−42. doi: 10.1080/07055900.1992.9649429
    [7] Charney J G. 1947. The dynamics of long waves in a baroclinic westerly current [J]. J. Atmos. Sci., 4(5): 136−162. doi:10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2
    [8] Czaja A, Frankignoul C. 2002. Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation [J]. J. Climate, 15(6): 606−623. doi:10.1175/1520-0442(2002)015<0606:OIOASA>2.0.CO;2
    [9] Davis R E. 1976. Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean [J]. J. Phys. Oceanogr., 6(3): 249−266. doi:10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2
    [10] Deser C, Timlin M S. 1997. Atmosphere–ocean interaction on weekly timescales in the North Atlantic and Pacific [J]. J. Climate, 10(3): 393−408. doi:10.1175/1520-0442(1997)010<0393:AOIOWT>2.0.CO;2
    [11] Dinniman M S, Rienecker M M. 1999. Frontogenesis in the North Pacific oceanic frontal zones: A numerical simulation [J]. J. Phys. Oceanogr., 29(4): 537−559. doi:10.1175/1520-0485(1999)029<0537:FITNPO>2.0.CO;2
    [12] Eady E T. 1949. Long waves and cyclone waves [J]. Tellus, 1(3): 33−52. doi: 10.3402/tellusa.v1i3.8507
    [13] Fang J B, Yang X Q. 2016. Structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean–atmosphere system [J]. Climate Dyn., 47(5-6): 1989−2007. doi: 10.1007/s00382-015-2946-x
    [14] Frankignoul C. 1985. Sea surface temperature anomalies, planetary waves, and air–sea feedback in the middle latitudes [J]. Rev. Geophys., 23(4): 357−390. doi: 10.1029/RG023i004p00357
    [15] Frankignoul C, Hasselmann K. 1977. Stochastic climate models. Part II Application to sea-surface temperature anomalies and thermocline variability [J]. Tellus, 29(4): 289−305. doi: 10.3402/tellusa.v29i4.11362
    [16] Hense A, Glowienka-Hense R, von Storch H, et al. 1990. Northern Hemisphere atmospheric response to changes of Atlantic Ocean SST on decadal time scales: A GCM experiment [J]. Climate Dyn., 4(3): 157−174. doi: 10.1007/BF00209519
    [17] Holopainen E, Fortelius C. 1987. High-frequency transient eddies and blocking [J]. J. Atmos. Sci., 44(12): 1632−1645. doi:10.1175/1520-0469(1987)044<1632:HFTEAB>2.0.CO;2
    [18] Hoskins B J, Karoly D J. 1981. The steady linear response of a spherical atmosphere to thermal and orographic forcing [J]. J. Atmos. Sci., 38(6): 1179−1196. doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2
    [19] Hoskins B J, Valdes P J. 1990. On the existence of storm-tracks [J]. J. Atmos. Sci., 47(15): 1854−1864. doi:10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2
    [20] Kanamitsu M, Ebisuzaki W, Woollen J, et al. 2002. NCEP–DOE AMIP-II reanalysis (R-2) [J]. Bull. Amer. Meteor. Soc., 83(11): 1631−1644. doi: 10.1175/BAMS-83-11-1631
    [21] Koseki S, Watanabe M. 2010. Atmospheric boundary layer response to mesoscale SST anomalies in the Kuroshio extension [J]. J. Climate, 23(10): 2492−2507. doi: 10.1175/2009JCLI2915.1
    [22] Kushnir Y, Robinson W A, Bladé I, et al. 2002. Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation [J]. J. Climate, 15(16): 2233−2256. doi:10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2
    [23] Latif M, Barnett T P. 1994. Causes of decadal climate variability over the North Pacific and North America [J]. Science, 266(5185): 634−637. doi: 10.1126/science.266.5185.634
    [24] Lau N C, Holopainen E O. 1984. Transient eddy forcing of the time-mean flow as identified by geopotential tendencies [J]. J. Atmos. Sci., 41(3): 313−328. doi:10.1175/1520-0469(1984)041<0313:TEFOTT>2.0.CO;2
    [25] Lau N C, Nath M J. 1991. Variability of the baroclinic and barotropic transient eddy forcing associated with monthly changes in the midlatitude storm tracks [J]. J. Atmos. Sci., 48(24): 2589−2613. doi:10.1175/1520-0469(1991)048<2589:VOTBAB>2.0.CO;2
    [26] Lau N C, Nath M J. 1994. A modeling study of the relative roles of tropical and extratropical SST anomalies in the variability of the global atmosphere–ocean system [J]. J. Climate, 7(8): 1184−1207. doi:10.1175/1520-0442(1994)007<1184:AMSOTR>2.0.CO;2
    [27] Lau N C, Nath M J. 1996. The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies [J]. J. Climate, 9(9): 2036−2057. doi:10.1175/1520-0442(1996)009<2036:TROTBI>2.0.CO;2
    [28] 李英, 陈联寿, 雷小途. 2005. Winnie (1997) 和Bilis (2000) 变性过程的湿位涡分析 [J]. 热带气象学报, 21(2): 142−152. doi: 10.3969/j.issn.1004-4965.2005.02.004

