Microphysical Characteristics of Stratiform Precipitation with Embedded Convection Based on Multisource Data
-
摘要: 基于地基云雷达、微雨雷达和天气雷达等遥测设备观测资料,结合挂载KPR云雷达和DMT粒子测量系统的飞机平台,详细分析了山东积层混合云降水过程的云降水微物理结构特征。结果表明,积层混合云降水过程呈现层状云和对流云降水特征。零度层以上,5~6 km高度层内,对流云降水多普勒速度和谱宽均大于层状云,说明对流云降水环境垂直气流、粒子尺度等均大于层状云。对流云降水,云雷达和微雨雷达时空剖面上出现由衰减造成的“V”字形缺口,云雷达衰减程度大于微雨雷达,且随高度增加,衰减越大。层状云降水,零度层亮带附近,雷达反射率因子跃增高度比多普勒速度高80 m,多普勒速度跃增高度又比谱宽高20 m。降水云系零度层附近降水机制复杂,粒子形态有辐枝冰晶聚合物、针状冰晶聚合物和云滴;0°C层以上,5~6 km处,对流云降水的多普勒速度和谱宽均大于层状云降水,即对流云降水环境垂直气流、粒子尺度范围等均大于层状云降水。Abstract: Based on the ground-based microrain radar and cloud radar, combined with aircraft observation, stratiform precipitation with embedded convection is analyzed to accurately study the cloud precipitation’s microphysical structure. Results show that: (1) The selected precipitation process is divided into stratified cloud and convective cloud. Above the zero-degree layer, especially at the height of 5–6 km, the Doppler velocity and the spectrum width of convective precipitation are greater than those of stratiform cloud precipitation. This indicates that the vertical wind of the environment and the size range of the particle occurring in convective precipitation are greater than those of stratiform precipitation. (2) At the period of convective precipitation, there is a “V” glyph gap caused by the attenuation in the radar reflectivity of the cloud and microrain radars in the time and height profiles. The attenuation of the cloud radar is greater than that of the microrain radar. The higher the height, the greater is the attenuation. (3) At the period of stratiform precipitation, near the bright band, the leap increase height of the radar reflectivity factor is 80 m higher than that of the Doppler velocity, and the leap increase height of the Doppler velocity is 20 m higher than that of the spectral width. (4) The precipitation mechanism near the 0°C layer is complex. When the negative temperature is close to 0°C, the particle morphology includes radiated dendritic ice crystals, acicular ice crystals, and cloud droplets. The Doppler velocity and the spectral width of convective cloud precipitation are greater than those of stratiform precipitation above the 0°C layer, especially at altitudes of 5 and 6 km. The vertical airflow and the scale range of small and large particles in convective precipitation are greater than those of stratiform cloud precipitation.
-
图 2 2018年4月22日10:20齐河天气雷达组合反射率因子(单位:dBZ)。黑色实线为飞机飞行轨迹,箭头代表了飞机的飞行方向;黑色三角为云雷达、微雨雷达的位置;黑色实心圆代表起降机场(遥墙机场)位置
Figure 2. Composite reflectivity factor (units: dBZ) of the Qihe weather radar at 1020 BJT on April 22, 2018. The black solid line is the flight path of the aircraft, and the arrow represents the flight direction of the aircraft. The black triangular area shows the positions of the cloud radar and microrain radar. The black solid circle represents the location of the takeoff and landing airport (Jinan Yaoqiang Airport)
图 4 2018年4月21~22日(a)微雨雷达、(b)地基云雷达和(c)天气雷达反射率因子时空演变趋势,(d)微雨雷达探测到的地面雨强随时间演变;(e)FY2卫星反演的云顶高度(ztop)、云顶温度(ttop)随时间演变;(f–i)同(a–d),但为2018年4月21日23:10~23:45时段
Figure 4. Radar reflectivity factor presented in time vs. height coordinates during the passage of the rain period on April 21, 2018: (a) Microrain radar; (b) ground-based cloud radar; (c) CINRAD-SA Doppler weather radar. (d) Rain rate near the ground observed by the microrain radar. (e) Cloud-top altitude (ztop) and cloud-top temperature (ttop) retrieved by the FY2 satellite. (f–i) is the same as (a–d), but for 2310 BJT–2345 BJT on April 21, 2018
