Relationship between the Interdecadal Variation of Rainy Season Precipitation and Water Vapor Transport in North China
-
摘要: 本文基于1961~2018年华北地区均一化逐日降水资料和ECMWF(欧洲中期天气预报中心)ERA5全球再分析环流资料,采用一种综合考虑降水量和西太平洋副热带高压脊线影响的雨季监测标准,计算了华北雨季起讫日期和降水量,在此基础上讨论了华北雨季季节内进程的水汽输送特征。重点分析了降水量与水汽收支的年代际变化关系,揭示了水汽输送的时空变化规律及其对华北雨季降水的影响。研究结果表明:(1)华北雨季每年的起讫日期不同,从而每年雨季发生时段和季节内进程不同。(2)降水的形成与水汽输送及其辐合密切相关,有四个水汽通道维持华北雨季降水,即印度季风水汽、东亚季风水汽、110°E~120°E之间越赤道气流向北的水汽输送和40°N附近中纬度西风带水汽。(3)华北雨季降水和净水汽收支具有相似的年代际变化特征,分别在1977、1987、1999年发生突变,总体呈现“减—增—减”的阶段性变化趋势,两者位相转变相关性很强。(4)水汽输送的强弱和到达华北时间的早晚均对雨季降水多寡有重要影响。华北多雨年代与少雨年代水汽通量有明显的差异,主要表现在:在多雨年代,西北太平洋为反气旋式环流异常,偏南水汽强盛,并且与中高纬西风带异常偏西水汽汇聚于华北,华北地区水汽辐合偏强;考虑季节内进程,水汽到达华北的时间早、强度大,停留时间长、辐合强,减弱的时间晚;而在少雨年代,我国东北地区、朝鲜半岛及日本海附近为气旋式环流异常,华北地区由南向北的水汽输送偏弱,水汽辐散明显加强;季节内进程表现出与多雨年代相反的特征。(5)考虑华北地区四个边界的水汽收支,南边界和西边界有最大、次大水汽输入,二者的年代际变化是影响雨季降水年代际变化的重要因素。在多雨年代,南边界和西边界水汽净输入很强,但北边界的输出也很强;在少雨年代,南边界和西边界水汽净输入很弱,但北边界转为输入,这是区别于多雨年代的重要特征。Abstract: We calculated the rainy season precipitation in North China (RSPNC) and the onset/ending dates through a new monitoring method based on the homogenized daily precipitation in North China and 1961–2018 ERA5 reanalysis data, and a new monitoring standard that considers precipitation and the position of the Western Pacific subtropical high ridge. Moreover, we analyzed the climatic characteristics of water vapor transport and associated interdecadal variations in precipitation and moisture budget. The temporal and spatial variations in water vapor transport and the associated impact on RSPNC were further investigated. The main results can be summarized as follows: (1) The onset/ending dates of the rainy season in North China are distinct each year; therefore, the periods of the rainy season and the intraseasonal variation are also distinct. (2) Precipitation is determined by large-scale atmospheric moisture transport and the associated convergence. The critical four water vapor pathways, including Indian monsoon, East Asian monsoon, transequatorial airflow between 110°E and 120°E, and mid-latitude westerlies near 40°N, maintained the RSPNC. (3) The RSPNC and water vapor budget exhibits similar interdecadal variations, and abrupt climate changes occurred in 1977, 1987, and 1999, featuring a “reduction–increase–reduction” phase. The RSPNC is strongly correlated with the net water vapor budget within the North China domain. (4) The intensity of water vapor flux and the arriving time significantly affect the precipitation amount. The distribution patterns of water vapor flux anomalies in rainy decades and rainless decades are distinct: In the rainy decades, anomalous anticyclonic circulation dominates the Northwest Pacific, and the northward water vapor transport is strong, which converges with the eastward water vapor transport over mid to high latitude westerlies in North China, and the water vapor diverges more strongly than that in normal years. In terms of intraseasonal processes, water vapor fluxes are stronger in amplitude, reach North China earlier, weaken later, converge stronger, and last longer. In the rainless decades, anomalous cyclonic circulation dominates Northeast China, the Korean Peninsula, and the area around the Sea of Japan, and it turns into a weaker-than-usual northward water vapor transport, and the water vapor divergence is considerably strengthened. The intraseasonal process shows the opposite characteristics. (5) Considering the four boundaries of water vapor transport, the southern and western boundary water vapor inputs are the largest and the second-largest, respectively. Their interdecadal variations are critical for the interdecadal variation of the RSPNC. In rainy decades, there are stronger inputs of water vapor from the southern and western boundaries but strong output from the north boundary; however, in rainless decades, water vapor inputs are weak from the southern and western boundaries, and the output switches to input from the northern boundary, which is essentially distinct from the case in the rainy decades.