    Li Ying, Chen Lianshou, Lei Xiaotu. 2005. Moisture potential vorticity analysis on the extratropical transition processes of Winnie (1997) and Bilis (2000) [J]. Journal of Tropical Meteorological (in Chinese), 21(2): 142−152. doi: 10.3969/j.issn.1004-4965.2005.02.004
    [29] Liu Q Y, Wen N, Liu Z Y. 2006. An observational study of the impact of the North Pacific SST on the atmosphere [J]. Geophys. Res. Lett., 33(18): L18611. doi: 10.1029/2006GL026082
    [30] 马静, 徐海明, 董昌明. 2014. 大气对黑潮延伸区中尺度海洋涡旋的响应——冬季暖、冷涡个例分析 [J]. 大气科学, 38(3): 438−452. doi: 10.3878/j.issn.1006-9895.2013.13151

    Ma Jing, Xu Haiming, Dong Changming. 2014. Atmospheric response to mesoscale oceanic eddies over the Kuroshio Extension: Case analyses of warm and cold eddies in winter [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(3): 438−452. doi: 10.3878/j.issn.1006-9895.2013.13151
    [31] Nakamura H, Sampe T. 2002. Trapping of synoptic-scale disturbances into the North–Pacific subtropical jet core in midwinter [J]. Geophys. Res. Lett. , 29(16): 8-1–8-4. doi: 10.1029/2002GL015535
    [32] Nakamura M, Yamane S. 2010. Dominant anomaly patterns in the near-surface baroclinicity and accompanying anomalies in the atmosphere and oceans. Part II: North Pacific basin [J]. J. Climate, 23(24): 6445−6467. doi: 10.1175/2010JCLI3017.1
    [33] Namias J. 1959. Recent seasonal interactions between North Pacific waters and the overlying atmospheric circulation [J]. J. Geophys. Res., 64(6): 631−646. doi: 10.1029/JZ064i006p00631
    [34] Namias J. 1963. Large‐scale air–sea interactions over the North Pacific from summer 1962 through the subsequent winter [J]. J. Geophys. Res., 68(22): 6171−6186. doi: 10.1029/JZ068i022p06171
    [35] Namias J. 1969. Seasonal interactions between the North Pacific Ocean and the atmosphere during the 1960’s [J]. Mon. Wea. Rev., 97(3): 173−192. doi:10.1175/1520-0493(1969)097<0173:SIBTNP>2.3.CO;2
    [36] Namias J. 1976. Negative ocean–air feedback systems over the North Pacific in the transition from warm to cold seasons [J]. Mon. Wea. Rev., 104(9): 1107−1121. doi:10.1175/1520-0493(1976)104<1107:NOFSOT>2.0.CO;2
    [37] Neelin J D, Battisti D S, Hirst A C, et al. 1998. ENSO theory [J]. J. Geophys. Res.: Oceans, 103(C7): 14261−14290. doi: 10.1029/97JC03424
    [38] Nonaka M, Xie S P. 2003. Covariations of sea surface temperature and wind over the Kuroshio and its extension: Evidence for ocean-to-atmosphere feedback [J]. J. Climate, 16(9): 1404−1413. doi:10.1175/1520-0442(2003)16<1404:COSSTA>2.0.CO;2
    [39] Okajima S, Nakamura H, Nishii K, et al. 2014. Assessing the importance of prominent warm SST anomalies over the midlatitude North Pacific in forcing large-scale atmospheric anomalies during 2011 summer and autumn [J]. J. Climate, 27(11): 3889−3903. doi: 10.1175/JCLI-D-13-00140.1
    [40] Palmer T N, Sun Z B. 1985. A modelling and observational study of the relationship between sea surface temperature in the North-West Atlantic and the atmospheric general circulation [J]. Quart. J. Roy. Meteor. Soc., 111(470): 947−975. doi: 10.1002/qj.49711147003
    [41] Peng S L, Mysak L A, Derome J, et al. 1995. The differences between early and midwinter atmospheric responses to sea surface temperature anomalies in the northwest Atlantic [J]. J. Climate, 8(2): 137−157. doi:10.1175/1520-0442(1995)008<0137:TDBEAM>2.0.CO;2
    [42] Qiu B. 2003. Kuroshio extension variability and forcing of the Pacific decadal oscillations: Responses and potential feedback [J]. J. Phys. Oceanogr., 33(12): 2465−2482. doi: 10.1175/2459.1
    [43] 邱爽, 房佳蓓, 杨修群. 2014. LBM模式中中纬度大气对热源和涡度强迫的响应 [J]. 气象科学, 34(2): 149−161. doi: 10.3969/2013jms.0060

