Analysis of the Causes of Atmospheric Fine Particle Pollution in Winter in the Hohhot–Baotou–Ordos Area of Inner Mongolia
-
摘要: 利用气象模式WRF和中科院大气所自主发展的大气气溶胶与大气化学模式IAP-AACM对2016年冬季内蒙古中部呼包鄂地区大气细颗粒物(PM2.5)的典型污染过程进行了模拟分析。结果表明,呼包鄂地区的空气质量变化主要受大范围天气形势影响。污染累积阶段,500 hPa高度上该区域受阻塞高压或弱高压脊前平直的偏西气流控制,地面为弱高压或均压场,风速较小,边界层高度低,污染物不易扩散,且气温和相对湿度较高,利于二次颗粒物生成;污染消散阶段,天气形势发生明显变化,550 hPa高度以下有强冷平流,地面易形成大风天气,利于污染物消散,伴随着冷空气的南下,下游地区的污染物也得到清除。呼包鄂区域PM2.5主要来源于本地排放,鄂尔多斯本地排放贡献大于60%,呼和浩特本地排放贡献大于80%,包头本地排放贡献达到90%,该区域空气质量的变化可以反映区域大气污染气象条件的变化。交叉相关分析发现,呼包鄂区域的PM2.5浓度与其下游的山西、河北、河南地区的PM2.5浓度具有高度的时间相关性,相位差在6~24小时。呼包鄂区域PM2.5污染的改善有赖于本地污染源的管控,该区域冬季空气质量变化可作为下游地区空气质量变化的前兆因子,有助于下游地区空气质量的预报预警。
-
关键词:
- 呼和浩特—包头—鄂尔多斯 /
- IAP-AACM模式 /
- 污染成因 /
- 本地贡献 /
- 交叉相关分析
Abstract: Using the Weather Research and Forecasting model and the Aerosol and Atmospheric Chemistry Model developed by the Institute of Atmospheric Physics, Chinese Academy of Sciences, several typical pollution episodes of fine particulate matter (PM2.5) over the Hohhot–Baotou–Ordos area of Inner Mongolia in the winter of 2016 were analyzed. The results indicated that the air quality changes in the Hohhot–Baotou–Ordos area were mainly affected by the large-scale synoptic pattern. At the stage of pollution accumulation, at 500 hPa, this area was controlled by the flat westerly airflow in front of the blocking high pressure or weak high-pressure ridge. At the ground level, this area was located in the weak high-pressure or uniform-pressure field. The low wind speed and the low height of the boundary layer were unfavorable to pollutant dispersion. Meanwhile, the air temperature and relative humidity were high, which were conducive to the formation of secondary particles. At the stage of pollution dissipation, the synoptic patterns had significantly changed. Below 550 hPa, strong cold advection occurred, causing gale weather on the ground, which was beneficial to pollutant elimination. Cold air moved southward, and pollutants over downstream areas were removed. Local emission was the main source of PM2.5 over the Hohhot–Baotou–Ordos area. Local emission accounted for over 60%, 80%, and 90% of the air pollution in Ordos, Hohhot, and Baotou, respectively. The change in the air quality of these regions can reflect the change in regional air pollution meteorological conditions. Cross-correlation analysis showed that the PM2.5 concentrations in Shanxi, Hebei, and Henan regions were correlated with those in Hohhot–Baotou–Ordos , with a phase difference of 6–24 hours. The improvement of PM2.5 pollution in Hohhot–Baotou–Ordos depended on the control of local source emissions. In winter, the air quality change in this region can serve as an indicator of the air quality change in the downstream region, which is helpful for the prediction and early warning of air quality in the downstream region. -
图 4 第一次过程(a、c)污染持续及(b、d)结束阶段06:00的500 hPa平均位势高度分布(左列)及地面气压分布(右列)。红色虚线为温度场,蓝色实线为位势高度)