-
图 1 1961~2018年华北雨季(a)降水量(单位:mm)、(b)整层积分水汽通量(箭头,单位:kg m−1 s−1)及其散度(填色,单位:10−5 kg m−2 s−1)、500 hPa位势高度(蓝色实线,单位:gpm)气候场分布。(a)中虚线框表示华北区域
Figure 1. Distributions of climatologically averaged (a) precipitation (units: mm), (b) vertically integrated water vapor fluxes (arrows, units: kg m−1 s−1) and associated divergence (shaded, units: 10−5 kg m−2 s−1), and 500 hPa geopotential height (blue isolines, units: gpm) during the rainy season of North China. The dashed box in (a) indicates the geographical locations of North China
图 2 1961~2018年华北雨季沿110°E~120°E平均整层积分经向水汽通量(蓝色等值线,单位:kg m−1 s−1)、水汽通量散度(红色等值线,单位:10−5 kg m−2 s−1)、降水量(填色,单位:mm)以及850 hPa水平风场(箭头,单位:m s−1)的纬度—时间逐日演变
Figure 2. Time–latitude section along 110°E–120°E averaged meridional vertically integrated water vapor fluxes (blue isolines, units: kg m−1 s−1), divergence (red isolines , units: 10−5 kg m−2 s−1), precipitation (shaded, units: mm), and 850 hPa wind vector (arrows, units: m s−1) in 1961–2018 during the rainy season of North China
图 3 华北雨季(a、b)开始日、(c、d)峰值日、(e、f)结束日850 hPa风场(箭头)、风速(蓝色等值线,单位: m s−1)、5860和5880 gpm等高线范围(白色虚线)以及水汽通量(填色,单位:kg m−1 s−1 hPa−1)分布(左列)及其对应的沿110°E~120°E的平均纬度—高度剖面(右列)
Figure 3. (a, c, e) 850 hPa wind vector (arrows), wind velocity (blue isolines, units: m s−1), the climatological extent of the 5860 and 5880 gpm (white dashed isolines), water vapor fluxes (shaded), and (b, d, e) latitude–altitude cross section of 110°E–120°E averaged moisture fluxes (shaded; unit: kg m−1 s−1 hPa−1) on (a, b) onset date, (c, d) peak date and (e, f) ending date
图 4 1961~2018年华北雨季历年(a)开始日期(实线)、结束日期(虚线)及雨季长度(直方图;单位:d)时间变化;(b)降水量历年值(直方图)、多年平均值(虚线)、11年滑动平均值(实线)及四个时期的降水量平均值(三角),单位:mm
Figure 4. (a) Onset date (solid curve), ending date (dashed curve), and length (histogram; units: d) of the rainy season in North China in 1961–2018; (b) Annual precipitation (histogram), climatological precipitation (dashed line), 11-year running average (solid curve), and mean precipitation in the four periods (triangle) of the rainy season in North China in 1961–2018, units: mm
图 5 华北雨季(a)多雨年代和(b)少雨年代合成的降水距平百分率(填色)分布。黑点表示通过99%的显著性检验,(a)和(b)中央黑色线框表示华北区域
Figure 5. Distribution of the precipitation anomaly percentage (shaded) in rainy decades (a) and rainless decades (b) during the rainy season. The dark stipplings indicate values exceeding 99% confidence levels, and the black boxes in the middle of (a) and (b) indicate the geographical locations of North China
图 6 1961~2018年华北雨季(a)区域净水汽收支(虚线,单位:107 kg s−1)及降水量(实线,单位:mm)变化;(b)南、(c)西、(d)东、(e)北边界水汽收支(虚折线)、11年滑动平均值(实线)及平均值(虚直线)历年变化,单位:107 kg s−1
Figure 6. (a) Annual water vapor net budget (units: 107 kg s−1) and precipitation (units: mm) in the rainy season of North China during 1961-2018. Annual value (dashed curve), 11-year running average (solid curve), and the climatic value (dashed line) of water vapor budget on (b) southern boundary, (c) western boundary, (d) eastern boundary, and (e) northern boundary. Units: 107 kg s−1