    Qiu Shuang, Fang Jiabei, Yang Xiuqun. 2014. Mid-latitude atmospheric responses to heat and vorticity forcing using a linear baroclinic model [J]. Journal of the Meteorological Sciences (in Chinese), 34(2): 149−161. doi: 10.3969/2013jms.0060
    [44] Reynolds R W, Rayner N A, Smith T M, et al. 2002. An improved in situ and satellite SST analysis for climate [J]. J. Climate, 15(13): 1609−1625. doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2
    [45] Rodwell M J, Folland C K. 2002. Atlantic air–sea interaction and seasonal predictability [J]. Quart. J. Roy. Meteor. Soc., 128(583): 1413−1443. doi: 10.1002/qj.200212858302
    [46] Ropelewski C F, Halpert M S. 1996. Quantifying southern oscillation–precipitation relationships [J]. J. Climate, 9(5): 1043−1059. doi:10.1175/1520-0442(1996)009<1043:QSOPR>2.0.CO;2
    [47] 施宁. 2013. 高频瞬变涡动反馈强迫对东亚/太平洋事件演变过程的作用 [J]. 大气科学, 37(6): 1187−1198. doi: 10.3878/j.issn.1006-9895.2013.12147

    Shi Ning. 2013. Role of high-frequency transient eddy feedback forcing in the evolution of East Asia–Pacific events [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(6): 1187−1198. doi: 10.3878/j.issn.1006-9895.2013.12147
    [48] Simmons A J, Hoskins B J. 1978. The life cycles of some nonlinear baroclinic waves [J]. J. Atmos. Sci., 35(3): 414−432. doi:10.1175/1520-0469(1978)035<0414:TLCOSN>2.0.CO;2
    [49] Tanimoto Y, Nakamura H, Kagimoto T, et al. 2003. An active role of extratropical sea surface temperature anomalies in determining anomalous turbulent heat flux [J]. J. Geophys. Res. :Oceans, 108(C10): 3304. doi: 10.1029/2002JC001750
    [50] Ting M F. 1991. The stationary wave response to a midlatitude SST anomaly in an idealized GCM [J]. J. Atmos. Sci., 48(10): 1249−1275. doi:10.1175/1520-0469(1991)048<1249:TSWRTA>2.0.CO;2
    [51] Trenberth K E, Caron J M. 2000. The southern oscillation revisited: Sea level pressures, surface temperatures, and precipitation [J]. J. Climate, 13(24): 4358−4365. doi:10.1175/1520-0442(2000)013<4358:TSORSL>2.0.CO;2
    [52] Vimont D J, Wallace J M, Battisti D S. 2003. The seasonal footprinting mechanism in the Pacific: Implications for ENSO [J]. J. Climate, 16(16): 2668−2675. doi:10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2
    [53] Wallace J M, Gutzler D S. 1981. Teleconnections in the geopotential height field during the Northern Hemisphere winter [J]. Mon. Wea. Rev., 109(4): 784−812. doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2