Figure 4. (a) 500-hPa average geopotential height field (units: dagpm) of the EP1, (b) end stage, (c) surface pressure field (units: hPa, the same below) of duration, and (d) end stage at 0600 BJT (Beijing time). The red dotted line denotes the temperature field, and the blue solid line denotes the geopotential height
图 5 第二到五次过程(a–d)污染阶段06:00的500 hPa平均位势高度分布以及(e–h)对应的地面气压场分布(红色虚线为温度场,蓝色实线为位势高度)
Figure 5. The 500 hPa average geopotential height field of the second to fifth processes: (a–d) Pollution duration and end stage; (e–h) corresponding surface pressure fields at 6 o’ clock. The red dotted line denotes the temperature field, and the blue solid line denotes the geopotential height
图 8 2016年1月12~24日呼和浩特地区的(a)垂直速度剖面图(单位:m s−1)和(b)PM2.5的垂直浓度分布(单位:μg m−3)。1月12~17日是第三次过程,1月18~21日是第四次过程
Figure 8. Distributions of (a) vertical velocity profile (units: m s−1) and (b) vertical concentration of PM2.5 (units: μg m−3) in Hohhot from January 12 to 24, 2016. Among them, 12–17 January indicate the third process, and 18–21 January indicates the fourth process
图 10 2016年1月内蒙古呼包鄂对6个站点PM2.5浓度的贡献,黑线为各站点PM2.5月平均浓度(其他地区指的是呼包鄂以外的地区)
Figure 10. Contribution of the Hohhot–Baotou–Ordos area to the PM2.5 concentration of six stations in January 2016. The black line is the monthly average PM2.5 concentration of each station (districts other than Hohhot–Baotou–Ordos)
表 1 模拟的气象要素与观测的对比统计参数
Table 1. Comparative statistical parameters between simulated meteorological elements and observations
城市 2 m气温 2 m相对湿度 气压 10 m风速 NMB RMSE r NMB RMSE r NMB RMSE/hPa r NMB RMSE/m s−1 r 包头 1.5% 4.4°C 0.94 −12.7% 16.9% 0.56 2.4% 22.1 0.97 −13.2% 1.2 0.58 鄂尔多斯 −0.8% 2.6°C 0.96 −4.9% 10.1% 0.62 0.3% 2.8 0.94 −12.7% 1.0 0.66 呼和浩特 −1.6% 4.8°C 0.92 8.0% 12.4% 0.51 −3.3% 30.1 0.94 −8.3% 1.3 0.70 注:NMB:标准化平均偏差;RMSE:均方根误差;r:相关系数 -
[1] 安俊岭, 李健, 张伟, 等. 2012. 京津冀污染物跨界输送通量模拟 [J]. 环境科学学报, 32(11): 2684−2692. doi: 10.13671/j.hjkxxb.2012.11.022An J L, Li J, Zhang W, et al. 2012. Simulation of transboundary transport fluxes of air pollutants among Beijing, Tianjin, and Hebei Province of China [J]. Acta Scientiae Circumstantiae (in Chinese), 32(11): 2684−2692. doi: 10.13671/j.hjkxxb.2012.11.022 [2] Boylan J W, Russell A G. 2006. PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models [J]. Atmos. Environ., 40(26): 4946−4959. doi: 10.1016/j.atmosenv.2005.09.087 [3] Cao C, Jiang W J, Wang B Y, et al. 2014. Inhalable microorganisms in Beijing's PM2.5 and PM10 pollutants during a severe smog event [J]. Environ. Sci. Technol., 48(3): 1499−1507. doi: 10.1021/es4048472 [4] Chen Z H, Cheng S Y, Li J B, et al. 2008. Relationship between atmospheric pollution processes and synoptic pressure patterns in northern China [J]. Atmos. Environ., 42(24): 6078−6087. doi: 10.1016/j.atmosenv.2008.03.043 [5] Chen H S, Wang Z F, Li J, et al. 2015. GNAQPMS-Hg v1.0, a global nested atmospheric mercury transport model: Model