图 7 华北雨季多雨年代(a)和少雨年代(b)合成的整层积分水汽通量距平(箭头;单位:kg m−1 s−1)及散度距平(填色;单位:10−5 kg m−2 s−1)分布(黑点表示通过95%的显著性检验)
Figure 7. Distribution of the water vapor flux vector anomaly (units: kg m−1 s−1), divergence (shaded; units: 10−5 kg m−2 s−1) in (a) rainy decades and (b) rainless decades during the rainy season. Dark stipplings indicate values exceeding 95% confidence levels
图 8 华北雨季(a)多雨年代、(b)少雨年代合成的850 hPa水汽通量(单位:kg m−1 s−1 hPa−1)及(c)其差值场、(d)水汽通量散度(单位:10−5 kg m−2 s−1 hPa−1)差值场沿110°E~120°E平均的时间—纬度分布。(c、d)中阴影表示通过90%、95%或99%的显著性检验
Figure 8. Time–latitude section along the 110°E–120°E average of 850 hPa water vapor fluxes (units: kg m−1 s−1 hPa−1) in (a) rainy decades, (b) rainless decades, the differences in (c) water vapor fluxes and (d) divergence (units: 10−5 kg m−2 s−1 hPa−1) between rainy and rainless decades. The shadings indicate values exceeding 90%, 95%, or 99% confidence levels in (c, d)
图 9 华北雨季(a、b)多雨年代、(c、d)少雨年代合成的水汽通量沿110°E~120°E平均的纬度—高度剖面及(e、f)其差值场,单位:kg m−1 s−1 hPa−1:开始日(第一行);峰值日(第二行)。(e、f)中阴影表示通过95%的显著性检验
Figure 9. Latitude–altitude section along 110°E–120°E averaged of water vapor fluxes (units: kg m−1 s−1 hPa−1) in (a, b) rainy decades, (c, d) rainless decades and (e, f) the differences between rainy and rainless decades: Onset date (top line); peak date (bottom line). The shadings indicate values exceeding 95% confidence levels in (e, f)
图 11 华北地区各边界水汽收支与前冬(左列)、春季(中间列)、夏季(右列)海温(填色)及850 hPa水平风矢量(箭头)相关分布。图中黑点表示海温相关系数通过95%的显著性检验,仅给出与风场的相关系数大于0.15的矢量箭头
Figure 11. Spatial pattern of correlation coefficients between the Pacific and Indian Ocean surface temperatures (shaded), 850 hPa horizontal wind vector (arrow), and water vapor budget at each boundary of North China in the previous winter (left column) , previous spring (middle column), and concurrent summer (left column). Dark stippling indicates values exceeding the 95% confidence level, only vector with a correlation coefficients exceeding 0.15 is showed
表 1 四个不同时期的华北雨季降水量(单位:mm)、各边界上和区域净水汽收支(单位:107 kg s−1)及其距平百分率
Table 1. Precipitation (units: mm), water vapor budget (units: 107 kg s−1), and percentage anomalies relative to 1961–2018 climatology for each boundary during the four different periods of the rainy season in North China
降水量/mm 水汽收支/107 kg s−1 区域净水汽收支 南边界 西边界 东边界 北边界 P1(1961~1976年) 164.7(+15.1%) 11.21(+72.8%) 41.81(+34.1%) 23.20(+36.2%) −44.79(+28.8%) −9.01(+29.9%) P2(1977~1986年) 119.6(−16.4%) 4.03(−37.9%) 25.81(−17.2%) 15.11(−11.3%) −28.24(−18.8%) −8.65(+24.8%) P3(1987~1998年) 172.0(+20.2%) 7.20(+11.0%) 34.35(+10.2%) 19.85(+16.9%) −39.34(+13.1%) −7.67(+10.6%) P4(1999~2018年) 120.2(−16.0%) 3.51(−45.9%) 23.43(−24.8%) 11.37(−33.2%) −27.31(−21.5%) −3.97(−42.7%) 注:表中括号中的百分数表示不同量的距平百分率 表 2 华北雨季多年平均、多雨年代和少雨年代各边界不同层次的水汽收支(单位:107 kg s−1)
Table 2. Averaged water vapor budget with different layers at each boundary in climatology (1961–2018), rainy decades, and rainless decades (units: 107 kg s−1)