图 8 2018年4月21日16:00~4月22日16:00,地基云雷达的(a)雷达反射率因子,(b)多普勒速度、(c)谱宽的时空剖面。左侧小图为图(a)纵坐标对应高度上飞机CIP探头记录的粒子图像
Figure 8. (a) Radar reflectivity factor, (b) Doppler velocities, and (c) spectrum width presented in time vs. height coordinates measured by the ground-based cloud radar from 1600 BJT on April 22 to 1600 BJT on April 22, 2018). The small figures on the left are the particle image recorded by aircraft CIP at the altitude corresponding to the ordinate of panel (a)
图 5 T2(2018年4月21日 21:00~21:40)和T4时段(2018年4月22日 00:00~01:00)地基云雷达的(a)反射率因子、(b)多普勒速度和(c)谱宽均值的垂直分布
Figure 5. Vertical distribution of the (a) mean radar reflectivity, (b) Doppler velocities, and (c) spectrum width of the ground-based cloud radar for the periods T2 (2100 BJT–2140 BJT on April 21, 2018) and T4 (0000 BJT–0100 BJT on April 22, 2018)
图 6 T1(2018年4月21日16:30~16:55)、T3(2018年4月21日23:20~23:35)和T5(2018年4月22日06:00~06:40)时段地基云雷达的(a)反射率因子、(b)多普勒速度和(c)谱宽均值的垂直分布
Figure 6. Vertical distribution of the mean (a) radar reflectivity, (b) Doppler velocities, and (c) spectrum width of the ground-based cloud radar for the periods T1 (1630 BJT–1655 BJT on April 21, 2018), T3 (2320 BJT–2335 BJT on April 21, 2018), and T5 (0600 BJT –0640 BJT on April 22, 2018)
图 7 地基云雷达在(a,c)T1(2018年4月21日16:30~16:55) 和(b,d)T5(2018年4月22日06:00~06:40)两个时段粒子多普勒(a,b)速度和(c,d)谱宽的时空分布
Figure 7. (a, b) Doppler velocities and (c, d) spectrum widths presented in time vs. height coordinates measured by the ground-based cloud radar for the periods (a, c) T1 (1630 BJT–1655 BJT on April 21, 2018) and (b, d) T5 (0600 BJT–0640 BJT on April 22, 2018), respectively
图 9 S1(2018年4月22日 00:00~01:00)、S2(2018年4月22日 07:00~10:00)时段地基云雷达的平均(a)反射率因子、(b)多普勒速度、(c)谱宽的垂直分布,(d、e、f)为放大后3~4 km高度上三个变量的垂直分布
Figure 9. Vertical distribution of the mean(a) radar reflectivity, (b) Doppler velocities, and (c) spectrum width of the ground-based cloud radar at periods S1 (0000 BJT - 0100 BJT on April 22, 2018) and S2 (0700 BJT - 1000 BJT on April 22, 2018). (d), (e), and (f) correspond to the vertical distributions of the above three variables at the height of 3–4 km after zooming in
表 1 观测设备参数
Table 1. Parameters of the observation equipment
雷达 微雨雷达 地基云雷达 天气雷达 机载云雷达 波长 1.25 cm 8 mm 10 cm 8 mm 时间分辨率 1 min 5 s 6 min 0.2 S 垂直分辨率 200 m 30 m 9个仰角扫描 30~40 m 最大探测高度 6,000 m 15,810 m 7,582 m 飞机轨迹上下
约11.9 km垂直距离库个数 20 527 9 640 表 2 机载DMT粒子测量设备参数
Table 2. Parameters of the airborne DMT particle measurement equipment
仪器名称 量程 分辨率 云粒子组合探头CCP CDP:2~50 μm;CIP:25~1550 μm;LWC:0.01~3 g m3 粒子:2 μm;25 μm;LWC:0.01 g m3 降水粒子探头PIP 100~6400 μm 100 μm 综合气象要素测量系统AIMMS30 高度0~15 km;温度−20~40°C;相对湿度0~100% 温度0.05°C;相对湿度2% -
[1] Anagnostou E N. 2004. A convective/stratiform precipitation classification algorithm for volume scanning weather radar observations [J]. Meteor. Appl., 11(4): 291−300. doi: 10.1017/S1350482704001409 [2] Atlas D, Srivasta R C, Sekhon R S. 1973. Doppler radar characteristics of precipitation at vertical incidence [J]. Rev. Geophys., 11(1): 1−35. doi: 10.1029/RG011i001p00001 [3] Fabry F, Zawadzki I. 1995. Long-term radar observations of the melting layer of precipitation and their interpretation [J]. J. Atmos. Sci., 52(7): 838−851. doi: 10.1175/1520-0469(1995)052<0838:LTROOT>2.0.CO;2 [4] Friedrich K, Higgins S, Masters F J, et al. 2013. Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall [J]. J. Atmos. Oceanic Technol., 30(9): 2063−2080. doi: 10.1175/JTECH-D-12-00254.1 [5] Gunn R, Kinzer G D. 1949. The terminal velocity of fall for water droplets in stagnant air [J]. J. Meteor., 6(4): 243−248. doi: 10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2 [6] Herzegh P H, Hobbs P V. 1980. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. II: Warm-frontal clouds [J]. J. Atmos. Sci., 37(3): 597−611. doi: 10.1175/1520-0469(1980)037<0597:TMAMSA>2.0.CO;2 [7] Hobbs P V, Mason B J. 1964. The sintering and adhesion of Ice [J]. The Philosophical Magazine, 9(98): 181−197. doi: 10.1080/14786436408229184 [8] 洪延超. 1996a. 积层混合云数值模拟研究(Ⅱ)——云相互作用及暴雨产生机制 [J]. 气象学报, 54(6): 661−674. doi: 10.11676/qxxb1996.069Hong Yanchao. 1996a. The numerical simulation study of convectivestratiform mixed cloud. Part Ⅱ: Interaction of clouds and formative mechanism of the heavy rain [J]. Acta Meteorologica sinica (in Chinese), 54(6): 661−674. doi: 10.11676/qxxb1996.069 [9] 洪延超. 1996b. 积层混合云数值模拟研究(Ⅰ)——模式及其微物理过程参数化 [J]. 气象学报, 54(5): 544−557. doi: 10.11676/qxxb1996.057Hong Yanchao. 1996b. The numerical simulation study of convectivestratiform mixed cloud. Part I: The model and parameterization of microphysical processes [J]. Acta Meteorologica sinica (in Chinese), 54(5): 544−557. doi: 10.11676/qxxb1996.057 [10] 黄佳欢. 2016. 联合地基遥感云微物理参数的研究 [D]. 南京信息工程大学硕士学位论文. Huang Jiahuan. 2016. Study of cloud microphysical parameters retrieval based on synergic ground-based observation [D]. M. S. thesis (in Chinese), Nanjing University of Information Science & Technology. [11] 黄毅梅, 周毓荃, 杨敏. 2017. 利用3 mm云雷达资料分析混合相云垂直结构及过冷水分布 [J]. 高原气象, 36(1): 219−228. doi: 10.7522/j.issn.1000-0534.2015.00119Huang Yimei, Zhou Yuquan, Yang Min. 2017. Using 3 mm cloud radar data to analyze frontal mixed cloud vertical structure and supercooled water [J]. Plateau Meteorology (in Chinese), 36(1): 219−228. doi: 10.7522/j.issn.1000-0534.2015.00119 [12] Kropfli R A, Matrosov S Y, Uttal T, et al. 1995. Cloud physics studies with 8 mm wavelength radar [J]. Atmos. Res., 35(2-4): 299−313. doi: 10.1016/0169-8095(94)00025-9 [13] 李玉莲. 2018. 基于Ka波段毫米波云雷达的云微物理特性研究 [D]. 国防科技大学硕士学位论文. Li Yulian. 2018. Studies of cloud microphysical properties based on Ka–band millimerter wave cloud radar [D]. M. S. thesis (in Chinese), National University of Defense Technology. [14] 林磊, 姚展予. 2011. 华北地区一次积层混合云降水的数值模拟研究 [J]. 气象, 37(12): 1473−1480. doi: 10.7519/j.issn.1000-0526.2011.12.001Lin Lei, Yao Zhanyu. 2011. Numerical study on the complex of the stratiform clouds and embedded convective clouds of North China [J]. Meteorological Monthly (in Chinese), 37(12): 1473−1480. doi: 10.7519/j.issn.1000-0526.2011.12.001 [15] 刘黎平, 宗蓉, 齐彦斌, 等. 2012. 云雷达反演层状云微物理参数及其与飞机观测数据的对比 [J]. 中国工程科学, 14(9): 64−71. doi: 10.3969/j.issn.1009-1742.2012.09.008Liu Liping, Zong Rong, Qi Yanbin, et al. 2012. Microphysical parameters retrieval by cloud radar and comparing with aircraft observation in stratiform cloud [J]. Engineering Sciences (in Chinese), 14(9): 64−71. doi: 10.3969/j.issn.1009-1742.2012.09.008 [16] 刘黎平, 谢蕾, 崔哲虎. 2014. 毫米波云雷达功率谱密度数据的检验和在弱降水滴谱反演中的应用研究 [J]. 大气科学, 38(2): 223−236. doi: 10.3878/j.issn.1006-9895.2013.12207Liu Liping, Xie Lei, Cui Zhehu. 