description, evaluation and application to trans-boundary transport of Chinese anthropogenic emissions [J]. Geosci. Model Dev., 8(9): 2857−2876. doi: 10.5194/gmd-8-2857-2015 [6] Cheng W L, Chen Y S, Zhang J F, et al. 2007. Comparison of the Revised Air Quality Index with the PSI and AQI indices [J]. Science of the Total Environment, 382(2–3): 191−198. doi:10.1016/j.scitotenv.2007.04.036 [7] Demuzere M, Trigo R M, De Arellano J V G, et al. 2009. The impact of weather and atmospheric circulation on O3 and PM10 levels at a rural mid-latitude site [J]. Atmospheric Chemistry and Physics, 9(8): 2695−2714. doi: 10.5194/acp-9-2695-2009 [8] 都仁吉雅. 2019. 包头市冬春大气颗粒物污染及其与气象条件关系 [J]. 环境与发展, 31(10): 164−165. doi: 10.16647/j.cnki.cn15-1369/X.2019.10.093Du R J Y. 2019. Atmospheric particulate matter pollution in winter and spring in Baotou City and its relationship with meteorological conditions [J]. Environment and Development (in Chinese), 31(10): 164−165. doi: 10.16647/j.cnki.cn15-1369/X.2019.10.093 [9] Fan S J, Fan Q, Yu W, et al. 2011. Atmospheric boundary layer characteristics over the Pearl River Delta, China, during the summer of 2006: Measurement and model results [J]. Atmospheric Chemistry and Physics, 11(13): 6297−6310. doi: 10.5194/acp-11-6297-2011 [10] 高愈霄, 霍晓芹, 闫慧, 等. 2016. 京津冀区域大气重污染过程特征初步分析 [J]. 中国环境监测, 32(6): 26−35. doi: 10.19316/j.issn.1002-6002.2016.06.05Gao Y X, Huo X Q, Yan H, et al. 2016. Preliminary analysis on the characteristics of heavy air pollution events in Beijing-Tianjin-Hebei region [J]. Environmental Monitoring in China (in Chinese), 32(6): 26−35. doi: 10.19316/j.issn.1002-6002.2016.06.05 [11] 韩霄, 张美根. 2014. 2013年1月华北平原重霾成因模拟分析 [J]. 气候与环境研究, 19(2): 127−139. doi: 10.3878/j.issn.1006-9585.2014.13136Han X, Zhang M G. 2014. Model analysis of haze formation over the North China Plain in January 2013 [J]. Climatic and Environmental Research (in Chinese), 19(2): 127−139. doi: 10.3878/j.issn.1006-9585.2014.13136 [12] Huang C, Chen C H, Li L, et al. 2011. Emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta region, China [J]. Atmospheric Chemistry and Physics, 11(9): 4105−4120. doi: 10.5194/acp-11-4105-2011 [13] 江琪, 马学款, 王飞. 2016. 2016年1月大气环流和天气分析 [J]. 气象, 42(4): 514−520. doi: 10.7519/j.issn.1000-0526.2016.04.016Jiang Q, Ma X K, Wang F. 2016. Analysis of the January 2016 atmospheric circulation and weather [J]. Meteorological Monthly (in Chinese), 42(4): 514−520. doi: 10.7519/j.issn.1000-0526.2016.04.016 [14] Li M, Liu H, Geng G N, et al. 2017. Anthropogenic emission inventories in China: A review [J]. National Science Review, 4(6): 834−866. doi: 10.1093/nsr/nwx150 [15] 李伊明, 刘佳媛, 史国良, 等. 2020. 呼包鄂地区冬季、夏季PM2.5污染特征 [J]. 环境科学, 41(1): 31−38. doi: 10.13227/j.hjkx.201904207Li Y M, Liu J Y, Shi G L, et al. 2020. PM2.5 pollution characteristics during winter and summer in the Hohhot-Baotou-Ordos region, China [J]. Environmental Science (in Chinese), 41(1): 31−38. doi: 10.13227/j.hjkx.201904207 [16] 李瑞英, 田海军, 董炜华, 等. 2020. 