多年平均水汽收支/107 kg s−1 多雨年代水汽收支/107 kg s−1 少雨年代水汽收支/107 kg s−1 低层 中层 高层 低层 中层 高层 低层 中层 高层 南边界 22.09 6.71 2.37 39.85 13.47 4.66 11.14 2.31 1.11 西边界 0.95 9.07 7.02 0.95 14.76 11.32 −0.01 4.20 3.62 东边界 −13.73 −13.06 −7.99 −21.45 −22.07 −13.18 −10.66 −7.92 −5.03 北边界 −4.30 −1.17 −1.47 −7.32 −3.02 −2.91 0.48 1.80 0.33 净水汽收支 5.02 1.54 −0.07 12.03 3.14 −0.11 0.94 0.39 0.05 -
[1] 安莉娟, 任福民, 李韵婕, 等. 2014. 近50年华北区域性气象干旱事件的特征分析 [J]. 气象, 40(9): 1097−1105. doi: 10.7519/j.issn.1000-0526.2014.09.007An Lijuan, Ren Fumin, Li Yunjie, et al. 2014. Study on characteristics of regional drought events over North China during the past 50 years [J]. Meteor. Mon. (in Chinese), 40(9): 1097−1105. doi: 10.7519/j.issn.1000-0526.2014.09.007 [2] 毕慕莹, 丁一汇. 1992. 1980年夏季华北干旱时期东亚阻塞形势的位涡分析 [J]. 应用气象学报, 3(2): 145−156.Bi Muying, Ding Yihui. 1992. A study of budget of potential vorticity of blocking high during the drought period in summer of 1980 [J]. Quart. J. Appl. Meteor. (in Chinese), 3(2): 145−156. [3] 陈烈庭. 1999. 华北各区夏季降水年际和年代际变化的地域性特征 [J]. 高原气象, 18(4): 477−485. doi: 10.3321/j.issn:1000-0534.1999.04.002Chen Lieting. 1999. Regional features of interannual and interdecadal variations in summer precipitation anomalies over North China [J]. Plateau Meteorology (in Chinese), 18(4): 477−485. doi: 10.3321/j.issn:1000-0534.1999.04.002 [4] 陈兴芳, 赵振国. 2000. 中国汛期降水预测研究及应用[M]. 北京: 气象出版社, 153–157.Chen Xingfang, Zhao Zhenguo. 2000. A Study of Precipitation Prediction in Flood Season Over China and Application (in Chinese) [M]. Beijing: China Meteorological Press, 153–157. [5] 丁一汇, 张莉. 2008. 青藏高原与中国其他地区气候突变时间的比较 [J]. 大气科学, 32(4): 794−805. doi: 10.3878/j.issn.1006-9895.2008.04.08Ding Yihui, Zhang Li. 2008. Intercomparison of the time for climate abrupt change between the Tibetan Plateau and other regions in China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(4): 794−805. doi: 10.3878/j.issn.1006-9895.2008.04.08 [6] Ding Y H, Wang Z Y, Sun Y. 2008. Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences [J]. Int. J. Climatol., 28(9): 1139−1161. doi: 10.1002/joc.1615 [7] 丁一汇, 司东, 柳艳菊, 等. 2018. 论东亚夏季风的特征、驱动力与年代际变化 [J]. 大气科学, 42(3): 533−558. doi: 10.3878/j.issn.1006-9895.1712.17261Ding Yihui, Si Dong, Liu Yanju, et al. 2018. On the characteristics, driving forces and inter-decadal variability of the East Asian summer monsoon [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(3): 533−558. doi: 10.3878/j.issn.1006-9895.1712.17261 [8] 符淙斌, 马柱国. 2008. 全球变化与区域干旱化 [J]. 大气科学, 32(4): 752−760. doi: 10.3878/j.issn.1006-9895.2008.04.05Fu Congbin, Ma Zhuguo. 2008. Global change and regional aridification [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(4): 752−760. doi: 10.3878/j.issn.1006-9895.2008.04.05 [9] 符娇兰, 陈双, 沈晓琳, 等. 2019. 两次华北冷涡降水成因及预报偏差对比分析 [J]. 气象, 45(5): 606−620. doi: 10.7519/j.issn.1000-0526.2019.05.002Fu Jiaolan, Chen Shuang, Shen Xiaolin, et al. 2019. Comparative study of the cause of rainfall and its forecast biases of two cold vortex rainfall events in North China [J]. Meteor. Mon. (in Chinese), 45(5): 606−620. doi: 10.7519/j.issn.1000-0526.2019.05.002 [10] 郝立生, 丁一汇. 2012. 华北降水变化研究进展 [J]. 