2014. Examination and application of Doppler spectral density data in drop size distribution retrieval in weak precipitation by cloud radar [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(2): 223−236. doi: 10.3878/j.issn.1006-9895.2013.12207 [17] Magono C. 1953. On the growth of snow flake and graupel [R]. Science Reports of the Yokohama National University, Sec. I. (2): 2–3. [18] Muhlbauer A, Kalesse H, Kollias P. 2014. Vertical velocities and turbulence in midlatitude anvil cirrus: A comparison between in situ aircraft measurements and ground-based Doppler cloud radar retrievals [J]. Geophys. Res. Lett., 41(22): 7814−7821. doi: 10.1002/2014GL062279 [19] Peters G, Fischer B, Andersson T. 2002. Rain observations with a vertically looking Micro Rain Radar (MRR) [J]. Boreal Environ. Res., 7: 353−362. [20] Pruppacher H R, Klett J D. 2010. Microphysics of Clouds and Precipitation [M]. 2nd ed. Dordrecht: Springer, 954pp. doi:10.1007/978-0-306-48100-0 [21] 亓鹏. 2019. 太行山东麓积层混合云微物理特征与降水形成机制研究 [D]. 中国气象科学研究院硕士学位论文.Qi Peng. 2019. Microphysical characteristics and precipitation formation mechanism of stratiform cloud with embedded convections in eastern Taihang mountain [D]. M. S. thesis (in Chinese), Chinese Academy of Meteorological Sciences. [22] 亓鹏, 郭学良, 卢广献, 等. 2019. 华北太行山东麓一次稳定性积层混合云飞机观测研究: 对流云/对流泡和融化层结构特征 [J]. 大气科学, 43(6): 1365−1384. doi: 10.3878/j.issn.1006-9895.1901.18220Qi Peng, Guo Xueliang, Lu Guangxian, et al. 2019. Aircraft measurements of a stable stratiform cloud with embedded convection in eastern Taihang Mountain of North China: Characteristics of embedded convection and melting layer structure [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(6): 1365−1384. doi: 10.3878/j.issn.1006-9895.1901.18220 [23] 盛裴轩, 毛节泰, 李建国, 等. 2003. 大气物理学 [M]. 北京: 北京大学出版社.Sheng Peixuan, Mao Jietai, Li Jianguo, et al. 2003. Atmospheric Physics (in Chinese) [M]. Beijing: Peking University Press. [24] Shupe M D. 2007. A ground-based multisensor cloud phase classifier [J]. Geophys. Res. Lett., 34(22): L22809. doi: 10.1029/2007GL031008 [25] Shupe M D, Kollias P, Matrosov S Y, et al. 2004. Deriving mixed-phase cloud properties from Doppler radar spectra [J]. J. Atmos. Oceanic Technol., 21(4): 660−670. doi: 10.1175/1520-0426(2004)021<0660:DMCPFD>2.0.CO;2 [26] 孙可富, 游来光. 1965. 1963年4-6月吉林地区降水性层状冷云中的冰晶与雪晶 [J]. 气象学报, 35(3): 265−272. doi: 10.11676/qxxb1965.030Sun Kefu, You Laiguang. 1965. Crystals of ice and snow in precipitating stratiform clouds from April to June of 1963 in Jilin region [J]. Acta Meteorologica Sinica (in Chinese), 35(3): 265−272. doi: 10.11676/qxxb1965.030 [27] 孙豪, 刘黎平, 郑佳锋. 2017. 不同波段垂直指向雷达功率谱密度对比 [J]. 应用气象学报, 28(4): 447−457. doi: 10.11898/1001-7313.20170406Sun Hao, Liu Liping, Zheng Jiafeng. 2017. Comparisons of Doppler spectral density data by different bands pointing vertically radars [J]. Journal of Applied Meteorological Science (in Chinese), 28(4): 447−457. doi: 10.11898/1001-7313.20170406 [28] 汪学林, 陆煜钧, 李占柱, 等. 1982. 河套低压降水性层状云的云雨特征 [J]. 大气科学, 6(4): 432−441. doi: 10.3878/j.issn.1006-9895.1982.04.10Wang Xuelin, Lu Yujun, Li Zhanzhu, et al. 1982. The characteristics of cloud and precipitation for precipitus stratiform cloud in He-Tao cyclone [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 6(4): 432−441. doi: 10.3878/j.issn.1006-9895.1982.04.10 [29] Wang H, Lei H C, Yang J F. 2017. Microphysical processes of a stratiform precipitation event over eastern China: Analysis using micro rain radar data [J]. Adv. Atmos. Sci., 34(12): 1472−1482. doi: 10.1007/s00376-017-7005-6 [30] 王洪, 雷恒池, 杨洁帆. 2017. 