包头市区2018年大气污染特征及来源分析 [J]. 科学技术创新(23): 42−43.Li R Y, Tian H J, Dong W H, et al. 2020. Characteristics and sources of air pollution in Baotou City in 2018 [J]. Scientific and Technological Innovation (in Chinese)(23): 42−43. [17] Peckham S E, Grell G A, McKeen S A, et al. 2017. WRF-Chem version 3.8. 1 user’ s guide [R]. NOAA Technical Memorandum OAR GSD-48. [18] 钱维宏, 张玮玮. 2007. 我国近46年来的寒潮时空变化与冬季增暖 [J]. 大气科学, 31(6): 1266−1278. doi: 10.3878/j.issn.1006-9895.2007.06.21Qian W H, Zhang W W. 2007. Changes in cold wave events and warm winter in China during the last 46 Years [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31(6): 1266−1278. doi: 10.3878/j.issn.1006-9895.2007.06.21 [19] 任阵海, 万本太, 虞统, 等. 2004. 不同尺度大气系统对污染边界层的影响及其水平流场输送 [J]. 环境科学研究, 17(1): 7−13. doi: 10.3321/j.issn:1001-6929.2004.01.002Ren Z H, Wan B T, Yu T, et al. 2004. Influence of weather system of different scales on pollution boundary layer and the transport in horizontal current field [J]. Research of Environmental Sciences (in Chinese), 17(1): 7−13. doi: 10.3321/j.issn:1001-6929.2004.01.002 [20] Tang M, Liu Y, He J, et al. 2021. In situ continuous hourly observations of wintertime nitrate, sulfate and ammonium in a megacity in the North China plain from 2014 to 2019: Temporal variation, chemical formation and regional transport [J]. Chemosphere, 262: 127745. doi: 10.1016/j.chemosphere.2020.127745 [21] 王鹏. 2019. 2013–2017年呼和浩特市大气污染时空变化特征 [D]. 内蒙古大学硕士学位论文. Wang P. 2019. Temporal and spatial characteristics of air pollution of Hohhot, 2013-2017 [D]. M. S. thesis (in Chinese), Inner Mongolia University. [22] 王喜全, 齐彦斌, 王自发, 等. 2007. 造成北京PM10重污染的二类典型天气形势 [J]. 气候与环境研究, 12(1): 81−86. doi: 10.3969/j.issn.1006-9585.2007.01.009Wang X Q, Qi Y B, Wang Z F, et al. 2007. The influence of synoptic pattern on PM10 heavy air pollution in Beijing [J]. Climatic and Environmental Research (in Chinese), 12(1): 81−86. doi: 10.3969/j.issn.1006-9585.2007.01.009 [23] 王跃思, 张军科, 王莉莉, 等. 2014. 京津冀区域大气霾污染研究意义、现状及展望 [J]. 地球科学进展, 29(3): 388−396. doi: 10.11867/j.issn.1001-8166.2014.03.0388Wang Y S, Zhang J K, Wang L L, et al. 2014. Researching significance, status and expectation of haze in Beijing-Tianjin-Hebei region [J]. Advances in Earth Science (in Chinese), 29(3): 388−396. doi: 10.11867/j.issn.1001-8166.2014.03.0388 [24] 王自发, 李杰, 王哲, 等. 2014. 2013年1月我国中东部强霾污染的数值模拟和防控对策 [J]. 中国科学: 地球科学, 44(1): 3–14. Wang Z F, Li J, Wang Z, et al. 2014. Modeling study of regional severe hazes over Mid-Eastern China in January 2013 and its implications on pollution prevention and control [J]. Science China Earth Sciences, 57(1): 3–13. [25] Wang H, Lin J M, Wu Q Z, et al. 2019. MP CBM-Z V1.0: Design for a new Carbon Bond Mechanism Z (CBM-Z) gas–phase chemical mechanism architecture for next-generation processors [J]. Geoscientific Model Development, 12(2): 749−764. doi: 10.5194/gmd-12-749-2019 [26] 王自发, 魏颖, 陈学舜, 等. 2020. 