地理科学进展, 31(5): 593−601. doi: 10.11820/dlkxjz.2012.05.007Hao Lisheng, Ding Yihui. 2012. Progress of precipitation research in North China [J]. Progress in Geography (in Chinese), 31(5): 593−601. doi: 10.11820/dlkxjz.2012.05.007 [11] 郝立生, 丁一汇, 闵锦忠. 2016. 东亚夏季风变化与华北夏季降水异常的关系 [J]. 高原气象, 35(5): 1280−1289. doi: 10.7522/j.issn.1000-0534.2015.00085Hao Lisheng, Ding Yihui, Min Jinzhong. 2016. Relationship between summer monsoon changes in East Asia and abnormal summer rainfall in North China [J]. Plateau Meteorology (in Chinese), 35(5): 1280−1289. doi: 10.7522/j.issn.1000-0534.2015.00085 [12] 郝立生, Li T, 马宁, 等. 2020. MJO对2018年华北夏季降水的影响 [J]. 大气科学, 44(3): 639−656. doi: 10.3878/j.issn.1006-9895.1912.19217Hao Lisheng, Li T, Ma Ning, et al. 2020. Influence of MJO on summer precipitation in North China in 2018 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(3): 639−656. doi: 10.3878/j.issn.1006-9895.1912.19217 [13] Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis [J]. Quart. J. Roy. Meteor. Soc., 146(730): 1999−2049. doi: 10.1002/qj.3803 [14] 黄荣辉, 陈际龙. 2010. 我国东、西部夏季水汽输送特征及其差异 [J]. 大气科学, 34(6): 1035−1045. doi: 10.3878/j.issn.1006-9895.2010.06.01Huang Ronghui, Chen Jilong. 2010. Characteristics of the summertime water vapor transports over the eastern part of China and those over the western part of China and their difference [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34(6): 1035−1045. doi: 10.3878/j.issn.1006-9895.2010.06.01 [15] 黄荣辉, 陈际龙, 刘永. 2011. 我国东部夏季降水异常主模态的年代际变化及其与东亚水汽输送的关系 [J]. 大气科学, 35(4): 589−606. doi: 10.3878/j.issn.1006-9895.2011.04.01Huang Ronghui, Chen Jilong, Liu Yong. 2011. Interdecadal variation of the leading modes of summertime precipitation anomalies over eastern China and its association with water vapor transport over East Asia [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35(4): 589−606. doi: 10.3878/j.issn.1006-9895.2011.04.01 [16] Huang B Y, Banzon V F, Freeman E, et al. 2015. Extended reconstructed sea surface temperature version 4 (ERSST. v4). Part I: Upgrades and intercomparisons [J]. J. Climate, 28(3): 911−930. doi: 10.1175/JCLI-D-14-00006.1 [17] 梁萍, 何金海, 陈隆勋, 等. 2007. 华北夏季强降水的水汽来源 [J]. 高原气象, 26(3): 460−465. doi: 10.3321/j.issn:1000-0534.2007.03.004Liang Ping, He Jinhai, Chen Longxun, et al. 2007. Anomalous moisture sources for the severe precipitation over North China during summer [J]. Plateau Meteorology (in Chinese), 26(3): 460−465. doi: 10.3321/j.issn:1000-0534.2007.03.004 [18] 林大伟, 布和朝鲁, 谢作威. 2016. 夏季中国华北与印度降水之间的关联及其成因分析 [J]. 大气科学, 40(1): 201−214. doi: 10.3878/j.issn.1006-9895.1503.14339Lin Dawei, Bueh Cholaw, Xie Zuowei. 2016. Relationship between summer rainfall over North China and India and its genesis analysis [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(1): 201−214. doi: 10.3878/j.issn.1006-9895.1503.14339 [19] 林大伟, 布和朝鲁, 谢作威. 2018. 夏季中国华北降水、印度降水与太平洋海表面温度的耦合关系 [J]. 大气科学, 42(6): 1175−1190. doi: 10.3878/j.issn.1006-9895.1712.17183Lin Dawei, Bueh Cholaw, Xie Zuowei. 