    [54] Wallace J M, Mitchell T P, Deser C. 1989. The influence of sea–surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability [J]. J. Climate, 2(12): 1492−1499. doi:10.1175/1520-0442(1989)002<1492:TIOSST>2.0.CO;2
    [55] Wang C Z, Fiedler P C. 2006. ENSO variability and the eastern tropical Pacific: A review [J]. Prog. Oceanogr., 69(2-4): 239−266. doi: 10.1016/J.POCEAN.2006.03.004
    [56] Wang L, Li T, Zhou T J. 2012. Intraseasonal SST variability and air–sea interaction over the Kuroshio extension region during boreal summer [J]. J. Climate, 25(5): 1619−1634. doi: 10.1175/JCLI-D-11-00109.1
    [57] 徐海明, 崔梦雪. 2018. 与冬季北太平洋大范围海温异常相联系的海气特征 [J]. 大气科学学报, 41(3): 330−343. doi: 10.13878/j.cnki.dqkxxb.20161107001

    Xu Haiming, Cui Mengxue. 2018. Atmospheric–oceanic features associated with large-scale SST anomalies over the North Pacific in winter [J]. Transactions of Atmospheric Sciences (in Chinese), 41(3): 330−343. doi: 10.13878/j.cnki.dqkxxb.20161107001
    [58] 徐蜜蜜, 徐海明, 朱素行. 2010. 春季我国东部海洋温度锋区对大气的强迫作用及其机制研究 [J]. 大气科学, 34(6): 1071−1087. doi: 10.3878/j.issn.1006-9895.2010.06.04

    Xu Mimi, Xu Haiming, Zhu Suxing. 2010. Ocean-to-atmosphere forcing in the vicinity of the sea surface temperature front in East China Sea during spring time and its possible mechanisms [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34(6): 1071−1087. doi: 10.3878/j.issn.1006-9895.2010.06.04
    [59] 徐蜜蜜, 徐海明, 朱素行, 等. 2012. 我国东部海洋温度锋区对大气的强迫作用——季节变化 [J]. 大气科学, 36(3): 590−606. doi: 10.3878/j.issn.1006-9895.2011.11113

    Xu Mimi, Xu Haiming, Zhu Suxing, et al. 2012. Ocean-to-atmosphere forcing in the vicinity of the sea surface temperature front in the East China Sea—Seasonal variations [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36(3): 590−606. doi: 10.3878/j.issn.1006-9895.2011.11113
    [60] Zhang L Y, Xu H M, Shi N, et al. 2017. Responses of the East Asian jet stream to the North Pacific subtropical front in spring [J]. Adv. Atmos. Sci., 34(2): 144−156. doi: 10.1007/s00376-016-6026-x
    [61] Zhang L Y, Xu H M, Ma J, et al. 2019. North Pacific subtropical sea surface temperature frontogenesis and its connection with the atmosphere above [J]. Earth Syst. Dyn., 10(2): 261−270. doi: 10.5194/esd-10-261-2019
    [62] Zhang W J, Jin F F, Zhao J X, et al. 2013. On the bias in simulated ENSO SSTA meridional widths of CMIP3 models [J]. J. Climate, 26(10): 3173−3186. doi: 10.1175/JCLI-D-12-00347.1
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  317
  • HTML全文浏览量:  56
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-22
  • 录用日期:  2021-06-21
  • 网络出版日期:  2021-07-19
  • 刊出日期:  2022-03-16

目录

    /

    返回文章
    返回