一个适用于地球系统模式(CAS-ESM)的在线气溶胶与大气化学分量模式(IAP-AACM)的发展与评估 [J]. 气候与环境研究, 25(1): 1−18. doi: 10.3878/j.issn.1006-9585.2019.19073Wang Z F, Wei Y, Chen X S, et al. 2020. Development and evaluation of the online aerosol and atmospheric chemistry model for the Chinese academy of sciences earth system model [J]. Climatic and Environmental Research (in Chinese), 25(1): 1−18. doi: 10.3878/j.issn.1006-9585.2019.19073 [27] 魏哲, 侯立泉, 魏巍, 等. 2017. 结合WRF/Chem和PMF方法的邯郸市PM2.5源解析 [J]. 环境科学与技术, 40(11): 67−74. doi: 10.3969/j.issn.1003-6504.2017.11.011Wei Z, Hou L Q, Wei W, et al. 2017. Source apportionment of PM2.5 in Handan city using a combined method of WRF/Chem and PMF model [J]. Environmental Science & Technology (in Chinese), 40(11): 67−74. doi: 10.3969/j.issn.1003-6504.2017.11.011 [28] Wei Y, Chen X S, Chen H S, et al. 2019. IAP-AACM v1.0: A global to regional evaluation of the atmospheric chemistry model in CAS-ESM [J]. Atmospheric Chemistry and Physics, 19(12): 8269−8296. doi: 10.5194/acp-19-8269-2019 [29] 吴健, 齐晓宝, 苏敬华, 等. 2019. 2015年上海崇明岛PM2.5和PM10浓度变化特征及气象因素影响分析 [J]. 气象与环境科学, 42(3): 1−8. doi: 10.16765/j.cnki.1673-7148.2019.03.001Wu J, Qi X B, Su J H, et al. 2019. Analysis on variation characteristics of PM2.5 and PM10 concentration and influence of meteorological factors in Shanghai Chongming Island in 2015 [J]. Meteorological and Environmental Sciences (in Chinese), 42(3): 1−8. doi: 10.16765/j.cnki.1673-7148.2019.03.001 [30] Xing J, Wang S X, Jang C, et al. 2011. Nonlinear response of ozone to precursor emission changes in China: A modeling study using response surface methodology [J]. Atmospheric Chemistry and Physics, 11(10): 5027−5044. doi: 10.5194/acp-11-5027-2011 [31] 徐敬, 丁国安, 颜鹏, 等. 2007. 北京地区PM2.5的成分特征及来源分析 [J]. 应用气象学报, 18(5): 645−654. doi: 10.3969/j.issn.1001-7313.2007.05.009Xu J, Ding G A, Yan P, et al. 2007. Componential characteristics and sources identification of PM2.5 in Beijing [J]. Journal of Applied Meteorological Science (in Chinese), 18(5): 645−654. doi: 10.3969/j.issn.1001-7313.2007.05.009 [32] 杨颖川, 葛宝珠, 郝赛宇, 等. 2020. 基于能见度及AOD数据的北京市PM2.5浓度的反演 [J]. 气候与环境研究, 25(5): 521−530. doi: 10.3878/j.issn.1006-9585.2019.19114Yang Y C, Ge B Z, Hao S Y, et al. 2020. Inversion of PM2.5 concentration in Beijing based on visibility and AOD data [J]. Climatic and Environmental Research (in Chinese), 25(5): 521−530. doi: 10.3878/j.issn.1006-9585.2019.19114 [33] 于庚康, 王博妮, 陈鹏, 等. 2015. 2013年初江苏连续性雾-霾天气的特征分析 [J]. 气象, 41(5): 622−629. doi: 10.7519/j.issn.1000-0526.2015.05.010Yu G K, Wang B N, Chen P, et al. 2015. Analysis of characteristics of a long-lasting fog–haze event in Jiangsu 2013 [J]. Meteorological Monthly (in Chinese), 41(5): 622−629. doi: 10.7519/j.issn.1000-0526.2015.05.010 [34] 余钟奇, 瞿元昊, 周广强, 等. 2020. 2018年秋冬季长江三角洲区域PM2.5污染来源数值研究 [J]. 