2018. A study on the coupling relationships among the Pacific sea surface temperature and summer rainfalls over North China and India [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(6): 1175−1190. doi: 10.3878/j.issn.1006-9895.1712.17183 [20] 刘宪亮. 2020. 南水北调中线工程在华北地下水超采综合治理中的作用及建议 [J]. 中国水利(13): 31−32. doi: 10.3969/j.issn.1000-1123.2020.13.018Liu Xianliang. 2020. Role of middle route scheme of South to North water diversion to control overexploitation of groundwater in North China [J]. China Water Resources (in Chinese)(13): 31−32. doi: 10.3969/j.issn.1000-1123.2020.13.018 [21] 刘海文, 丁一汇. 2008. 华北汛期的起讫及其气候学分析 [J]. 应用气象学报, 19(6): 688−696. doi: 10.3969/j.issn.1001-7313.2008.06.008Liu Haiwen, Ding Yihui. 2008. Identification on the beginning date and end date of rainy season over North China and their climatology [J]. J. Appl. Meteor. Sci. (in Chinese), 19(6): 688−696. doi: 10.3969/j.issn.1001-7313.2008.06.008 [22] 刘海文, 丁一汇. 2011. 华北汛期大尺度降水条件的年代际变化 [J]. 大气科学学报, 34(2): 146−152. doi: 10.3969/j.issn.1674-7097.2011.02.003Liu Haiwen, Ding Yihui. 2011. Interdecadal variability of large-scale precipitation conditions over North China during rainy seasons [J]. Trans. Atmos. Sci. (in Chinese), 34(2): 146−152. doi: 10.3969/j.issn.1674-7097.2011.02.003 [23] 缪启龙, 江志红, 陈海山, 等. 2010. 现代气候学[M]. 北京: 气象出版社, 78–82.Miao Qilong, Jiang Zhihong, Chen Haishan, et al. 2010. Modern Climatology (in Chinese) [M]. Beijing: China Meteorological Press, 78–82. [24] 任福民, 龚志强, 王艳姣, 等. 2015. 中国干旱、强降水、高温和低温区域性极端事件[M]. 北京: 气象出版社, 75–79.Ren Fumin, Gong Zhiqiang, Wang Yanjiao, et al. 2015. China's Regional Extreme Events–Droughts, Intense Precipitations, Heatwaves and Low Temperature (in Chinese) [M]. Beijing: China Meteorological Press, 75–79. [25] 荣艳淑. 2013. 华北干旱[M]. 北京: 中国水利水电出版社, 25–32.Rong Yanshu. 2013. Drought in North China (in Chinese) [M]. Beijing: China Water & Power Press, 25–32. [26] 申乐琳, 何金海, 周秀骥, 等. 2010. 近50年来中国夏季降水及水汽输送特征研究 [J]. 气象学报, 68(6): 918−931. doi: 10.11676/qxxb2010.087Shen Lelin, He Jinhai, Zhou Xiuji, et al. 2010. The regional variabilities of the summer rainfall in China and its relation with anomalous moisture transport during the recent 50 years [J]. Acta Meteor. Sinica (in Chinese), 68(6): 918−931. doi: 10.11676/qxxb2010.087 [27] 宋燕, 张菁, 李智才, 等. 2011. 青藏高原冬季积雪年代际变化及对中国夏季降水的影响 [J]. 高原气象, 30(4): 843−851.Song Yan, Zhang Jing, Li Zhicai, et al. 2011. Interdecadal change of winter snow depth on Tibetan Plateau and its effect on summer precipitation in China [J]. Plateau Meteorology (in Chinese), 30(4): 843−851. [28] Sun B, Zhu Y L, Wang H J. 2011. The recent interdecadal and interannual variation of water vapor transport over eastern China [J]. Adv. Atmos. Sci., 28(5): 1039−1048. doi: 10.1007/s00376-010-0093-1 [29] 谭桂容, 孙照渤. 2004. 西太平洋副高与华北旱涝的关系 [J]. 热带气象学报, 20(2): 206−211. doi: 10.3969/j.issn.1004-4965.2004.02.013Tan Guirong, Sun Zhaobo. 2004. Relationship of the subtropical high and summertime floods/droughts over North China [J]. Journal of Tropical Meteorology (in Chinese), 20(2): 206−211. doi: 10.3969/j.issn.1004-4965.2004.02.013 [30] 王遵娅, 丁一汇. 2008. 