微降水雷达测量精度分析 [J]. 气候与环境研究, 22(4): 392−404. doi: 10.3878/j.issn.1006-9585.2017.16166Wang Hong, Lei Hengchi, Yang Jiefan. 2017. Analysis of measurement accuracy of micro rain radar [J]. Climatic and Environmental Research (in Chinese), 22(4): 392−404. doi: 10.3878/j.issn.1006-9585.2017.16166 [31] 王洪, 雷恒池, 杨洁帆, 等. 2020. 山东不同云系降水微物理参数特征 [J]. 大气科学, 44(2): 315−326. doi: 10.3878/j.issn.1006-9895.1905.18243Wang Hong, Lei Hengchi, Yang Jiefan, et al. 2020. Characteristics of rain microphysical parameters for different cloud systems in Shandong Province [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(2): 315−326. doi: 10.3878/j.issn.1006-9895.1905.18243 [32] 韦凯华, 黄兴友, 管理, 等. 2015. 毫米波云雷达与地基微波辐射计联合反演云微物理参数 [J]. 科学技术与工程, 15(24): 8−17. doi: 10.3969/j.issn.1671-1815.2015.24.002Wei Kaihua, Huang Xingyou, Guan Li, et al. 2015. Experiment of retrieving cloud micro-physics parameters by combining millimeter–wave cloud radar and ground-based microwave radiometer [J]. Science Technology and Engineering (in Chinese), 15(24): 8−17. doi: 10.3969/j.issn.1671-1815.2015.24.002 [33] 吴举秀, 魏鸣, 王以琳. 2015. 利用毫米波测云雷达反演层状云中过冷水 [J]. 干旱气象, 33(2): 227−235. doi: 10.11755/j.issn.1006-7639(2015)-02-0227Wu Juxiu, Wei Ming, Wang Yilin. 2015. Retrieval of the supercooled water in stratiform clouds based on millimeter–wave cloud radar [J]. Journal of Arid Meteorology (in Chinese), 33(2): 227−235. doi: 10.11755/j.issn.1006-7639(2015)-02-0227 [34] 杨军, 陈宝君, 银燕, 等. 2011. 云降水物理学[M]. 北京: 气象出版社, 193ppYang Jun, Chen Baojun, Yin Yan, et al. 2011. Physics of Clouds and Precipitation (in Chinese) [M]. Beijing: China Meteorological Press, 193pp. [35] 杨洁帆, 胡向峰, 雷恒池, 等. 2021. 太行山东麓层状云微物理特征的飞机观测研究 [J]. 大气科学, 45(1): 88−106. Yang Jiefan, Hu Xiangfeng, Lei Hengchi, et al. 2021. Airborne observations of microphysical characteristics of stratiform cloud over eastern side of Taihang Mountains [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(1): 88–106. doi: 10.3878/j.issn.1006-9895.2004.19202 [36] 张培昌, 杜秉玉, 戴铁丕. 2001. 雷达气象学[M]. 北京: 气象出版社, 171–271.Zhang Peichang, Du Bingyu, Dai Tiepi. 2001. Radar Meteorology (in Chinese) [M]. Beijing: China Meteorological Press, 171–271. [37] 张帅, 王振会, 赵兵科, 等. 2019. 星载雷达在订正地基天气雷达标定误差中的应用 [J]. 气候与环境研究, 24(5): 576−584. doi: 10.3878/j.issn.1006-9585.2019.18118Zhang Shuai, Wang Zhenhui, Zhao Bingke, et al. 2019. Using space-borne radar data to correcting calibration errors in ground-based radar [J]. Climatic and Environmental Research (in Chinese), 24(5): 576−584. doi: 10.3878/j.issn.1006-9585.2019.18118 [38] 张佃国, 王烁, 郭学良, 等. 2020. 基于机载Ka波段云雷达和粒子测量系统同步观测的积层混合云对流泡特征 [J]. 大气科学, 44(5): 1023–1038. Zhang Dianguo, Wang Shuo, Guo Xueliang, et al. 2020. the properties of convective generating cells embedded in the stratiform cloud on basis of airborne Ka–band precipitation cloud radar and droplet measurement technologies [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(5): 1023−1038. doi:10.3878/j.issn.1006-9895.2004.19185 [39] 朱士超. 2014. 华北积层混合云微物理特征的飞机观测分析及数值模拟研究 [D]. 中国气象科学研究院博士学位论文.Zhu Shichao. 2014. Microphysical characteristics of stratiform clouds with embedded convectionderived from aircraft observation and numerical simulation in northern China [D]. Ph. D. dissertation (in Chinese), Chinese Academy of Meteorological Sciences. -