中国环境科学, 40(10): 4237−4246. doi: 10.3969/j.issn.1000-6923.2020.10.006Yu Z Q, Zhai Y H, Zhou G Q, et al. 2020. Numerical simulations of PM2.5 pollution source in the Yangtze River Delta region in fall and winter in 2018 [J]. China Environmental Science (in Chinese), 40(10): 4237−4246. doi: 10.3969/j.issn.1000-6923.2020.10.006 [35] Zhai S X, Jacob D J, Wang X, et al. 2019. Fine particulate matter (PM2.5) trends in China, 2013–2018: Separating contributions from anthropogenic emissions and meteorology [J]. Atmospheric Chemistry and Physics, 19(16): 11031−11041. doi: 10.5194/acp-19-11031-2019 [36] 张培忠, 陈光明. 1999. 影响中国寒潮冷高压的统计研究 [J]. 气象学报, 57(4): 493−501. doi: 10.11676/qxxb1999.046Zhang P Z, Chen G M. 1999. A statistical analysis of the cold wave high which influences on China [J]. Acta Meteorologica Sinica (in Chinese), 57(4): 493−501. doi: 10.11676/qxxb1999.046 [37] Zhang Y, Hemperly J, Meskhidze N, et al. 2012. The global weather research and forecasting (GWRF) model: Model evaluation, sensitivity study, and future year simulation [J]. Atmospheric and Climate Sciences, 2(3): 231−253. doi: 10.4236/acs.2012.23024 [38] Zhang Y P, Li X, Nie T, et al. 2018. Source apportionment of PM2.5 pollution in the central six districts of Beijing, China [J]. Journal of Cleaner Production, 174: 661−669. doi: 10.1016/j.jclepro.2017.10.332 [39] Zhang X Y, Xu X D, Ding Y H, et al. 2019. The impact of meteorological changes from 2013 to 2017 on PM2.5 mass reduction in key regions in China [J]. Science China Earth Sciences, 62(12): 1885−1902. doi: 10.1007/s11430-019-9343-3 [40] Zhao P S, Zhang X L, Xu X F, et al. 2011. Long-term visibility trends and characteristics in the region of Beijing, Tianjin, and Hebei, China [J]. Atmospheric Research, 101(3): 711−718. doi: 10.1016/j.atmosres.2011.04.019 [41] Zhao X J, Zhao P S, Xu J, et al. 2013. Analysis of a winter regional haze event and its formation mechanism in the North China Plain [J]. Atmospheric Chemistry and Physics, 13(11): 5685−5696. doi: 10.5194/acp-13-5685-2013 [42] 赵敬国, 王式功, 张天宇, 等. 2015. 兰州市大气重污染气象成因分析 [J]. 环境科学学报, 35(5): 1547−1555. doi: 10.13671/j.hjkxxb.2014.0829Zhao J G, Wang S G, Zhang T Y, et al. 2015. The analysis of meteorological factors causing heavy air pollution in Lanzhou [J]. Acta Scientiae Circumstantiae (in Chinese), 35(5): 1547−1555. doi: 10.13671/j.hjkxxb.2014.0829 [43] 赵妤希, 陈义珍, 杨欣, 等. 2019. 2018年3月两会期间北京重污染过程边界层气象的演变分析 [J]. 环境科学研究, 32(9): 1492−1499. doi: 10.13198/j.issn.1001-6929.2019.05.11Zhao Y X, Chen Y Z, Yang X, et al. 2019. Meteorological evolution of boundary layer during heavy pollution in Beijing during the CPPCC (China People's political consultative conference) in March 2018 [J]. Research of Environmental Sciences (in Chinese), 32(9): 1492−1499. doi: 10.13198/j.issn.1001-6929.2019.05.11 [44] Zheng B, Tong D, Li M, et al. 2018. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions [J]. Atmospheric Chemistry and Physics, 18(19): 14095−14111. doi: 10.5194/acp-18-14095-2018 -