中国雨季的气候学特征 [J]. 大气科学, 32(1): 1−13. doi: 10.3878/j.issn.1006-9895.2008.01.01Wang Zunya, Ding Yihui. 2008. Climatic characteristics of rainy seasons in China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(1): 1−13. doi: 10.3878/j.issn.1006-9895.2008.01.01 [31] Webster P J. 1994. The role of hydrological processes in ocean–atmosphere interactions [J]. Rev. Geophys., 32(4): 427−476. doi: 10.1029/94RG01873 [32] 杨溯, 李庆祥. 2014. 中国降水量序列均一性分析方法及数据集更新完善 [J]. 气候变化研究进展, 10(4): 276−281. doi: 10.3969/j.issn.1673-1719.2014.04.008Yang Su, Li Qingxiang. 2014. Improvement in homogeneity analysis method and update of China precipitation data [J]. Progressus Inquisitiones de Mutatione Climatis (in Chinese), 10(4): 276−281. doi: 10.3969/j.issn.1673-1719.2014.04.008 [33] 杨修群, 谢倩, 朱益民, 等. 2005. 华北降水年代际变化特征及相关的海气异常型 [J]. 地球物理学报, 48(4): 789−797. doi: 10.3321/j.issn:0001-5733.2005.04.009Yang Xiuqun, Xie Qian, Zhu Yimin, et al. 2005. Decadal-to-interdecadal variability of precipitation in North China and associated atmospheric and oceanic anomaly patterns [J]. Chinese J. Geophys. (in Chinese), 48(4): 789−797. doi: 10.3321/j.issn:0001-5733.2005.04.009 [34] 杨柳, 赵俊虎, 封国林. 2018. 中国东部季风区夏季四类雨型的水汽输送特征及差异 [J]. 大气科学, 42(1): 81−95. doi: 10.3878/j.issn.1006-9895.1706.16273Yang Liu, Zhao Junhu, Feng Guolin. 2018. Characteristics and differences of summertime moisture transport associated with four rainfall patterns over eastern China Monsoon Region [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(1): 81−95. doi: 10.3878/j.issn.1006-9895.1706.16273 [35] 于晓澄, 赵俊虎, 杨柳, 等. 2019. 华北雨季开始早晚与大气环流和海表温度异常的关系 [J]. 大气科学, 43(1): 107−118. doi: 10.3878/j.issn.1006-9895.1801.17242Yu Xiaocheng, Zhao Junhu, Yang Liu, et al. 2019. The relationship between the onset date of the rainy season in North China and the atmospheric circulation and SST [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(1): 107−118. doi: 10.3878/j.issn.1006-9895.1801.17242 [36] Zhang R H. 2001. Relations of water vapor transport from Indian monsoon with that over East Asia and the summer rainfall in China [J]. Adv. Atmos. Sci., 18(5): 1005−1017. doi: 10.1007/BF03403519 [37] Zhang R H, Sumi A, Kimoto M. 1996. Impact of El Niño on the East Asian monsoon: A diagnostic study of the '86/87 and '91/92 events [J]. J. Meteor. Soc. Japan, 74(1): 49−62. doi: 10.2151/jmsj1965.74.1_49 [38] Zhang Q, Xu C Y, Zhang Z, et al. 2009. Spatial and temporal variability of precipitation over China, 1951-2005 [J]. Theor. Appl. Climatol., 95(1-2): 53−68. doi: 10.1007/s00704-007-0375-4 [39] Zhang R N, Zhang R H, Zuo Z Y. 2017. Impact of Eurasian spring snow decrement on East Asian summer precipitation [J]. J. Climate, 30(9): 3421−3437. doi: 10.1175/JCLI-D-16-0214.1 [40] 张若楠, 孙丞虎, 李维京. 2018. 北极海冰与夏季欧亚遥相关型年际变化的联系及对我国夏季降水的影响 [J]. 地球物理学报, 61(1): 91−105. doi: 10.6038/cjg2018K0755Zhang Ruonan, Sun Chenghu, Li Weijing. 2018. Relationship between the interannual variations of Arctic sea ice and summer Eurasian teleconnection and associated influence on summer precipitation over China [J]. Chinese Journal of Geophysics (in Chinese), 61(1): 91−105. doi: 10.6038/cjg2018K0755 [41] 赵汉光. 1994. 华北的雨季 [J]. 气象, 20(6): 3−8. doi: 10.7519/j.issn.1000-0526.1994.06.001Zhao Hanguang. 1994. Rainy season in North China [J]. Meteor. Mon. (in Chinese), 20(6): 3−8. doi: 10.7519/j.issn.1000-0526.1994.06.001 [42] 赵树云, 陈丽娟, 崔童. 2017. ENSO位相转换对华北雨季降水的影响 [J]. 大气科学, 41(4): 857−868. doi: 10.3878/j.issn.1006-9895.1701.16226Zhao Shuyun, Chen Lijuan, Cui Tong. 2017. Effects of ENSO phase-switching on rainy-season precipitation in North China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 41(4): 857−868. doi: 10.3878/j.issn.1006-9895.1701.16226 [43] 中国气象局. 2010. 中国气象干旱图集[M]. 北京: 气象出版社, 20–92.China Meteorological Administration. 2010. Atlas of Meteorological Drought in China (in Chinese) [M]. Beijing: China Meteorological Press, 20–92. [44] 中国气象局. 2015. 中国气象灾害年鉴(2014)[M]. 北京: 气象出版社, 10–20.China Meteorological Administration. 2015. China Meteorological Disaster Yearbook (2014) (in Chinese) [M]. Beijing: China Meteorological Press, 10–20. [45] 中国气象局. 2019. 中国雨季监测指标 华北雨季: QX/T 495–2019[S]. 北京: 气象出版社, 1–9.China Meteorological Administration. Monitoring indices of rainy season in China-Rainy season in North China: QX/T 495–2019 (in Chinese) [S]. Beijing: China Meteorological Press, 1–9. [46] 周连童, 黄荣辉. 2003. 关于我国夏季气候年代际变化特征及其可能成因的研究 [J]. 气候与环境研究, 8(3): 274−290. doi: 10.3878/j.issn.1006-9585.2003.03.03Zhou Liantong, Huang Ronghui. 2003. Research on the characteristics of interdecadal variability of summer climate in China and its possible cause [J]. Climatic and Environmental Research (in Chinese), 8(3): 274−290. doi: 10.3878/j.issn.1006-9585.2003.03.03 [47] Zhou T J, Yu R C. 2005. Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China [J]. J. Geophys. Res., 110(D8): D08104. doi: 10.1029/2004JD005413 [48] 周晓霞, 丁一汇, 王盘兴. 2008a. 影响华北汛期降水的水汽输送过程 [J]. 大气科学, 32(2): 345−357. doi: 10.3878/j.issn.1006-9895.2008.02.13Zhou Xiaoxia, Ding Yihui, Wang Panxing. 2008a. Features of moisture transport associated with the precipitation over North China during July–August [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(2): 345−357. doi: 10.3878/j.issn.1006-9895.2008.02.13 [49] 周晓霞, 丁一汇, 王盘兴. 2008b. 夏季亚洲季风区的水汽输送及其对中国降水的影响 [J]. 气象学报, 66(1): 59−70. doi: 10.11676/qxxb2008.006Zhou Xiaoxia, Ding Yihui, Wang Panxing. 2008b. Moisture transpotr in Asian summer monsoon region and its relationship with summer precipitation in China [J]. Acta Meteor. Sinica (in Chinese), 66(1): 59−70. doi: 10.11676/qxxb2008.006 [50] 宗海锋. 2017. 两个典型ENSO季节演变模态及其与我国东部降水的联系 [J]. 大气科学, 41(6): 1264−1283. doi: 10.3878/j.issn.1006-9895.1704.16279Zong Haifeng. 2017. Two typical ENSO seasonal evolution modes and their relations with rainfall over eastern China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 41(6): 1264−1283. doi: 10.3878/j.issn.1006-9895.1704.16279 -